非参数检验
- 格式:docx
- 大小:11.26 KB
- 文档页数:2
统计推断是从总体中抽取部分样本,通过对抽取部分所得到的带有随机性的数据进行合理的分析,进而对总体作出科学的判断,它是伴随着一定概率的推测,特点是:由样本推断总体,统计推断是数理统计的核心部分,统计推断的基本问题可以分为两大类:一类是参数估计问题;另一类是假设检验问题。
其中假设检验方法可以分为参数检验和非参数检验两大部分。
1.参数检验:
是在给定或假定总体分布形式的基础上,对总体的未知参数进行估计或检验。
它一方面以明确的总体分布为前提,另一方面需要满足某些总体参数的假定条件
2.非参数检验:
对总体分布不做严格假定,统计过程不涉及总体参数,完全依靠样本数据的顺序、秩等信息进行分析,通常在不符合参数检验的条件下使用。
参数检验的优点是针对性较强,每种方法都有其特定的使用环境,并且利用数据信息充分,一旦符合使用条件,得出的结论会非常准确。
缺点是,对总体的分布要求较高,实际工作中有时无法满足使用条件。
非参数检验的优点是对总体分布没有严格要求,对样本数据类型也没有过多要求,非正态、方差不齐等都能做,适应性较强,计算方法也比较简单。
缺点是对数据信息利用不充分,会降低功效。
由于检验的功效是我们选择分析方法的首要因素,因此在实际工作中,我们还是优先使用参数检验,只有在数据特征不符合参数检验要求时,才考虑使用非参数检验。
两配对样本非参数检验在统计学中,非参数检验是一种用于比较两个或多个独立样本之间差异的方法,它不依赖于数据的分布假设。
相比之下,参数检验需要对数据的分布做出假设,例如正态分布。
非参数检验的优点是更加灵活,在不确定数据的分布情况下更能有效地进行统计推断。
以下将介绍两种常见的非参数检验方法:Wilcoxon秩和检验和Mann-Whitney U检验。
Wilcoxon秩和检验又称为Wilcoxon符号秩检验、Wilcoxon配对差异检验等,它用于比较两个配对样本的差异。
该检验的原假设是,在两个配对样本中,两两配对的差异具有相同的分布。
而备择假设是两个配对样本之间存在差异。
Wilcoxon秩和检验的步骤如下:1.给出两个配对样本,分别记作X和Y。
2.对所有配对差异进行排序,并为每个差异分配一个秩次,然后计算秩和W+和W-。
3.根据秩和W+和W-的大小,查找对应的临界值。
4.比较秩和W+和W-与临界值,如果大于等于临界值,则拒绝原假设,否则接受原假设。
Mann-Whitney U检验用于比较两个独立样本的差异,它的原假设是两个样本来自同一个总体,而备择假设是两个样本来自不同的总体。
Mann-Whitney U检验的步骤如下:1.给出两个独立样本,分别记作X和Y。
2.对两个样本的所有观测值进行排列,并为每个观测值计算秩次。
3.根据秩次,计算U值。
4.利用U值和样本量的关系,查找对应的临界值。
5.比较U值与临界值,如果小于等于临界值,则拒绝原假设,否则接受原假设。
需要注意的是,在使用非参数检验时,样本量越大,结果的准确性越高。
此外,当样本量较小时,非参数检验的效果可能会受到影响,建议使用参数检验。
综上所述,非参数检验是一种灵活、无需分布假设的统计推断方法,其中Wilcoxon秩和检验和Mann-Whitney U检验用于比较两个独立样本或配对样本之间的差异。
它们的应用范围广泛,并在实际问题中得到广泛应用。
常见的几种非参数检验方法非参数检验是一种不需要对数据进行假设检验的统计方法,它不需要满足正态分布等前提条件,因此被广泛应用于实际数据分析中。
在本文中,我们将介绍常见的几种非参数检验方法。
一、Wilcoxon符号秩检验Wilcoxon符号秩检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号和秩来计算统计量,并通过查表或使用软件进行显著性判断。
二、Mann-Whitney U检验Mann-Whitney U检验是一种用于比较两个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
三、Kruskal-Wallis H检验Kruskal-Wallis H检验是一种用于比较多个独立样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
四、Friedman秩和检验Friedman秩和检验是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
五、符号检验符号检验是一种用于比较两个相关样本之间差异的非参数检验方法。
它基于样本差异的符号来计算统计量,并通过查表或使用软件进行显著性判断。
六、秩相关检验秩相关检验是一种用于比较两个相关样本之间关系的非参数检验方法。
它基于样本排名来计算统计量,并通过查表或使用软件进行显著性判断。
七、分布拟合检验分布拟合检验是一种用于检验数据是否符合某个特定分布的非参数检验方法。
它基于样本数据与理论分布之间的差异来计算统计量,并通过查表或使用软件进行显著性判断。
八、重复测量ANOVA重复测量ANOVA是一种用于比较多个相关样本之间差异的非参数检验方法。
它基于样本方差和均值来计算统计量,并通过查表或使用软件进行显著性判断。
九、Bootstrap法Bootstrap法是一种用于估计总体参数和构建置信区间的非参数方法。
它基于自助重采样技术来生成大量虚拟样本,以此估计总体参数和构建置信区间。
非参数检验
非参数检验是一种利用数据的分布情况,来判断总体参数是否存在差异的统计学方法。
它通过对样本数据进行排序、秩次差分等计算,不依赖于总体的任何分布假设,从而有效
地避免了假设检验的潜在问题。
非参数检验是一种不依赖于正态分布等总体分布假设的统计方法。
它常用于处理那些
无法明确表达总体分布的数据,例如顺序等级或名目类别等数据。
非参数检验能够帮助研
究者在不了解总体分布情况的情况下,对样本数据所代表的总体参数进行有效估计和推
断。
为什么要使用非参数检验?
通常情况下,研究者在进行实验或调查时,只能获得小规模样本数据,无法获得完整
的总体数据。
而传统的参数检验方法可能会假设总体分布具有特定形态的分布假设,这在
某些情况下可能会导致假设检验的错误推断。
因此,非参数检验成为了一个更为可靠的方法,它不需要任何对总体分布的预设,可以适用于各种数据类型的场景。
在以下情况下,非参数检验的使用是非常适合的:
1. 样本数据不属于正态分布。
2. 样本数据中包含异常值。
3. 样本数据中存在较大的离散差异。
4. 样本规模较小,总体参数无法得到明确描述。
在非参数检验的应用中,根据所比较的数据类型和检验目的的不同,可以经常使用以
下几种检验方法:
1. Wilcoxon符号秩检验:用于检验有序对数据是否存在显著性差异。
2. Mann-Whitney U检验(也称为Wilcoxon秩和检验):用于比较两个独立样本之间的差异。
3. Kruskal-Wallis H检验:用于比较多个独立样本之间的差异。
5. McNemar检验:用于比较配对样本之间的差异。
以上非参数检验方法的应用范围非常广泛,不同场景中的应用也有所不同。
结论
总体来看,非参数检验是一种常用的在小样本数据分析中应用广泛的方法。
它不依赖于总体分布的假设,能够在多种数据类型的场景中发挥作用,并且在误差推断方面也有很好的应用前景。
虽然相比于参数检验来说,非参数检验设置较为繁琐,计算也较为耗时,但在实际操作中,它被广泛运用于各种实验、调查和模拟中。