原子结构氢原子光谱理解玻尔理论对氢原子光谱的解释
- 格式:ppt
- 大小:1.50 MB
- 文档页数:43
20 世纪经典物理遇到的困难普朗克能量子假说爱因斯坦光量子假说经典物理学在进入20世纪以后,受到了冲击。
经典理论在解释一些新的试验结果上遇到了严重的困难。
玻尔在原子结构中引入量子化解释氢原子光谱很早人们就知道,气态原子被火花、电弧或其他方法激发可以发光,经棱镜分光后,能得到不连续的线状光谱。
气态原子棱镜屏幕看似杂乱无章的光谱线是否有规律??Rydberg 提出以一个经验的公式:22111=H R c n mm n νλ⎛⎫=-> ⎪⎝⎭其中,R H =1.09677576×107m -1是氢的Rydberg 常数。
经验公式背后的物理意义??原子结构=1m =2m =3m =4m =5m =6m根据卢瑟福的原子核式结构模型,氢原子中核外电子会绕原子核做圆周运动。
是否能解释发光的物理机制?原子坍塌灾难根据经典电磁理论,电子加速运动,要辐射电磁波,电子能量减小,圆周运动半径减小。
(1)定态轨道(2)定态跃迁1913年,时年28岁丹麦人玻尔在卢瑟福实验室做博士后,就原子结构模型提出了两点假设:r n =L r p =⨯r μυ=⨯r μυ=n r μυ=质量为,速度为υμ(1)定态轨道电子只能处在特定的轨道上绕原子核转动,并不往外辐射能量。
电子的这种稳定的状态叫做定态。
轨道必须满足量子化条件:电子的角动量L 只能取的整数倍,即( n=1,2,3, … )L n=4222s n e E n μ=- =电子在定态轨道上的能量2212se E r μυ=-电子做圆周运动的向心力是库仑力提供的2222204s e Ze r r r μυπε==向心力库仑力联立两式,可得2s e n υ=222s n r e μ=r n =L r p =⨯r μυ=⨯r μυ=n r μυ=质量为,速度为υμ(2)定态跃迁电子可以从一个能级E n 跃迁到另一个较低(高)的能级E m ,同时将发射(吸收)一个光子。
氢原子的能级与光谱·爱因斯坦1905年提出光量子的概念后,不受名人重视,甚至到1913年德国最著名的四位物理学家(包括普朗克)还把爱因斯坦的光量子概念说成是“迷失了方向”。
可是,当时年仅28岁的玻尔,却创造性地把量子概念用到了当时人们持怀疑的卢瑟福原子结构模型,解释了近30年的光谱之谜。
§1 氢原子的能级与光谱一、玻尔的氢原子理论(一)玻尔的基本假设1.定态假设:原子只可能处于一系列不连续的能量状态E1, E2, E3,…。
处于这些状态的原子是稳定的,电子虽作加速运动,但不辐射电磁波。
2.频率条件:原子从某一定态跃迁至另一定态时,则发射(或吸收)光子,其频率满足玻尔在此把普朗克常数引入了原子领域。
(二)玻尔的氢原子理论 1.电子在原子核电场中的运动(1)基本情况:核不动;圆轨道;非相对论。
(2) 用经典力学规律计算电子绕核的运动·电子受力:·能量:得f f = - 14πε0 ( )Ze 2r 21 ε0 ( ) Ze2 r = m ( )υ2r1 2E = m υ2 - 1 4πε0 ( ) Ze2 r E = -Ze 28πε0r2.轨道角动量量子化条件玻尔假定:在所有圆轨道中,只有电子的角动量满足下式的轨道才是可能的。
玻尔引进了角动量的量子化。
3.轨道和速度 ·r n = n 2r 1 ,(玻尔半径) r 1= 0.529 Å· υn= υ1/n ,4πε0h 2 r 1 = ( me 2 )( ) 1 Z 4πε0hυ1 = Ze 2)可见, 随n↑⇒r n↑,υn↓4.能级---能量量子化将r n代入前面E式中,有n = 1,2,3,…)R:里德伯常数(见后)基态能量:E1= -13.6 eV可见,随n↑⇒E n↑,∆E n↓*玻尔的理论是半经典的量子论:对于电子绕核的运动,用经典理论处理;对于电子轨道半径,则用量子条件处理。