超高速切削现状和趋势
- 格式:docx
- 大小:16.93 KB
- 文档页数:3
高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。
该技术的核心在于实现高效率、高质量和高精度的加工过程。
在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。
这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。
此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。
高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。
研究表明,高速切削可以提高生产效率达 30%至50%。
2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。
此外,由于切削热的影响较小,工件的热变形也得到了控制。
3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。
4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。
5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。
然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。
因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。
总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。
标题:我国高速加工技术现状及发展趋势在当前工业生产中,高速加工技术已成为了提高加工效率、降低成本、改善产品质量的重要手段。
我国作为全球最大的制造业大国,高速加工技术的现状和发展趋势备受关注。
本文将从深度和广度两个方面对我国高速加工技术进行全面评估,并探讨其发展趋势。
一、我国高速加工技术的现状1. 高速加工技术的定义和特点高速加工技术是指在高速度下对工件进行切削加工的一种先进加工技术,具有高效率、高精度、高表面质量、低热影响区等特点。
2. 国内高速加工技术的发展历程自20世纪80年代以来,我国的高速加工技术得到了迅猛的发展,尤其是在航空航天、汽车制造、模具制造等行业得到了广泛应用。
3. 我国高速加工技术的应用现状高速加工技术在航空航天、汽车制造、模具制造、医疗器械等领域得到了广泛应用,成为提高生产效率和产品质量的重要手段。
二、我国高速加工技术的发展趋势1. 技术创新推动高速加工技术的发展随着科技的进步和不断创新,高速加工技术将会更加高效、精密、稳定,能够满足更加复杂的加工需求。
2. 智能制造与高速加工技术的融合智能制造将成为未来高速加工技术发展的重要方向,通过智能化、自动化技术,提高生产效率和产品质量。
3. 绿色制造与高速加工技术的结合高速加工技术在减少碳排放、节能减排方面将会有更大的发展空间,应用于绿色制造领域。
4. 人工智能在高速加工技术中的应用随着人工智能技术的快速发展,其在高速加工技术中的应用将会成为新的发展趋势,将提高生产效率和产品质量。
三、总结与展望我国高速加工技术在不断发展创新的过程中,已经取得了令人瞩目的成绩,但与发达国家相比仍有一定差距。
在未来发展中,需要加大科技投入力度,加强技术研发和创新,培养更多高端技术人才,不断提升我国的高速加工技术水平,推动制造业向高质量发展。
个人观点:高速加工技术作为先进制造技术的代表,将会对我国工业生产产生深远影响。
在未来,我相信随着科技的进步和不断创新,我国的高速加工技术将不断迈向更加高效、精密、稳定的发展方向,并为我国制造业的转型升级和智能制造提供重要支撑。
高速加工的发展趋势
高速加工技术的发展趋势主要包括以下几个方面:
1. 高速切削工艺:随着材料科学和刀具技术的不断进步,高速切削工艺的应用正在不断扩大。
高速切削工艺能够增加切削切削速度和加工效率,减少切削力和切削热量,提高切削质量和表面光洁度。
2. 高速加工中心的发展:高速加工中心是高速加工的核心设备。
未来,高速加工中心将越来越智能化,加工速度和精度将得到进一步提高。
同时,高速加工中心将根据不同的加工要求,提供更加灵活的刀具和夹具系统,以满足不同加工任务的需求。
3. 多轴加工技术的应用:多轴加工技术可以同时进行多个方向上的切削,使得曲面加工更加容易和精确。
未来,多轴加工技术将广泛应用于高速加工领域,提高加工效率和加工精度。
4. 先进的刀具材料和涂层技术:刀具是高速加工的关键因素之一。
未来,刀具材料将更加耐磨耐热,刀具涂层技术将更加先进,以满足高速切削的需求。
5. 智能化制造技术的应用:高速加工将与智能化制造技术相结合,实现工艺参数的自动优化和实时监控。
未来,高速加工设备将具有自动化、智能化和可持续发展的特点,提高生产效率和产品质量。
总体来说,高速加工的发展趋势是向着高效、智能和精准的方向发展,以满足不断变化的制造需求。
班级:机制2班姓名:周明学号:1208470528超高速加工发展状况及趋势随着时代发展与科学进步,各个国家关于对超高速加工技术的投资与研究使用的比例越来越高,但是各国的发展水平却依然存在很大的差距。
超高速加工到2005年基本实现工业应用,主轴最高转速达15000r/min,进给速度达40~60m/min,砂轮磨削速度达100~150m/s;超精密加工基本实现亚微米级加工,加强纳米级加工技术应用研究,达到国际九十年代初期水平。
超高速加工已经成为先进制造技术竞争的一个制高点。
超高速加工中,工件与刀具相互高速撞击,力的瞬态作用使剪切局限在一个微区域,能量在此微区的耗散使材料局部高温,可能达到熔化或接近熔化的状态。
正反馈效应使局部绝热剪切作用愈加增强。
切削速度越高,这种绝热剪切作用也越强,接近音速的超高速切削走向极端条件,带来了诸多新机理研究和对传统切削机理的突破性挑战。
机床工作在数万转/分转速下承受冲击载荷,依然达到μ级的工作精度,要求实现机床主轴系统旋转的高精度高稳定性控制以及整机动静热特性的精确设计。
冲击载荷下,主轴的高刚度、高精度要求轴承工作间隙很小,在微间隙中轴承润滑介质受到强剪切与挤压,同样达到了一种极端的工况。
超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。
超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。
超高速切削是金属切削加工技术的新发展。
在今后15年内,现代机床技术将在机床设计、结构、金属切削效率和生产率等方面有重大突破。
预计九十年代生产的机床将比七十年代生产的机床体积更小,速度更快。
它将采用强度与重量之比很高的材料(有色金属狈非金属材料)来代替钢和铸铁。
超咼速加工技术2011级机械设计制造及其自动化4班刘傅文摘要:本文介绍了超高速加工技术的概念、内容和发展现状,并分析了其发展动向。
关键词:高速加工技术、机械制造、先进加工、发展。
超高速加工技术是指采用超硬材料刀具和磨具,利用能可靠地实现高速运动的高精度、高自动化和高柔性的制造设备,以提高切削速度来达到提高材料切除率、加工精度和加工质量的先进加工技术。
超高速加工技术的特征:切削力低、热变形小、材料切除率高、高精度、减少工序。
超高速加工技术主要包括:(1)超高速切削、磨削机理研究。
对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。
(2)超高速主轴单元制造技术研究。
主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。
(3)超高速进给单元制造技术研究。
高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制(4)超高速加工用刀具磨具及材料研究。
研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术。
(5)高速CNC空制系统:超高速加工要求CNC控制系统具有快速数据处理能力和高功能化特性,以保证加工复杂曲面轮廓时,具有良好的加工性能。
还要具有高速插补及超前处理能力,防止刀具轨迹偏移和突发事故。
(6)超高速加工在线检测与控制技术研究。
对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。
验研究。
超⾼速加⼯技术的现状及发展趋势超⾼速加⼯技术的现状及发展趋势俗话说的好,“只要功夫深,铁杵磨成针”,这要是在遥远的古代社会也许是不折不扣的真理,但是在这个科技发展⽇新⽉异经济社会⾼度发达的⽂明社会,这就是⼀个谬误了。
特别是在机械加⼯⽅⾯更是⼤⼤的谬误了。
在这个时间就是⾦钱效益就是⽣命的机械制造⾏业⾥,谁掌握了技术谁就掌握了主动,谁提⾼了效率谁就站在了队伍的前列……超⾼速加⼯技术----⽆疑就是今后机械制造业发展的趋势之⼀.⾼速切削的概念与⾼速切削技术超⾼速加⼯技术是指采⽤超硬材料的刃具,通过极⼤地提⾼切削速度和进给速度来提⾼材料切除率、加⼯精度和加⼯质量的现代加⼯技术。
超⾼速加⼯的切削速度范围因不同的⼯件材料、不同的切削⽅式⽽异。
⽬前,⼀般认为,超⾼速切削各种材料的切速范围为:铝合⾦已超过1600m/min,铸铁为1500m/min,超耐热镍合⾦达300m/min,钛合⾦达150~1000m/min,纤维增强塑料为2000~9000m/min。
各种切削⼯艺的切速范围为:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削250m/s以上等等。
超⾼速加⼯技术主要包括:超⾼速切削与磨削机理研究,超⾼速主轴单元制造技术,超⾼速进给单元制造技术,超⾼速加⼯⽤⼑具与磨具制造技术,超⾼速加⼯在线⾃动检测与控制技术等。
⾼速切削是⼀项系统技术,图1显⽰了影响⾼速技术的各⽅⾯因素,企业必须根据产品的材料和结构特点,购置合适的⾼速切削机床,选择合适的切削⼑具,采⽤最佳的切削⼯艺,以达到理想的⾼速加⼯效果。
图1速机床CNC控制技术⾼速切削的应⽤由于⾼速切削机床和⼑具技术及相关技术的迅速进步,⾼速切削技术已应⽤于航空、航天、汽车、模具、机床等⾏业中,车、铣、镗、钻、拉、铰、攻丝、磨削铝合⾦、钢、铸铁、钛合⾦、镍基合⾦、铅、铜及铜合⾦、纤维增强的合成树脂等⼏乎所有传统切削能加⼯的材料,以及传统切削很难加⼯的材料。
中国⼑具与切削加⼯技术的发展现状与趋势⾦属切削⼑具市场的发展现状与趋势随着机床⼯业的飞速发展, 难加⼯材料⽇益增多。
多功能复合⼑具、智能⼑具、⾼速⾼效⼑具逐渐成为现代制造技术的关键装备。
⼑具材料与⼑具结构⽅⾯也有了新的发展。
从⼯艺、性能、结构等⽅⾯对⼑具与切削加⼯技术的发展现状进⾏分析, 并对发展趋势进⾏展望。
1 ⼑具与切削加⼯技术的发展现状1.1 开创了⾼速切削等新⼯艺, 全⾯提⾼了加⼯效率。
⾼速切削作为⼀种新的切削⼯艺显⽰出独特的优越性。
⾸先, 切削效率有显著的提⾼, 加⼯铝合⾦缸盖的PCD ⾯铣⼑, 铣削速度已达402lm/rain, 进给速度5670mm/min; 精加⼯灰铸铁缸体的CBN ⾯铣⼑, 铣削速度已达2000m/min, ⽐传统的硬质合⾦⾯铣⼑提⾼了10 倍。
其次, ⾼速切削还有利于提⾼产品质量、降低制造成本、缩短交货周期。
此外, 在⾼速切削技术的基础上, 开发了⼲切削(准⼲切削、微量润滑切削)、硬切削(以车代磨、以铣代磨) 等新⼯艺, 不仅提⾼了加⼯效率, 改变了传统不同切削加⼯的界限, ⽽且开创了切削加⼯“绿⾊制造”的新时代。
硬切削技术已成为汽车齿轮内孔精加⼯、淬硬模具加⼯实⽤的⾼效新⼯艺。
1.2 以硬质合⾦材料为主的各种⼑具材料性能使硬质合⾦的性能不断改进, 应⽤⾯扩⼤, 成为切削加⼯主要的⼑具材料, 对推动切削效率的提⾼起到了重要作⽤。
⾸先是细颗粒、超细颗粒硬质合⾦材料的开发, 显著地提⾼了硬质合⾦材料的强度和韧性, ⽤它制造的整体硬合⾦⼑具, 尤其是通⽤的量⼤⾯⼴的中⼩规格的钻头、⽴铣⼑、丝锥等⼑具, ⽤来代替传统的⾼速钢⼑具, 使切削速度和加⼯效率提⾼了数倍, 把量⼤⾯⼴的通⽤⼑具带⼊了⾼速切削的范围, 为切削加⼯全⾯进⼊⾼速切削阶段打下了半壁江⼭。
整体硬质合⾦还在⼀些复杂成形⼑具中得到应⽤。
其次, 硬质合⾦加压烧结等新⼯艺的开发和使⽤,提⾼了硬质合⾦的内在质量; 以及针对不同加⼯的需求开发专⽤牌号的做法, ⼜进⼀步提⾼了硬质合⾦的使⽤性能, 在作为化学涂层硬质合⾦⼑⽚牌号的基体材料时, 开发了具有良好抗塑性变形能⼒和韧性表层的梯度硬质合⾦, 提⾼了涂层硬质合⾦⼑⽚的切削性能和应⽤范围。
超高速加工技术070212班:王川前言:现在随着工业技术的进一步发展,超高速度切削加工技术已成为切削加工的主流,日益广泛地被应用于模具、航空、高速机车和汽车工业等领域,并应取得了巨大的经济效益。
尤其在模具制造工业中,德国、日本、美国等大约有30%-50%的公司用超高速切削加工技术。
这样做的优点既是加工效率高,质量好,又减少了后续的手工打磨和抛光工序。
在航空与高速机车行业,飞机的骨架与机翼、高速机车的车厢骨架均为铝合金整体薄壁构件,都需要切除大量的金属,从毛坯开始的切除量甚至达到90%。
采用超高速切削加工技术,加工时间按缩短到原来的几分之一。
汽车工业发动机铝合金和铸铁缸体,广泛采用超高速切削加工技术,大大地提高了加工效率,降低成本。
此外,超高速切削加工技术还应用于快速成形、光学精密零件和仪器仪表等加工领域。
我国的超高速切削加工技术最早应用于轿车工业,20世纪80年代后期相继从别的先进国家引进了轿车自动生产线,其中大量应用了超高速切削加工技术。
近年来,我国航天、航空、汽轮机磨具等制造行业也引进了大量加工中心和数控机床,都不同程度地开始推广应用超高速切削加工技术。
超高速加工是切削加工发展的方向,在21世纪必将成为切削加工的主流。
作为先进制造技术的一项全新的共性实用技术,超高速切削加工技术将克服当前存在的一些技术障碍,在未来得到更好的发展!(图一):超高速铣削(图二):超高速钻削一、“超高速加工”概念:采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料“切除率”、“加工精度”和“加工质量”的现代加工技术,其切削速度通常比常规加工高10倍左右。
(1)、超高速加工的“前提”和“先决条件”:超硬材料刀具刀具材料:从碳素钢和合金工具钢,高速钢、硬质合金钢、陶瓷材料,发展到人造金刚石及聚晶金刚石、立方氮化硼、氮化硅及聚晶立方氮化硼等。
刀具结构:主要有“整体”和“镶牙”两类。
“镶牙刀具”主要采取机夹结构。
超高速切削的发展现状整理超高速切削的进展现状金属切削加工已进入了一个以高速切削为代表的新的进展阶段,由于高速切削加工能极大地提高材料的切除率和零件的加工质量,降低加工成本,因而成为当今金属切削加工的进展方向之一。
高速切削刀具技术是高速切削加工的一个关键技术,它包括高速切削刀具材料、刀柄系统、刀具系统动平衡技术、刀具监测技术等。
本文就作一概述。
1. 高速切削加工对刀具系统的要求所谓刀具系统是指由刀柄、夹头和切削刀具所组成的完整的刀详细系,刀柄与机床主轴相连,切削刀具通过夹头装入刀柄之中。
要使刀具系统能在高速下进行切削加工,应满意以下基本条件:较高的系统精度系统精度包括系统定位夹持精度和刀具重复定位精度,前者指刀具与刀柄、刀柄与机床主轴的连接精度;后者指每次换刀后刀具系统精度的全都性。
刀具系统具有较高的系统精度,才能保证高速加工条件下刀具系统应有的静态和动态稳定性。
较高的系统刚度刀具系统的静、动刚度是影响加工精度及切削性能的重要因素。
刀具系统刚度不足会导致刀具系统振动,从而降低加工精度,并加剧刀具的磨损,降低刀具的使用寿命。
较好的动平衡性高速切削加工条件下,微小质量的不平衡都会造成巨大的离心力,在加工过程中引起机床的急剧振动。
因此,高速刀具系统的动平衡特别重要。
2. 传统实心长刀柄结构存在的问题目前,在数控铣床、数控镗床和加工中心上使用的传统刀柄是标准7:24锥度实心长刀柄。
这种刀柄与机床主轴的连接只是靠锥面定位,主轴端面与刀柄法兰端面间有较大间隙。
这种刀柄结构在高速切削条件下会消失下列问题:刀具动、静刚度低刀具高速旋转时,由于离心力的作用,主轴锥孔和刀柄均会发生径向膨胀,膨胀量大小随旋转半径和转速的增大而增大。
这就会造成刀柄的膨胀量小于主轴锥孔的膨胀量而消失协作间隙,使得原来只靠锥面结合的低刚性连接的刚度进一步降低。
动平衡性差标准7:24锥度柄较长,很难实现全长无间隙协作,一般只要求协作前段70%以上接触,而后段往往会有肯定间隙。
高速切削技术发展现状一、概述机械加工的发展趋势是高效率、高精度、高柔性和绿色化,切削加工的发展方向是高速切削加工,在发达国家,它正成为切削加工的主流。
50年来,切削技术的极大进步说明了这一点:今天切削速度高达8000m/min,材料切除率达150~1500cm3/min,超硬刀具材料硬度达3000~8000HV,强度达1000Mpa,加工精度从10µm到0.1µm。
干(准)切削日益广泛应用。
随切削速度提高,切削力降低大致为25~30%以上;切削温度增加逐步缓慢;加工表面粗糙度降低1~2级;生产效率提高,生产成本降低。
数控切削加工作为制造技术的主要基础工艺,随着制造技术的发展,在20世纪末也取得了很大的进步,进入了以发展高速切削、开发新的切削工艺和加工方法、提供成套技术为特征的发展新阶段。
它是制造业中重要工业部门,如汽车工业、航空航天工业、能源工业、军事工业和新兴的模具工业、电子工业等部门主要的加工技术,也是这些工业部门迅速发展的重要因素。
因此,在制造业发达的美、德、日等国家保持着快速发展的势头。
金属切削刀具作为数控机床必不可少的配套工艺装备,在数控加工技术的带动下,进入了“数控刀具”的发展阶段,显示出“三高一专”(即高效率、高精度、高可靠性和专用化)的特点。
显而易见,在21世纪初,尽管近净成形技术、堆积成形技术是非常有前途的新工艺,但切削加工作为制造技术主要基础工艺的地位不会改变。
从当前制造业发展的趋势中可以看到,制造业发展和人类社会进步对切削加工提出的双重挑战,这也是21世纪初切削加工技术发展的主要趋势。
当前以高速切削为代表的干切削、硬切削等新的切削工艺已经显示很多的优点和强大的生命力,成为制造技术提高加工效率和质量、降低成本的主要途径。
因此,发展高速切削等新的切削工艺促进制造技术的发展是现代切削技术面临的新任务。
当代的高速切削不是切削速度的少量提高,是需要在制造技术全面进步和进一步创新的基础上,包括数控机床、刀具材料、涂层、刀具结构等技术的重大进步,才能达到的切削速度和进给速度的成倍提高,才能使制造业整体切削加工效率有显著的提高。
高速切削技术现状及存在的问题
切削加工是机械加工应用最广泛的加工方法之一,而高速是它的重要发展方向,其中包括高速软切削、高速硬切削、高速干切削、大进给切削等。
高速切削能够大幅度提高生产效率和单位时间内材料切除率,改善加工表面质量降低加工费用。
高速切削的概念与高速切削技术
高速切削是一个相对概念,如何定义,目前尚无共识。
而且由于不同的加工方式、不同工件有不同的高速切削范围,因而也很难就高速切削的速度范围给出一个确切的定义。
高速切削技术是在机床结构及材料、机床设计制造技术、高速主轴系统、快速进给系统、高性能CNC控制系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件与软件技术均得到充分发展的基础之上综合而成的。
因此,高速切削加工是一个复杂的系统工程,涉及机床、刀具、工件、加工工艺过程参数及切削机理等诸多方面。
2 高速切削技术国外发展现状
从德国Carl. J. Salomon博士提出高速切削概念,并于同年申请了专利以来,高速切削技术的发展经历了高速切削的理论探索阶段、高速切削应用探索阶段、高速切削的初步应用阶段、高速切削的较成熟阶段等四个阶段,现已在生产中得到推广应用。
特别是20世纪80年代以来各工业发达国家相继投入大量人力、财力,研究开发高速切削技术及相关技术,发展迅速。
国外近几年来高速加工机床发展迅速,美国、法国、德国、日本、瑞士、英国、加拿大、意大利等国家相继开发了各自的高速切削机床。
高速主轴是高速切削技术最重要的关键技术,通常采用主轴、电动机一体化的电主轴部件,实现无中间环节的直接传动,主轴支承一般使用陶瓷轴承、静压轴承、动压轴承、空气轴承以及油0气润滑、喷射润滑等技术,也有使用磁力轴承的。
进给系统则开始采用直线电动机或小导程大尺寸高质量的滚珠丝杠或大导程多头丝杠,以提供更高的进给速度和更好的加、减速特性,最大加速度可达2~10g。
CNC控制系统则使用多片32位或64位CPU,以满足高速切削加工对系统快速数据处理能力的要求,并采用前馈和大量超前程序段处理功能,以保证高速加工时的插补精度。
采用强力高压、高效的冷却系统以解决极热切屑问题。
采用温控循环水(或其它介质)来冷却主轴电动机、主轴轴承、直线电动机、液压油箱、电气柜,有的甚至冷却主轴箱、横梁、床身等大构件。
采取更完备的安全保障措施保证机床操作者及机床周围现场人员的安全,避免机床、刀具、工件及有关设施的损伤;识别和避免可能引起重大事故的工况;保证产品产量与质量。
研究工件的材料特性对加工方法的影响,一些难加工材料如镍基合金、钛合金和纤维增强塑料等,在高速条件下变得易于切削。
另外,不同材料最佳切削速度也不同,工件材料还是选择刀具及加工参数的重要依据,一般在高速加工中,宜采用高转速、中小切深、快进给、多行程,但是在高速加工的工艺参数选择方面,目前国际上没有面向生产实用的数据库可以参考。
高速切削机理的研究主要包括高速切削过程中的切屑成形机理、切削力、切削热变化规律及刀具磨损机理对加工效率、加工精度和加工表面完整性的影响规律。
目前对铝合金的高速切削机理研究,已取得了较为成熟的结论,并已用于指导铝合金的高速切削生产实践。
但对黑色金属及难加工材料的高速切削加工机理研究尚在探索阶段,其高速切削工艺规范还很不完善,是目前高速切削生产中的难点,也是切削加工领域研究的焦点。
另外,高速切削已进入铰孔、攻丝等的应用中,其机理也都在不断研究之中。
就目前而言,对高速切削时的切削力、切削温度、刀具磨损与刀具寿命、加工表面质量与加工精度的变化规律还需要做更加深入的研究和探讨。
3 高速切削技术国内发展现状
高速切削在国内的研究及应用起步较晚,但进入20世纪90年代以来已普遍引起关注。
目前全国大约有300多万台机床,大部分还是通用机床,数控机床包括经济型在内大致占10%左右,在航空、航天、汽车、模具、机床和工程机械等行业进口数控机床和加工中心占了较大比例。
现在国内10000~15000r/min的立式加工中心和18000r/min的卧式加工中心已开发成功并生产问世,生产的高速数字化仿形铣床最高转速达到了40000r/min,3500~4000r/min的数控车床和车削中心已成批生产,8000r/min的数控车床也已问世。
高速机床的高档数控系统和开放式数控系统正在深入研究中,但目前主要还是依赖进口。
目前国内正逐步开始推广应用高速切削技术,主要是应用在航空航天、模具和汽车工业,加工铝合金和铸铁较多,但采用的刀具以进口为主。
国内刀具材料目前仍以高速钢、硬质合金刀具为主,先进刀具材料(如涂层硬质合金、金属陶瓷、陶瓷刀具、CBN和PCD刀具等)虽有一定基础,但应用范围不够广泛。
总的来说,切削速度普遍偏低,切削水平和加工效率较低。
高速切削基础理论研究起步较晚,80年代以来,国内对陶瓷刀具高速硬切削时的切屑形成、切削温度、切削力、刀具磨损与破损、刀具寿命和加工表面质量等规律进行了系统研究,并已在生产中得到较多应用。
自90年代以来,对高速切削铝合金、钢、铸铁、高温合金、钛合金等的切削力、切削温度、刀具磨损与破损和刀具寿命进行了一定研究和探讨,但还没有进行全面系统的研究。
对切削加工过程的监控技术研究较多,但投入生产使用的较少。
附表各种加工方法的高速切削速度范围加工方式切削速度(m/min)
车削700~7000
铣削300~6000
钻削200~1100
拉削30~75
铰削20~500
磨削5000~10000
4 高速切削的应用
由于高速切削机床和刀具技术及相关技术的迅速进步,高速切削技术已应用于航空、航天、汽车、模具、机床等行业中,车、铣、镗、钻、拉、铰、攻丝、磨削铝合金、钢、铸铁、钛合金、镍基合金、铅、铜及铜合金、纤维增强的合成树脂等几乎所有传统切削能加工的材料,以及传统切削很难加工的材料。
刀具材料主要使用碳素工具钢、超高速钢、硬质合金、涂层刀具、陶瓷刀具、立方氮化硼、天然金刚石、人工金刚石、聚晶金刚石等。
目前国际上高速切削加工技术主要应用于汽车工业、工件本身或刀具系统刚性不足的加工领域及加工复杂曲面的领域。
不同加工方式、不同工件材料有不同的高速切削范围。
不同加工方式高速切削线速度的范围见附表,附图所示为几种常见工件材料高速铣削时的速度范围。
高速切削还在进一步发展中,预计铣削加工铝的切削速度可达到10000m/min,加工铸铁可达到5000m/min,加工普通钢也将达到2500m/min;钻削加工铝切削转速可达到30000r/min,加工铸铁达到20000r/min,加工普通钢达到10000r/min。
5 高速切削存在的问题及发展展望
高速切削是切削加工发展的主要方向之一,它除依赖于数控技术、微电子技术、新材料和新颖构件等基础技术的发展外,自身亦存在着一系列亟待攻克的技术问题,如刀具磨损严重,高速切削刀具切入切出时破损问题,高速切削用刀具材料价格昂贵,铣、镗等回转刀具及主轴需要动平衡,刀具夹持要牢靠安全,主轴系统昂贵且寿命短,而且所用高速加工机床及其控制系统价格昂贵,使得高速切削的一次性投入较大,这些问题制约着高速切削的进一步推
广应用。
高速切削发展趋势和未来研究方向归纳起来主要有:(1)新一代高速大功率机床的开发与研制;(2)高速切削动态特性及稳定性的研究;(3)高速切削机理的深入研究;(4)新一代抗热振性好、耐磨性好、寿命长的刀具材料的研制及适宜于高速切削的刀具结构的研究;
(5)进一步拓宽高速切削工件材料及其高速切削工艺范围;(6)开发适用于高速切削加工状态的监控技术;(7)建立高速切削数据库,开发适于高速切削加工的编程技术以进一步推广高速切削加工技术;(8)基于高速切削工艺,开发推广干式(准干式)切削绿色制造技术;(9)基于高速切削,开发推广高能加工技术。
6 结语
发展先进制造技术,振兴我国制造业,迎接新世纪的挑战乃是建立强大工业国家的根本。
高速切削技术是先进的制造技术,有广阔的应用前景。
推广应用高速切削技术不但可以大幅度提高机械加工的效率、质量,降低成本,而且可以带动一系列高新技术产业的发展。
加强高速切削技术的基础研究,建立高速切削数据库、高速切削安全技术标准,提高机床和工具行业的开发创新能力,加快高速切削刀具系统、高速切削机床系统的研究开发与产业化,已是当务之急。