原子结构、氢原子光谱
- 格式:doc
- 大小:416.31 KB
- 文档页数:5
第1讲 原子结构 氢原子光谱【知识点1】 氢原子光谱 Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱(1)光谱 用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R ⎝ ⎛⎭⎪⎫122-1n 2,(n =3,4,5,…),R 是里德伯常量,R =1.10×107 m -1,n 为量子数。
【知识点2】 氢原子的能级结构、能级公式 Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.63×10-34 J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。
3.氢原子的能级图板块二考点细研·悟法培优考点1 氢原子能级图及原子跃迁 [深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。
氢原子光谱
氢原子的发现和光谱特性
氢原子是最简单的原子之一,在光谱学中具有重要的地位。
氢原子光谱是研究
原子结构和光谱学的基础。
它对研究光谱的性质和发展原子理论有着重要的意义。
氢原子光谱的基本原理
氢原子光谱是指氢原子在特定条件下发射或吸收的光线的谱线。
氢原子光谱是
由氢原子的特有能级结构和跃迁引起的。
氢原子的光谱具有一定的规律性,可以通过一系列的数学模型进行描述和解释。
氢原子光谱的光谱线
氢原子光谱的典型谱线分为巴尔末系列、帕邢系列和莱曼系列。
这些系列分别
对应不同的跃迁过程,反映了氢原子的不同能级结构和性质。
巴尔末系列
巴尔末系列是氢原子光谱中最常见的系列之一,对应着n元素的n=2的跃迁。
巴尔末系列谱线主要在紫外和可见光区域,具有重要的实验和理论价值。
帕邢系列
帕邢系列对应着n元素的n=3的跃迁。
帕邢系列谱线分布在可见光区域,是
研究氢原子光谱的重要线系之一。
莱曼系列
莱曼系列对应着n元素的n=1的跃迁。
莱曼系列包含了氢原子最基本的谱线,是氢原子光谱中的重要部分。
氢原子光谱的应用
氢原子光谱不仅在基础科学研究中具有重要意义,还在实际应用中发挥着重要
作用。
氢原子光谱在天文学、材料科学、化学等领域有着广泛的应用。
结语
氢原子光谱是原子光谱学中的重要内容,研究氢原子光谱有助于深入理解原子
结构和光谱现象。
通过对氢原子光谱的研究,人们可以更好地认识原子的结构和性质,推动光谱学领域的进步与发展。
氢原子的能级结构与光谱氢原子是物理学和化学中研究最广泛的模型系统之一。
它的能级结构与光谱研究对于理解物质的性质和相互作用具有重要意义。
本文将探讨氢原子的能级结构、光谱以及相关的理论和实验研究。
一、氢原子的能级结构氢原子由一个质子和一个电子组成。
根据量子力学的原理,电子在原子中存在特定的能级。
氢原子的能级由电子的主量子数n来决定。
基态的主量子数为n=1,对应着最低的能级。
其他能级的主量子数依次增加,能级能量逐渐升高。
在氢原子中,能级的能量与主量子数的平方反比。
即E(n) ∝ 1/n^2。
这个规律被称为Bohr模型,它是根据量子力学的基本原理和计算出的结果。
Bohr模型为后来的量子力学理论奠定了基础。
除了主量子数,氢原子的能级结构还由其他量子数确定。
其中最重要的是角量子数l和磁量子数m。
角量子数决定了电子在原子内的角动量,而磁量子数描述了电子在磁场中的行为。
二、氢原子的光谱氢原子的能级结构决定了其特有的光谱。
光谱是物质吸收和发射光的分布。
氢原子的光谱可以分为吸收光谱和发射光谱。
吸收光谱发生在氢原子吸收能量时。
当光通过氢原子时,电子吸收光的能量,并跃迁到较高的能级。
由于氢原子的能级结构是离散的,所以吸收光谱呈现出一系列尖锐的黑线,这些黑线被称为吸收线。
吸收线的位置和强度与氢原子的能级结构有直接的关系。
发射光谱发生在氢原子释放能量时。
当电子从较高能级跃迁到较低能级时,会释放出光能。
由于能级结构的离散性,氢原子的发射光谱也呈现出一个线状的光谱,这些线被称为发射线。
发射线的位置和强度与能级结构的差异有关。
氢原子的吸收和发射光谱不仅在可见光范围内有明显的特征,还延伸到紫外线和红外线等更宽的波长范围。
通过精确测量这些光谱线的位置和强度,科学家能够推断出氢原子的能级结构,并与理论预测进行对比。
三、理论与实验研究研究氢原子的能级结构和光谱从20世纪初开始,至今仍在进行中。
早期的研究主要基于Bohr模型,但随着量子力学的发展,更精确的计算方法被提出。
氢原子的能级结构和光谱分析氢原子作为最简单的原子结构,其能级结构和光谱分析对于理解原子结构和研究光谱学都具有重要意义。
本文将探讨氢原子的能级结构和光谱分析相关的内容。
一、氢原子的能级结构氢原子的能级结构是由其电子轨道和能级组成的。
根据量子力学的理论,氢原子的电子轨道可以用波函数来描述,而每个轨道对应一个能级。
轨道包括K、L、M、N等不同的主量子数,而能级则对应不同的能量。
在氢原子的能级模型中,最低的能级为基态,即原子处于最稳定的状态。
当外界能量作用于氢原子时,电子可以跃迁到更高的能级,这种现象在光谱分析中有重要应用。
能级越高,电子的能量越大,跃迁时释放的光子也具有更高的能量。
量子力学的理论可以解释氢原子的能级陈列规则,即能级之间的能量差为以Rydberg常数为单位的整数倍。
这一规律提供了深入研究原子结构和光谱分析的理论基础。
二、光谱分析光谱分析是一种研究物质结构和性质的重要方法。
通过测量物质与电磁辐射相互作用产生的光谱,可以获取物质的结构和成分信息。
而氢原子的光谱研究对于光谱学的发展具有里程碑式的意义。
氢原子光谱的特点是其能级陈列规则呈现出的谱线,这一规律被称为巴尔末系列。
巴尔末系列包括了几个系列谱线,其中最知名的是巴尔末系列的红线。
这些谱线的出现与氢原子的能级跃迁有关,不同电子跃迁所对应的谱线具有不同的波长和颜色。
氢原子光谱的研究不仅仅限于可见光谱,还包括紫外光谱和红外光谱。
这些不同波长范围的光谱可以提供更广泛的信息,从而更深入地研究氢原子的能级结构和原子的性质。
通过光谱分析,科学家们可以了解氢原子的能级结构和能量差,进而推导出其他原子的能级结构和光谱特性。
光谱分析不仅对于原子物理学和量子力学的发展至关重要,也在诸多领域有着广泛的应用。
结论氢原子的能级结构和光谱分析是理解原子内部结构和性质的重要途径。
通过研究氢原子的能级陈列规则和光谱特征,我们可以深入了解原子的能级跃迁以及与光的相互作用。
这一研究不仅对于原子物理学的发展至关重要,也为光谱学的应用提供了理论基础。
物理氢原子知识点总结1. 氢原子的结构氢原子的结构非常简单,由一个质子和一个电子组成。
质子位于原子核中心,带有正电荷,质子的质量约为电子的1836倍。
电子绕着原子核运动,带有负电荷,质量远远小于质子。
2. 氢原子的能级根据量子力学的理论,氢原子的电子围绕原子核运动时,存在不同的能级。
这些能级由一个整数n来表示,称为主量子数。
主量子数越大,电子与原子核的平均距离越远,能级越高。
氢原子的能级由公式En = -13.6/n²来描述,其中En为能级,n为主量子数。
3. 氢原子的光谱氢原子的光谱是原子物理学的重要研究对象。
当氢原子处于激发态时,电子会跃迁到低能级,释放能量,并产生特定波长的光。
这些发射光线可以通过光谱仪进行分析,得到氢原子的光谱线。
根据玻尔理论,氢原子的光谱线可以用公式1/λ = R(1/n₁² - 1/n₂²)来描述,其中λ为波长,R为里德堡常数,n₁和n₂为不同能级的主量子数。
4. 氢原子的波函数根据量子力学的理论,氢原子的波函数可以用薛定谔方程描述。
波函数ψ(r,θ,φ)是一个复数函数,它描述了电子在三维空间中的运动状态。
波函数的平方|ψ(r,θ,φ)|²代表了电子出现在不同位置的概率密度。
氢原子的波函数解析表达式为ψn,l,m = RnlYlm,其中Rnl为径向波函数,Ylm为球谐函数,n,l,m分别为主量子数、轨道量子数和磁量子数。
5. 氢原子的角动量氢原子的电子绕原子核运动时,具有角动量。
根据量子力学的理论,电子的角动量在量子化时,只能取整数倍的普朗克常数h/2π。
角动量量子化的条件为L²|ψ⟩= ħ²l(l+1)|ψ⟩,其中L²为角动量平方算符,l为角量子数,ψ为波函数。
氢原子的角量子数l取值范围为0到n-1,即l = 0,1,2,...,n-1。
6. 氢原子的磁量子数氢原子的电子在外加磁场下,会发生能级的细微结构。
学案正标题一、考纲要求1.知道两种原子结构模型,会用玻尔理论解释氢原子光谱.2.掌握氢原子的能级公式并能结合能级图求解原子的跃迁问题.二、知识梳理1.原子的核式结构(1)1909~1911年,英国物理学家卢瑟福进行了α粒子散射实验,提出了原子的核式结构模型.(2)α粒子散射实验①实验装置:如下图所示;②实验结果:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少数偏转角度大于90°,甚至被弹回.(3)核式结构模型:原子中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.2.氢原子光谱氢原子光谱线是最早被发现、研究的光谱线,这些光谱线可用一个统一的公式表示:=R n=3,4,5,…3.玻尔的原子模型(1)玻尔理论①轨道假设:原子中的电子在库仑引力的作用下,绕原子核做圆周运动,电子绕核运动的可能轨道是不连续的;②定态假设:电子在不同的轨道上运动时,原子处于不同的状态.因而具有不同的能量,即原子的能量是不连续的.这些具有确定能量的稳定状态称为定态,在各个定态中,处于基态的原子是稳定的,不向外辐射能量;③跃迁假设:原子从一个能量状态向另一个能量状态跃迁时要放出或吸收一定频率的光子,光子的能量等于这两个状态的能量差,即hν=E m-E n.(2)几个概念①能级:在玻尔理论中,原子各个状态的能量值;②基态:原子能量最低的状态;③激发态:在原子能量状态中除基态之外的其他能量较高的状态;④量子数:原子的状态是不连续的,用于表示原子状态的正整数.(3)氢原子的能级和轨道半径①氢原子的半径公式:r n=n2r1 (n=1,2,3,…),其中r1为半径,r1=0.53×10-10m;②氢原子的能级公式:E n=E1(n=1,2,3,…),其中E1为基态能量,E1=-13.6 eV.三、要点精析1.对氢原子的能级图的理解(2)氢原子能级图的意义:①能级图中的横线表示氢原子可能的能量状态——定态.②横线左端的数字“1,2,3…”表示量子数,右端的数字“-13.6,-3.4…”表示氢原子的能级.③相邻横线间的距离不相等,表示相邻的能级差不等,量子数越大,相邻的能级差越小.④带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为:hν=E m-E n.2.关于能级跃迁的三点说明(1)当光子能量大于或等于13.6 eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV,氢原子电离后,电子具有一定的初动能.(2)当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小,反之.轨道半径增大时,原子电势能增大、电子动能减小,原子能量增大.(3)一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数:N=C=.3.解答氢原子能级图与原子跃迁问题的注意事项(1)能级之间跃迁时放出的光子频率是不连续的.(2)能级之间发生跃迁时放出(吸收)光子的频率由hν=E m-E n求得.若求波长可由公式c=λν求得.(3)一个氢原子跃迁发出可能的光谱线条数最多为(n-1).(4)一群氢原子跃迁发出可能的光谱线条数的两种求解方法.①用数学中的组合知识求解:N=C=.②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加.4.区分“跃迁”与“电离”(1)跃迁:满足能级之差,hν=E m-E n(2)电离:hν≥13.6 Ev四、典型例题1.(2015海南-17)氢原子基态的能量为。
氢原子的能级结构与光谱特征氢原子是最简单的原子系统,由一个质子和一个电子组成。
它的能级结构和光谱特征是研究原子物理学和光谱学的基础。
本文将介绍氢原子的能级结构、光谱特征以及相关的一些重要概念和实验现象。
1. 能级结构氢原子的能级结构是由电子在氢原子中的运动和定态波函数描述的。
根据量子力学原理,氢原子的能量只能取离散的数值,称为能级。
能级按能量由低到高排列,用n表示。
当n为1时,对应的能级为基态;当n为2、3、4...时,对应的能级为激发态。
2. 能级跃迁氢原子的能级跃迁是指电子从一个能级跃迁到另一个能级的过程。
根据玻尔定律,氢原子的能级跃迁过程中,电子释放或吸收特定的能量,这些能量以光子的形式存在。
能级跃迁可以分为吸收和发射两种情况。
当电子从一个较低的能级跃迁到一个较高的能级时,需要吸收能量,这个过程称为吸收线。
吸收线对应着特定波长的电磁辐射,形成连续光谱。
当电子从一个较高的能级跃迁到一个较低的能级时,释放出一定量的能量,这个过程称为发射线。
发射线对应着特定波长的光,形成线状光谱。
3. 光谱特征氢原子的光谱特征是由能级结构和能级跃迁决定的。
根据巴耳末公式,光的波长与氢原子能级之间存在着特定的关系。
氢原子的光谱主要分为连续光谱、发射光谱和吸收光谱。
连续光谱是由几乎所有波长的光组成的,对应着氢原子的吸收线。
发射光谱是由波长离散的光组成的,对应着氢原子的发射线。
吸收光谱是由连续光谱中某些波长的光被吸收而形成的,对应着吸收线。
氢原子的光谱是物质的“指纹”,通过观察氢原子的光谱,可以得知物质的组成、温度和运动状态等信息。
光谱学在天文学、化学、物理和地球科学等领域有着重要的应用。
4. 布喇格方程布喇格方程是描述氢原子能级和波长之间关系的公式。
根据布喇格方程,氢原子的能级与跃迁的波长之间满足以下关系:1/λ = RZ^2(1/n1^2 - 1/n2^2),其中λ为波长,R为里德伯常量,Z为原子序数,n1和n2为两个能级的主量子数。
氢原子光谱形成机理一、引言氢原子光谱是物理学中一个非常基础且重要的课题,它涉及到原子的结构和性质。
本文将详细阐述氢原子光谱形成的基本原理和过程。
二、氢原子结构氢原子是一种常见的单电子原子,其核外只有一个电子。
这个电子受到核的吸引力和库仑斥力,形成了氢原子的结构。
根据量子力学理论,这个电子只能在某些特定的能级上运动,这些能级由氢原子的能级图表示。
三、跃迁过程在光子与氢原子相互作用的过程中,如果光子的能量等于或大于两个能级的能量差,那么这个电子将从低能级跃迁到高能级,同时释放出一个光子。
反之,当电子从高能级跃迁回低能级时,会吸收一个相应能量的光子。
这一过程中释放或吸收的光子就是我们观测到的各种颜色的光线,也就是氢原子光谱。
四、多条谱线产生的原因实际上,氢原子光谱并非只有一条谱线,而是有多条分立的谱线和连续的背景辐射。
这是由于氢原子的能级并不是完全离散的,而是在一定的范围内波动。
因此,在一定条件下,电子可能从一个稍微高一点的能级跌落到比另一个稍低的能级,从而产生多个不同频率的光子。
这导致了我们在观测氢原子光谱时看到了多条分立的谱线和连续的背景辐射。
五、展望随着科学技术的进步,我们对氢原子光谱形成机理的理解将更加深入。
未来,我们可能会采用更精确的实验手段和更高精度的计算方法来研究氢原子光谱,以期获得更准确的数据和更全面的理解。
同时,通过对比不同元素原子的光谱特征,我们可以更好地了解原子结构与性质的关系,为探索新的物理规律提供帮助。
六、结语总的来说,氢原子光谱的形成机理涉及到量子力学中的电子跃迁原理和能级图的概念。
通过对这一课题的研究,我们可以更深入地理解原子的结构和性质,并为物理学中其他领域的研究提供基础。
在未来的研究中,我们将继续关注氢原子光谱的新现象和新问题,以期取得更多的科研成果。
学案正标题一、考纲要求.1.知道两种原子结构模型,会用玻尔理论解释氢原子光谱2.. 掌握氢原子的能级公式并能结合能级图求解原子的跃迁问题二、知识梳理1.原子的核式结构(1)19091911α粒子散射实验,提出了原子的核式结构模~年,英国物理学家卢瑟福进行了型.(2)α粒子散射实验①实验装置:如下图所示;②α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少实验结果:90°,甚至被弹回.数偏转角度大于(3)核式结构模型:原子中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转.2. 氢原子光谱氢原子光谱线是最早被发现、研究的光谱线,这些光谱线可用一个统一的公式表示:Rn345…,,,==3. 玻尔的原子模型(1) 玻尔理论①轨道假设:原子中的电子在库仑引力的作用下,绕原子核做圆周运动,电子绕核运动的可能轨道是不连续的;②定态假设:电子在不同的轨道上运动时,原子处于不同的状态.因而具有不同的能量,即原子的能量是不连续的.这些具有确定能量的稳定状态称为定态,在各个定态中,处于基态的原子是稳定的,不向外辐射能量;③跃迁假设:原子从一个能量状态向另一个能量状态跃迁时要放出或吸收一定频率的光子,hνEE .=-光子的能量等于这两个状态的能量差,即nm(2) 几个概念①能级:在玻尔理论中,原子各个状态的能量值;②基态:原子能量最低的状态;③激发态:在原子能量状态中除基态之外的其他能量较高的状态;④量子数:原子的状态是不连续的,用于表示原子状态的正整数.(3) 氢原子的能级和轨道半径.mr10.53×10 (n123…)n①rrr;==,=,其中,为半径,,氢原子的半径公式:1n1-102E(n123E…)EE13.6 eV.②=-,=,=氢原子的能级公式:为基态能量,,,其中111n三、要点精析1.对氢原子的能级图的理解(2) 氢原子能级图的意义:①——定态.能级图中的横线表示氢原子可能的能量状态②“123…”“13.63.4…”表示氢原子的能级.横线左端的数字-,-,,表示量子数,右端的数字③相邻横线间的距离不相等,表示相邻的能级差不等,量子数越大,相邻的能级差越小.④hνEE. -带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为:=nm2. 关于能级跃迁的三点说明(1)13.6 eV时,也可以被处于基态的氢原子吸收,使氢原子电离;当当光子能量大于或等于13.6 eV ,氢原子电离后,电子具有一定的初动能.处于基态的氢原子吸收的光子能量大于(2)当轨道半径减小时,库仑引力做正功,原子的电势能减小,电子动能增大,原子能量减小,反之.轨道半径增大时,原子电势能增大、电子动能减小,原子能量增大.(3)nNC. =一群氢原子处于量子数为=的激发态时,可能辐射出的光谱线条数:3. 解答氢原子能级图与原子跃迁问题的注意事项(1) 能级之间跃迁时放出的光子频率是不连续的.(2)()hνEEcλν=-能级之间发生跃迁时放出吸收=光子的频率由求得.若求波长可由公式nm求得.(3)(n1) .-一个氢原子跃迁发出可能的光谱线条数最多为(4) 一群氢原子跃迁发出可能的光谱线条数的两种求解方法.①NC. ==用数学中的组合知识求解:②然后相加.利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,4.“”“”电离区分与跃迁(1)hνEE -跃迁:满足能级之差,=nm(2) ≥13.6 Evhν电离:四、典型例题-17)1.(2015氢原子基态的能量为海南。
高考经典课时作业15-2 原子结构、氢原子光谱
(含标准答案及解析)
时间:45分钟 分值:100分
1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( )
A .光电效应实验
B .伦琴射线的发现
C .α粒子散射实验
D .氢原子光谱的发现
2.关于巴耳末公式1
λ
=R ⎝⎛⎭⎫122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱
C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱
D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( )
A .放出光子,能量增加
B .放出光子,能量减少
C .吸收光子,能量增加
D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长
的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )
5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确
的是( )
A .氢原子的能量增加
B .氢原子的能量减少
C .氢原子要吸收一定频率的光子
D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为
E 1,激发态能量E n =E 1/n 2,其中n =
2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )
A .-4hc 3E 1
B .-2hc E 1
C .-4hc E 1
D .-9hc
E 1
7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )
A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长
B.从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度大
C.处于不同能级时,核外电子在各处出现的概率是一样的
D.从高能级向低能级跃迁时,氢原子核一定向外放出能量
8.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则()
A.ν0<ν1B.ν3=ν2+ν1
C.ν0=ν1+ν2+ν3 D.1
ν1=1
ν2+
1
ν3
9.如图为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光,下列说法正确的是()
A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1能级产生的
B.频率最小的光是由n=2能级跃迁到n=1能级产生的
C.这些氢原子总共可辐射出3种不同频率的光
D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应
10.(2011·高考江苏卷)按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量________(选填“越大”或“越小”).已知氢原子的基态能量为E1(E1<0),电子质量为m,基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为________(普朗克常量为h).
11.如图所示,氢原子从n>2的某一能级跃迁到n=2的能级,辐射出能量为2.55 eV的光子.问:
(1)最少要给基态的氢原子提供多少电子伏特的能量,才能使它辐射上述能量的光子?
(2)请在图中画出获得该能量后的氢原子可能的辐射跃迁图.
12.在研究原子物理时,科学家经常借用宏观模型进行模拟.在玻尔原子模型中,完全可用卫星绕行星运动来模拟研究电子绕原子核的运动.当然这时的向心力不是粒子间的万有引力(可忽略不计),而是粒子的静电力.设氢原子中,电子和原子核的带电荷量大小都是e=1.60×10-19 C,电子在第1、2可能轨道运行时,其运动半径分别为r1=0.53×10-10 m,r
=4r1,据此求:
2
(1)电子分别在第一、二可能轨道运行时的动能(以eV为单位).
(2)当电子从第一可能轨道跃迁到第二可能轨道时,原子还需吸收10.2 eV的光子,那么
电子的电势能增加了多少?(静电力常量k=9.0×109 N·m2/C2)
标准答案及解析:
1.
解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X 射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C 正确. 答案:C 2.
解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n 只能取n ≥3的整数,故C 正确. 答案:C 3.
解析:根据玻尔原子理论知,氢原子从高能级n =3向低能级n =2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B 选项正确. 答案:B 4.
解析:由hν=h c
λ
=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大,
波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.
解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.
解析:依题意可知第一激发态能量为E 2=E 1
2
2,要将其电离,需要的能量至少为ΔE =0
-E 2=hν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hc
E 1
,C 正确.
答案:C 7.
解析:光子能量E =hν=hc
λ
,而E 4-3<E 3-2,故λ4-3>λ3-2,A 项正确.由于光波的波速
由介质和频率共同决定,且在真空中传播时与频率无关,故B 错.电子在核外不同能级出现的概率是不同的,故C 错.能级跃迁是核外电子在不同轨道间的跃迁,与原子核无关,故D 错误. 答案:A 8.
解析:大量氢原子发生跃迁时只有三个频率的光谱,这说明氢原子受激发跃迁到n =3的激发态,然后从n =3能级向低能级跃迁,产生三个频率的光谱,根据能量守恒规律有:hν0=hν3=hν2+hν1,解得:ν0=ν3=ν2+ν1,故选项B 正确. 答案:B 9.
解析:最容易发生衍射的应是波长最长而频率最小、能量最低的光波,hν=h c
λ
=E n -E m ,
对应跃迁中能级差最小的应为n =4能级到n =3能级,故A 、B 错误.由C 2n 可知n =4能级上的氢原子共可辐射出C 24=6种不同频率的光,故C 错误.根据hν=E 2-E 1及发
生光电效应的条件hν≥W 0可知D 正确. 答案:D 10.
解析:电子离原子核越远电势能越大,原子能量也就越大;根据动能定理有,hν+E 1
=1
2m v 2,所以电离后电子速度为 2(hν+E 1)m
. 答案:越大 2(hν+E 1)
m
11.
解析:(1)氢原子从n >2的某一能级跃迁到n =2的能级,辐射光子的频率应满足: hν=E n -E 2=2.55 eV E n =hν+E 2=-0.85 eV 所以,n =4
基态氢原子要跃迁到n =4的能级,应提供的能量为 ΔE =E 4-E 1=12.75 eV
(2)辐射跃迁图如答案图所示. 答案: (1)12.75 eV (2)
12.
解析:(1)电子所受静电力提供向心力k e 2r 2=m v
2
r
故E k =12m v 2=ke 2
2r
E k1=9.0×109
×(1.60×10-19)2
2×0.53×10-
10
J =13.6 eV E k2=1
4
E k1=3.4 eV .
(2)根据能量守恒,ΔE p =ΔE +(E k1-E k2) 故ΔE p =20.4 eV .
答案:(1)13.6 eV 3.4 eV (2)20.4 eV。