超高速切削机理的研究
- 格式:pdf
- 大小:132.92 KB
- 文档页数:5
高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。
该技术的核心在于实现高效率、高质量和高精度的加工过程。
在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。
这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。
此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。
高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。
研究表明,高速切削可以提高生产效率达 30%至50%。
2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。
此外,由于切削热的影响较小,工件的热变形也得到了控制。
3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。
4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。
5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。
然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。
因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。
总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。
第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
超咼速加工技术2011级机械设计制造及其自动化4班刘傅文摘要:本文介绍了超高速加工技术的概念、内容和发展现状,并分析了其发展动向。
关键词:高速加工技术、机械制造、先进加工、发展。
超高速加工技术是指采用超硬材料刀具和磨具,利用能可靠地实现高速运动的高精度、高自动化和高柔性的制造设备,以提高切削速度来达到提高材料切除率、加工精度和加工质量的先进加工技术。
超高速加工技术的特征:切削力低、热变形小、材料切除率高、高精度、减少工序。
超高速加工技术主要包括:(1)超高速切削、磨削机理研究。
对超高速切削和磨削加工过程、各种切削磨削现象、各种被加工材料和各种刀具磨具材料的超高速切削磨削性能以及超高速切削磨削的工艺参数优化等进行系统研究。
(2)超高速主轴单元制造技术研究。
主轴材料、结构、轴承的研究与开发;主轴系统动态特性及热态性研究;柔性主轴及其轴承的弹性支承技术研究;主轴系统的润滑与冷却技术研究;主轴的多目标优化设计技术、虚拟设计技术研究;主轴换刀技术研究。
(3)超高速进给单元制造技术研究。
高速位置芯片环的研制;精密交流伺服系统及电机的研究;系统惯量与伺服电机参数匹配关系的研究;机械传动链静、动刚度研究;加减速控制技术研究;精密滚珠丝杠副及大导程丝杠副的研制(4)超高速加工用刀具磨具及材料研究。
研究开发各种超高速加工(包括难加工材料)用刀具磨具材料及制备技术。
(5)高速CNC空制系统:超高速加工要求CNC控制系统具有快速数据处理能力和高功能化特性,以保证加工复杂曲面轮廓时,具有良好的加工性能。
还要具有高速插补及超前处理能力,防止刀具轨迹偏移和突发事故。
(6)超高速加工在线检测与控制技术研究。
对超高速加工机床主轴单元、进给单元系统和机床支承及辅助单元系统等功能部位和驱动控制系统的监控技术,对超高速加工用刀具磨具的磨损和破损、磨具的修整等状态以及超高速加工过程中工件加工精度、加工表面质量等在线监控技术进行研究。
验研究。
一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。
到目前为止,其原理仍未被现代科学研究所证实。
但这一原理的成功应该不只局限于此。
高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。
这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。
所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
试论数控高速切削加工技术的发展与应用研究摘要:本文系统介绍了数控高速切削加工的基础理论及发展过程,分析了高速加工的优点和应用领域,总结了发展数控高速切削加工需要的关键技术和研究方向。
关键词:高速切削;关键技术;应用研究【中图分类号】tg519.1数控高速切削技术(high speed machining,hsm,或high speed cutting,hsc),是提高加工效率和加工质量的先进制造技术之一,相关技术的研究已成为国内外先进制造技术领域重要的研究方向。
我国是制造大国,在世界产业转移中要尽量接受前端而不是后端的转移,即要掌握先进制造核心技术,否则在新一轮国际产业结构调整中,我国制造业将进一步落后。
研究先进技术的理论和应用迫在眉睫。
一、数控高速切削加工的含义高速切削理论由德国物理学家carl.j.salomon在上世纪三十年代初提出的。
他通过大量的实验研究得出结论:在正常的切削速度范围内,切削速度如果提高,会导致切削温度上升,从而加剧了切削刀具的磨损;然而,当切削速度提高到某一定值后,只要超过这个拐点,随着切削速度提高,切削温度就不会升高,反而会下降,因此只要切削速度足够高,就可以很好的解决切削温度过高而造成刀具磨损不利于切削的问题,获得良好的加工效益。
二、数控高速切削加工的优越性由于切削速度的大幅度提高,高速切削加工技术不仅提高了切削加工的生产率,和常规切削相比还具有一些明显的优越性:第一、切削力小:在高速铣削加工中,采用小切削量、高切削速度的切削形式,使切削力比常规切削降低30%以上。
第二、材料切除率高:采用高速切削,切削速度和进给速度都大幅度提高,相同时间内的材料切除率也相应大大提高。
从而大大提高了加工效率。
第三、工件热变形小:在高速切削时,大部分的切削热来不及传给工件就被高速流出的切屑带走,因此加工表面的受热时间短,不会由于温升导致热变形,有利于提高表面精度,加工表面的物理力学性能也比普通加工方法要好。
浅谈高速切削加工技术及应用摘要:高速切削(high speed cutting,hsc)是近年来迅速崛起的一项先进制造技术。
本文就高速切削加工技术的发展、特点、关键技术及其应用作一简要的研究与阐述。
关键词:高速切削加工;技术;研究;应用中图分类号:tg659 文献标识码:a 文章编号:1006-3315(2011)11-175-0011931年4月德国物理学家carl.j.saloman最早提出了高速切削(high speed cutting)的理论,并于同年申请了专利。
他指出:在常规切削速度范围内,切削温度随着切削速度的提高而升高,但切削速度提高到一定值之后,切削温度不但不会升高反而会降低,且该切削速度vc与工件材料的种类有关。
对于每一种工件材料都存在一个速度范围,在该速度范围内,由于切削温度过高,刀具材料无法承受,切削加工不可能进行。
要是能越过这个速度范围,高速切削将成为可能,从而大幅度地提高生产效率。
由于实验条件的限制,当时高速切削无法付诸实践,但这个思想给后人一个非常重要的启示。
一、高速切削加工概述1.高速切削历史和现状高速切削的起源可追溯到20世纪20年代末期。
德国的切削物理学家萨洛蒙博士于1929年进行了超高速切削模拟试验。
1931年4月发表了著名的超高速切削理论,提出了高速切削假设。
我国早在20世纪50年代就开始研究高速切削,但由于各种条件限制,进展缓慢。
近10年来成果显著,至今仍有多所大学、研究所开展了高速加工技术及设备的研究。
2.切削速度的划分根据高速切削机理的研究结果,高速切削不仅可以大幅度提高单位时间材料切除率,而且还会带来一系列的其他优良特性。
高速切削的速度范围定义在这样一个给切削加工带来一系列优点的区域。
这个切削速度区比传统的切削速度高得多,因此也称超高速切削。
通常把切削速度比常规高出5~10倍以上的切削加工叫做高速切削或超高速切削。
3.高速切削的优势高速切削具有以下特点:①可提高生产效率;②降低了切削力;③提高加工质量;④高速切削的切削热对工件的影响小;⑤加工能耗低,节省制造资源;⑥高速切削可以加工难加工材料;⑦简化了加工工艺流程;⑧可降低加工成本。