2020-2021初中数学代数式技巧及练习题附答案解析
- 格式:doc
- 大小:488.50 KB
- 文档页数:11
2020-2021学年七年级数学上册尖子生同步培优题典专题3.3代数式的值姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间25分钟,试题共20题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•江苏省盐都区期末)无论x取什么值,代数式的值一定是正数的是()A.(x+2)2B.|x+2|C.x2+2D.x2﹣2【分析】讨论每个选项后,作出判断.注意平方数和绝对值都可是非负数.【解析】解:A、当x=﹣2时,代数式x+2的值为0,不符合题意;B、当x=﹣2时,代数式|x+2|的值为0,0不是正数,所以错误;C、无论x是何值,代数式x2+2的值都是正数.D、当x=0时,代数式x2﹣2的值为﹣2,不符合题意;故选:C.2.(2019秋•江苏省鼓楼区期末)对于代数式3+m的值,下列说法正确的是()A.比3大B.比3小C.比m大D.比m小【分析】根据作差法即可求出答案.【解析】解:(A)3+m﹣3=m,故A无法判断.(B)3+m﹣3=m,故B无法判断.(C)3+m﹣m=3>0,故3+m>3,故C正确.(D)3+m﹣m=3>0,故D错误.故选:C.3.(2019秋•江苏省宿豫区期中)按照如图所示的操作步骤,若输出的值为49,则输入的数x是()A.7B.5C.﹣9D.5或﹣9【分析】根据如图所示的操作步骤,可得x与2的平方和等于49,据此求出x的值是多少即可.【解析】解:∵(x+2)2=49,∴x+2=±7,解得x=﹣9或x=5.则输入的数x是5或﹣9.故选:D.4.(2019秋•江苏省阜宁县期中)已知2a﹣3b=2,则7﹣2a+3b的值是()A.5B.9C.4D.2【分析】直接把2a﹣3b=2代入代数式进行计算即可.【解析】解:∵2a﹣3b=2,∴7﹣2a+3b=7﹣(2a﹣3b)=7﹣2=5.故选:A.5.(2019秋•江苏省建邺区期中)无论x取何值,下列代数式的值始终是正数的是()A.|x|B.x2C.|x|﹣1D.x2+1【分析】根据非负数的性质即可判断.【解析】解:A.|x|大于或等于0,不符合题意;B.x2大于或等于0,不符合题意;C.|x|﹣1可能大于0、可能等于0、可能小于0,不符合题意;D.x2+1一定大于0,是正数,符合题意.故选:D.6.(2019秋•江苏省东海县期中)代数式3x2﹣4x+6的值为9,则x2−43x+6的值为()A.7B.18C.12D.9【分析】由3x2﹣4x+6的值为9,得x2−43x=1,然后利用整体代入的方法计算.【解析】解:∵3x2﹣4x+6的值为9,∴3x2﹣4x=3,x2−43x=1,∴x2−43x+6=1+6=7.故选:A.7.(2019秋•江苏省惠山区期中)若|x|=1,|y|=4,且xy<0,则x﹣y的值等于()A.﹣3或5B.3或﹣5C.﹣3或3D.﹣5或5【分析】先去绝对值符号,再根据xy<0得出x、y的对应值,进而可得出结论.【解析】解:∵|x|=1,|y|=4,∴x=±1,y=±4.∵xy<0,∴x、y的符号相反,∴当x=1时,y=﹣4,x﹣y=1+4=5;当x=﹣1时,y=4,x﹣y=﹣1﹣4=﹣5.故选:D.8.(2019秋•江苏省东海县期中)小丽用计算机设计了一个计算程序,输入和输出的数据如下表当输入数据﹣11时,输出的数据是()输入﹣12﹣34﹣5…输出−1225−310417−526…A.11120B.−11120C.−11121D.−11122【分析】观察不难发现,输出的数分子是输入的数,分母是输入的数的平方加1,然后写出第n个数的表达式,再把n=﹣11代入进行计算即可得解.【解析】解:当输入数据﹣11时,输出的数据是−11(−11)2+1=−11121+1=−11122.故选:D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2019秋•江苏省邳州市期中)如图,是一个数值转换机.若输出的数为25,则输入的数是3或﹣7.【分析】直接利用已知运算公式结合平方根的定义得出答案.【解析】解:由题意可得:(x+2)2=25,则x+2=±5,解得:x=3或﹣7.故答案为:3或﹣7.10.(2020春•兴化市期中)若m+n=3,则2m+2n﹣6的值为0.【分析】把原式变形后代入计算即可得出答案.【解析】解:∵m+n=3,∴2m+2n﹣6=2(m+n)﹣6=6﹣6=0.故答案为:0.11.(2019秋•江苏省金坛区期中)试写出一个含有x的代数式,使得当x=0时,代数式的值是5.这个代数式可以是x+5.【分析】根据题意即可列出符合条件的代数式.【解析】解:含有x的代数式,使得当x=0时,代数式的值是5.这个代数式可以是x+5.故答案为x+5.12.(2020•连云港)按照如图所示的计算程序,若x=2,则输出的结果是﹣26.【分析】把x=2代入程序中计算,当其值小于0时将所得结果输出即可.【解析】解:把x=2代入程序中得:10﹣22=10﹣4=6>0,把x=6代入程序中得:10﹣62=10﹣36=﹣26<0,∴最后输出的结果是﹣26.故答案为:﹣26.13.(2019秋•江苏省铜山区期中)如图所示,根据数值转换机的示意图,若开始输入x=1,则最后输出的结果是﹣25.【分析】根据题意可知,该程序计算是先乘4,再减去﹣1,最后乘﹣5,将x输入即可求解.【解析】解:输入x=1,∴[1×4﹣(﹣1)]×(﹣5)=5×(﹣5)=﹣25,∴最后输出﹣25.故答案为:﹣25.14.(2019秋•江苏省如东县期中)已知(﹣2x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0是关于x的恒等式(即x 取任意值时等式都成立),则a1+a2+a3+a4+a5=﹣2.【分析】令x=0和x=1得到两个等式,即可求出所求.【解析】解:当x=0时,a0=1;当x=1时,a5+a4+a3+a2+a1+a0=﹣1,则a5+a4+a3+a2+a1=﹣2,故答案为:﹣215.(2019秋•江苏省海陵区校级期中)若﹣x2+2x+1的值是3,则x2﹣2x﹣5的值是﹣7.【分析】由题意可整体求出x2﹣2x的值,然后整体代入即可求出所求的结果.【解析】解:﹣x2+2x+1=3,x2﹣2x=﹣2,x2﹣2x﹣5=﹣2﹣5=﹣7.故答案为:﹣7.16.(2019秋•江苏省海州区期中)有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2019输出的结果是3.【分析】首先分别求出第3次、第4次、…、第10次输出的结果各是多少,判断出从第二次输出的结果开始,每次输出的结果分别是6、3、8、4、2、1、6、3、…,每6个数一个循环;然后用2017﹣1的值除以6,根据商和余数的情况,判断出2019次输出的结果是多少即可.【解析】解:根据数值转换器,第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,第4次输出的结果是8,第5次输出的结果是4,第6次输出的结果是2,第7次输出的结果是1,第8次输出的结果是6,第9次输出的结果是3,第10次输出的结果是8,∴从第二次输出的结果开始,每次输出的结果分别是6、3、8、4、2、1、6、3、…,每6个数一个循环,∵(2019﹣1)÷6=2018÷6=336…2,∴2019次输出的结果是3.故答案为:3;3.三、解答题(本大题共4题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•江苏省钟楼区期中)如图是智多星同学用一模一样的三角形摆放的图案:(1)按照这样的规律,求出第4堆三角形的个数;(2)请帮智多星同学求出第n堆三角形的个数.【分析】(1)观察图形先写出前三堆三角形的个数,按照这样的规律,即可求出第4堆三角形的个数;(2)结合(1)发现的规律即可求出第n堆三角形的个数.【解析】解:观察图形可知:(1)第1堆三角形的个数是5个,即5=3×1+2;第2堆三角形的个数是8个,即8=3×2+2;第3堆三角形的个数11个,11=3×3+2;所以第4堆三角形的个数为:3×4+2=14(个);(2)根据(1)发现规律:第n堆三角形的个数为(3n+2)个.18.(2019秋•江苏省邳州市期中)用棋子摆成的“上字型图案如图所示现察此图案的规律,并回答:(1)依照此规律,第五个图形中共有22个棋子,第八个图形中共有34个棋子(2)第n(n为正整微)个图形中共有(4n+2)个棋子(3)根据(2)中的结论,第几个图形中有2022个棋子?【分析】(1)根据图形可以写出前几个图形中棋子的个数,从而发现棋子的变化规律,从而可以得到第五个和第八个图形中的棋子个数;(2)根据(1)中发现的规律,可以得到第n(n为正整微)个图形中棋子的个数;(3)根据(2)中的结果,可以求得第几个图形中有2022个棋子.【解析】解:(1)由图可得,第一图形中的“上”字中棋子的个数为:3×2=6,第二图形中的“上”字中棋子的个数为:5×2=10,第三图形中的“上”字中棋子的个数为:7×2=14,…,则第五个图形中共有:(2×5+1)×2=22(个),第八个图形中共有:(2×8+1)×2=34(个),故答案为:22,34;(2)第n(n为正整微)个图形中共有:(2n+1)×2=(4n+2)(个),故答案为:(4n+2);(3)令4n+2=2022,解得,n=505,即第505个图形中有2022个棋子.19.(2019秋•江苏省海州区校级期中)当今,人们对健康愈加重视,跑步锻炼成了人们的首要选择,许多与运动有关的手机APP(即手机应用小程序)应运而生.小明的爸爸给自己定了减肥目标,每天跑步a 公里.以目标路程为基准,超过的部分记为正,不足的部分记为负,他记下了七天的跑步路程:日期18日19日20日21日22日23日24日+1.72+3.20﹣1.91﹣0.96﹣1.88+3.30+0.07路程(公里)(1)分别用含a的代数式表示22日及23日的跑步路程;(2)如果小明的爸爸24日跑步路程是7.07公里,求a的值;(3)在(2)的条件下,若跑步一公里消耗的热量为60千卡,请问小明的爸爸跑步七天一共消耗了多少热量?【分析】(1)直接结合表格中数据表示出22日及23日的跑步路程;(2)直接利用小明的爸爸24日跑步路程是7.07公里,得出a+0.07=7.07,进而得出答案;(3)首先求出七天一共跑步的公里数,进而得出答案.【解析】解:(1)22日跑步路程为(a﹣1.88)公里,23日跑步路程为(a+3.30)公里;(2)a+0.07=7.07,所以a=7公里;(3)七天一共跑步(a+1.72)+(a+3.20)+(a﹣1.91)+(a﹣0.96)+(a﹣1.88)+(a+3.30)+(a+0.07)=7a+3.54=7×7+3.54=52.54(公里),52.54×60=3152.4(千卡).20.(2019秋•江苏省建邺区期中)已知a是一个正整数,且1≤a≤9,用只含a的代数式表示:(1)一个两位数的个位数字是a,十位数字是3,这个两位数是30+a;(2)一个两位数的十位数字是a,且无论a取何值,这个两位数均能够被3整除,则这个两位数是9a+9.【分析】(1)根据题意,可以用含a的代数式表示出这个两位数;(2)根据题意可以得到这个两位数的个位数字,从而可以表示出这个两位数字.【解析】解:(1)由题意可得,这个两位数是:3×10+a=30+a,故答案为:30+a;(2)∵一个两位数的十位数字是a,且无论a取何值,这个两位数均能够被3整除,a是一个正整数,且1≤a≤9,∴这个两位数数字的个位数字是9﹣a,则这个两位数为:10a+(9﹣a)=10a+9﹣a=9a+9,故答案为:9a+9.。
2020-2021初中数学代数式知识点总复习含答案解析一、选择题1.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.2.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.11.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4故选:D .【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.12.若35m =,34n =,则23m n -等于( )A .254B .6C .21D .20【答案】A【解析】【分析】根据幂的运算法则转化式子,代入数值计算即可.【详解】解:∵35m =,34n =,∴222233(3)3253544-==÷÷÷==m n m n m n , 故选:A .【点睛】本题考查了同底数幂的除法和幂的乘方的逆用,熟练掌握同底数幂的除法和幂的乘方的运算法则是解题的关键.13.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.14.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.15.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.16.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.17.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a += 【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.【详解】解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.18.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】 根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.19.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .20.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.。
代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
2020-2021初中数学代数式知识点总复习附答案(2)一、选择题1.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.2.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.3.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【解析】【分析】 根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.4.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.5.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.6.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .7.下列计算正确的是( )A .2571a a a -÷=B .()222a b a b +=+C .2+=D .()235a a =【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A 、2571a a a-÷=,正确; B 、(a+b )2=a 2+2ab+b 2,故此选项错误;C 、,无法计算,故此选项错误;D 、(a 3)2=a 6,故此选项错误;故选:A .点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.8.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.9.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.10.下列运算中正确的是( )A .2235a a a +=B .222(2)4a b a b +=+C .236236a a a ⋅=D .()()22224a b a b a b -+=- 【答案】D【解析】【分析】根据多项式乘以多项式的法则,分别进行计算,即可求出答案.【详解】A 、2a+3a=5a ,故本选项错误;B 、(2a+b )2=4a 2+4ab+b 2,故本选项错误;C 、2a 2•3a 3=6a 5,故本选项错误;D 、(2a-b )(2a+b )=4a 2-b 2,故本选项正确.故选D .【点睛】本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】 根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2;∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.13.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .14.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.15.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.16.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】【分析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.17.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.18.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009,故选B.19.若x2+2(m+1)x+25是一个完全平方式,那么m的值()A.4 或-6 B.4 C.6 或4 D.-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.20.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.。
初中数学代数式求值精选练习题及答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;2、已知2m6+ m4= 3,求m的值;3、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2的值;4、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;5、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;6、已知m a=2,m a+b=14,求代数式√m a + m b的值;7、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;8、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;9、已知x=√2+√3,求代数式x2−2√3x-4的值;10、已知m +n =-5,求代数式m2- 10n- n2的值。
参考答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;解:已知3a-b+2c=7将上式变换一下,得b=3a+2c-7---------------①将①代入5a+4b-3c=6,得5a+4(3a+2c-7)-3c =6整理,得17a+5c=34---------------②代数式a+11b-12c将①代入=a+11(3a+2c-7)-12c=34a+10c-77=2(17a+5c)-77将②代入=2×34-77=-92、已知2m6+ m4= 3,求m的值;解:2m6+ m4= 32(m2)3+ (m2)2= 3令m2=t,原式则为2t3 + t2 =32t3 + t2 -3 =02t3 + t2 -2-1 =0(2t3 - 2)+(t2 -1)=02(t3 -1)+(t2 -1)=02(t-1)(t2 +t+1)+(t+1)(t-1)=0 (t-1)〔2(t2 +t+1)+(t+1)〕=0(t-1)(2t2 +3t+3)=0因为2t2 +3t+3 =2(t+34)2+ 158>0所以2t2 +3t+3≠0故:只有t-1=0即t=1又m2=t所以m2=1,得m=±1故:m的值为±13、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2解:x2 −3x−27=0x2 −3x−27−1= -1x2 −3x−28= -1(x+4)(x-7)= -1等号两边同时除以(x+4),得X -7= −1x+4等号两边同时乘以-1,得7-x = 1x+4-----------------①代数式1(x+4)2+(x+4)2=(1x+4)2+2×1x+4×(x+4)+(x+4)2-2=〔1x+4+(x+4)〕2-2将①带入,用7-x替换1x+4=〔(7−x)+(x+4)〕2-2 =(11)2-2=1094、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;解:xy=28-------------------①yz=48-------------------②xz=84-------------------③三个等式相乘,得(xyz)2= 28*48*84=(4*7)*(4*12)*(7*12)(xyz)2=(4∗7∗12)2因为x,y,z为正数所以xyz =4∗7∗12 -----④④÷①,得:z=12④÷②,得:x=7④÷③,得:y=4代数式x+2y+3z将x=7,y=4,z=12代入=7+2*4+3*12=515、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;解:a= 2b−3等式两边同时乘以b-3,得ab-3a=2上式变换一下,得ab=3a+2--------------①代数式6ab+3a(2-3b)+3a+7=6ab+6a-9ab+3a+7=-3ab+9a+7将①代入=-3(3a+2)+9a+7=-9a-6+9a+7=16、已知m a=2,m a+b=14,求代数式√m a + m b的值;解:m a+b=14m a×m b=14已知m a=2--------------①即:2 ×m b=14m b= 7-------------②代数式√m a + m b将①②代入=√2+7=37、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;解:因为x,y,z为整数且x2+ y2+z2=5若其中一个数为±3,它的平方为9,显然大于5所以:x,y,z只能取±2,±1, 0 -------------------①(A)设x= -2,因为x+y+z=3,所以y+z=5,这时y或z必定有一个取±3或±4或±5,不符合①,所以舍去;(B)设x= 2因为x+y+z=3,所以y+z=1即:y=1-z--------------------------②又x2+ y2+z2=5,所以y2+z2=1-------③将②代入③(1−z)2+z2=12z2-2z=0解得:z=0,或z=1对应的y=1或0整理得:{x=2y=0x=1或{x=2y=1z=0求代数式(x3+y3+ z3)-10=(23+03+ 13)-10=-1(C)设x= -1因为x+y+z=3,所以y+z=4,因为x,y,z只能取±2,±1, 0所以,这时只能是:y=z=2整理得:{x=−1 y=2 x=2求代数式(x3+y3+ z3)-10=(−13+23+ 23)-10=5(D)设x= 1因为x+y+z=3,所以y+z=2,即y=2- z又x2+ y2+z2=5,所以y2+z2=4将y=2- z代入(2−z)2+z2=4化简,得2z2-4z=0解得:z=0,或z=2对应y=2或y=0整理得:{x=1y=0x=2或{x=1y=2z=0求代数式(x3+y3+ z3)-10=(13+23+ 03)-10= -1(E)设x= 0因为x+y+z=3,所以y+z=3,即y=3- z又x2+ y2+z2=5,所以y2+z2=5将y=3- z代入(3−z)2+z2=5化简,得2z2-6z+4=0,即z2-3z+2=0即(z-2)(z-1)=0解得:z=2或z=1对应:y=1或y=2整理得:{x=0y=2x=1或{x=0y=1z=2求代数式(x3+y3+ z3)-10=(03+23+ 13)-10= -18、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;解:m2-n2=12(m +n)(m -n)=12两边同时平方,得(m + n)2(m−n)2=144将(m+n)2= 16代入16*(m−n)2=144(m−n)2=9等号左边展开:m2-2mn + n2=9------------①又(m+n)2= 16等号左边展开:m2+2mn + n2=16-----------②②-①,得4mn=7代数式8mn+9=2*4mn+9=2*7+9=239、已知x=√2+√3,求代数式x2−2√3x-4的值;解:x=√2+√3x= √2−√3(√2+√3)(√2−√3)= √2−√32−3=√2−√3−1=√3-√2--------------①x2 = (√3 − √2)2 =3+2-2√6=5-2√6---------------------②代数式x2−2√3x−4将①②代入=(5-2√6)-2√3(√3-√2)+4=5-2√6-6+2√6+4=310、已知m +n =-5,求代数式m2- 10n- n2的值。
七年级上册第3章《代数式》单元测试卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式符合书写要求的是()A.B.n•2C.a÷b D.2πr22.下列式子中a,﹣xy2,,0,是单项式的有()个.A.2个B.3个C.4个D.5个3.下列运算结果是a2的是()A.a+a B.a+2C.a•2D.a•a4.下列合并同类项正确的是()A.a3+a2=a5B.3x﹣2x=1C.3x2+2x2=6x2D.x2y+yx2=2x2y5.对于3x2y﹣2x+3y﹣xy﹣1,小糊涂同学说了四句话,其中不正确的是()A.是一个整式B.由5个单项式组成C.次数是2D.常数项是﹣16.﹣(a2﹣b3+c4)去括号后为()A.﹣a2﹣b3+c4B.﹣a2+b3+c4C.﹣a2﹣b3﹣c4D.﹣a2+b3﹣c4 7.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.68.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式9.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较10.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1B.3C.6D.8二.填空题(共6小题,满分24分,每小题4分)11.在x+y,0,2>1,2a﹣b,2x+1=0中,代数式有个.12.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.13.单项式2x m y3与﹣3xy3n是同类项,则m+n=.14.去括号:﹣(a+b﹣c)=.15.一个多项式A与x2﹣2x+1的和是2x﹣7,则这个多项式A为.16.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子把.三.解答题(共8小题,满分66分)17.(6分)请你用实例解释下列代数式的意义.(1)﹣4+3;(2)3a;(3)()3.18.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)19.(6分)先化简,再求值:5xy+2(2xy﹣3x2)﹣(6xy﹣7x2),其中x=﹣1,y=﹣2.20.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为300米,宽为100米,圆形花坛的半径为20米,求广场空地的面积(π取3.14).21.(8分)已知代数式2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与字母x的取值无关,且A=4a2﹣ab+4b2,B=3a2﹣ab+3b2.(1)求a,b的值;(2)先化简代数式:3A﹣[2(3A﹣2B)﹣3(4A﹣3B)],再求该代数式的值.22.(8分)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.23.(8分)某超市出售茶壶和茶杯,茶壶每只定价48元,茶杯每只定价6元,该超市制定了两种优惠方案:①买一只茶壶送一只茶杯;②按总价的90%付款.某顾客需买茶壶3只,茶杯x(x>3)只.(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)(3)讨论买15只茶杯时,按哪种方案购买较为合算?24.(10分)阅读下列材料:①=1﹣,=﹣,=…②③(1)写出①组中的第5个等式:,第n个等式:;(2)写出②组的第n个等式:;(3)利用由①②③组中你发现的等式规律计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、中的带分数要写成假分数,故不符合书写要求;B、中的2应写在字母的前面且省略乘号,故不符合书写要求;C、应写成分数的形式,故不符合书写要求;D、符合书写要求.故选:D.2.解:式子中a,﹣xy2,,0,是单项式的有a,﹣xy2,0,一共3个.故选:B.3.解:a+a=2a,因此选项A不符合题意;a+2=a+2,因此选项B不符合题意;a•2=2a,因此选项C不符合题意;a•a=a2,因此选项D符合题意;故选:D.4.解:A、本选项不能合并,错误;B、3x﹣2x=x,本选项错误;C、3x2+2x2=5x2,本选项错误;D、x2y+yx2=2x2y,本选项正确.故选:D.5.解:式子3x2y﹣2x+3y﹣xy﹣1是一个整式,由五个单项式组成,其次数为3,常数项是﹣1.所以A、B、D正确,C错误.故选:C.6.解:原式=a2+b3﹣c4,故选:D.7.解:∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选:D.8.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.9.解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.10.解:把x=2代入得:×2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:×(﹣4)=﹣2,把x=﹣2代入得:×(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:×(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:×(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:代数式有x+y,0,2a﹣b,故答案为:312.解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.13.解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.14.解:原式=﹣a﹣b+c,故答案为:﹣a﹣b+c.15.解:2x﹣7﹣(x2﹣2x+1)=2x﹣7﹣x2+2x﹣1=﹣x2+4x﹣8.故答案为:﹣x2+4x﹣8.16.解:设n张桌子需配椅子a n(n为正整数)把.观察图形,可知:a1=6=2×1+4,a2=8=2×2+4,a3=10=2×3+4,∴a n=2n+4,∴a5=2×5+4=14.故答案为:14.三.解答题(共8小题,满分66分)17.解:(1)﹣4+3表示气温从﹣4℃,上升3℃后的温度;(2)3a表示一辆车以akm/h的速度行驶3小时的路程;(3)()3表示棱长为的正方体的体积.18.解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.19.解:原式=5xy+4xy﹣6x2﹣6xy+7x2=x2+3xy当x=﹣1,y=﹣2时,原式=(﹣1)2+3×(﹣1)(﹣2)=1+6=720.解:(1)矩形的面积为ab,四分之一圆形的花坛的面积为πr2,则广场空地的面积为ab﹣4×πr2=ab﹣πr2,答:广场空地的面积为(ab﹣πr2)米2;(2)由题意得:a=300米,b=100米,r=20米,代入(1)的式子得:300×100﹣π×202=30000﹣400π=30000﹣400×3.14=28744(米2),答:广场空地的面积为28744米2.21.解:(1)原式=2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由题意可知:,解得:;(2)原式=3A﹣[6A﹣4B﹣12A+9B]=3A﹣(﹣6A+5B)=3A+6A﹣5B=9A﹣5B,又∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴原式=9A﹣5B=9(4a2﹣ab+4b2)﹣5(3a2﹣ab+3b2)=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2,当a=﹣3,b=2时,原式═21×(﹣3)2﹣4×(﹣3)×2+21×22=189+24+84=297.22.解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.23.解:(1)该客户按方案①购买,需付款:48×3+6(x﹣3)=6x+126答:该客户按方案①购买,需付款(6x+126)元.(2)该客户按方案②购买,需付款:(48×3+6x)×90%=5.4x+129.6答:该客户按方案②购买,需付款(5.4x+129.6)元.(3)当x=15时,6x+126=6×15+126=216(元)5.4x+129.6=5.4×15+129.6=210.6(元)因为216>210.6所以该客户按方案②购买较合算.答:该客户按方案②购买较合算.24.解:(1)①组中的第5个等式为:=﹣,第n个等式为:=﹣;故答案为:=﹣,=﹣;(2)②组的第n个等式为:=(﹣);故答案为:=(﹣);(3)原式=(1﹣)+(﹣)+…+(﹣)=×(1﹣)=.1、三人行,必有我师。
第三章整式的加减一.选择题1.代数式x2﹣的正确解释是()A.x与y的倒数的差的平方B.x的平方与y的倒数的差C.x的平方与y的差的倒数D.x与y的差的平方的倒数2.下列代数式中符合书写要求的是()A.ab2×4B.C.D.6xy2÷33.若代数式x﹣2y=3,则代数式2(x﹣2y)2+4y﹣2x+1的值为()A.7B.13C.19D.254.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.45.如图,三角尺(阴影部分)的面积为()A.ab﹣2πr B.C.ab﹣πr2D.6.已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.77.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式8.下列说法中,正确的是()A.单项式xy2的系数是x B.单项式﹣5x2的次数为﹣5C.多项式x2+2x+18是二次三项式D.多项式x2+y2﹣1的常数项是19.下列关于多项式﹣3a2b+ab﹣2的说法中,正确的是()A.最高次数是5B.最高次项是﹣3a2bC.是二次三项式D.二次项系数是010.化简:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]的结果是()A.2b2﹣a2B.﹣a2C.a2D.a2﹣2b2二.填空题11.若﹣x n﹣2+4x是关于x的三次二项式,则n的值是.12.如图,用含a、b的代数式表示图中阴影部分的面积.13.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.14.当k=时,多项式x2+(k﹣1)xy﹣3y2﹣2xy﹣5中不含xy项.15.把多项式2x2+3x3﹣x+5x4﹣1按字母x降幂排列是.16.若a2m b3和﹣7a2b3是同类项,则m值为.17.合并同类项﹣ab+7ab﹣9ab=.18.嘉淇准备完成题目:化简:(4x2﹣6x+7)﹣(4x2﹣口x+2)发现系数“口”印刷不清楚,妈妈告诉她:“我看到该题标准答案的结果是常数”,则题目中“口”应是.三.解答题19.已知多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,求(﹣m)3+2n 的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.22.已知:A=ax2+x﹣1,B=3x2﹣2x+1(a为常数)①若A与B的和中不含x2项,则a=;②在①的基础上化简:B﹣2A.23.已知A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.24.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣4.25.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.26.数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).27.已知A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关.(1)求m、n的值;(2)求式子﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.28.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,若把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是数学解题中一种非常重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的值为;(2)已知x+2y=3,求代数式3x+6y﹣8的值;(3)已知xy+x=﹣6,y﹣xy=﹣2,求代数式2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.29.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:3(x﹣1)+▇=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣3,求所挡的二次三项式的值.30.如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a=,b=,c=;(2)先化简,再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.31.已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣.(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当|a+|与b2互为相反数时,求(1)中式子的值.32.已知:关于x、y的多项式x2+ax﹣y+b与多项式bx2﹣3x+6y﹣3的和的值与字母x的取值无关,求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.33.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时.(1)如图2所示,点A、B都在原点右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;(2)如图3所示,点A、B都在原点左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;(3)如图4所示,点A、B在原点两边,|AB|=|OB|+|OA|=|b|+|a|=a+(﹣b)=|a﹣b|.综上所述,数轴上A、B两点之间的距离表示为|AB|=|a﹣b|.根据阅读材料回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣3的两点A、B之间的距离是,如果|AB|=2,则x为.(3)当代数式|x+1|+|x﹣2|取最小值时,即在数轴上,表示x的动点到表示﹣1和2的两个点之间的距离和最小,这个最小值为.相应的x的取值范围是.34.某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.35.小丽放学回家后准备完成下面的题目:化简(□x2﹣6x+8)+(6x﹣5x2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x2﹣6x+8)+(6x﹣5x2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?36.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.参考答案一.选择题1.【解答】解:代数式x2﹣的正确解释是x的平方与y的倒数的差,故选:B.2.【解答】解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.3.【解答】解:∵x﹣2y=3,∴2(x﹣2y)2+4y﹣2x+1=2(x﹣2y)2﹣2(x﹣2y)+1=2×32﹣2×3+1=18﹣6+1=13.故选:B.4.【解答】解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数,两次后输出22时,3x+1=7,解得:x=2,故选:B.5.【解答】解集:阴影部分的面积为:S△﹣S圆=ab﹣πr2,故选:D.6.【解答】解:把x=﹣3,y=7代入y=ax5+bx3+cx﹣5得:﹣35a﹣33b﹣3c﹣5=7,即﹣(35a+33b+3c)=12把x=3代入ax5+bx3+cx﹣5得:35a+33b+3c﹣5=﹣12﹣5=﹣17.故选C.7.【解答】解:A、﹣的系数为﹣,错误;B、32x3y的次数是4,错误;C、3是单项式,正确;D、多项式﹣x2y+xy﹣7是三次三项式,错误;故选:C.8.【解答】解:A、单项式xy2的系数是,原说法错误,故此选项不符合题意;B、单项式﹣5x2的次数为2,原说法错误,故此选项不符合题意;C、多项式x2+2x+18是二次三项式,原说法正确,故此选项符合题意;D、多项式x2+y2﹣1的常数项是﹣1,原说法错误,故此选项不符合题意,故选:C.9.【解答】解:A、多项式﹣3a2b+ab﹣2次数是3,故此选项错误;B、最高次项是﹣3a2b,故此选项正确;C、是三次三项式,故此选项错误;D、二次项系数是1,故此选项错误;故选:B.10.【解答】解:﹣[﹣(﹣a2)﹣b2]﹣[+(﹣b2)]=﹣(a2﹣b2)﹣(﹣b2)=﹣a2+b2+b2=2b2﹣a2故选:A.二.填空题11.【解答】解:∵﹣x n﹣2+4x是关于x的三次二项式,∴n﹣2=3,则n的值是:5.故答案为:5.12.【解答】解:阴影部分面积=ab﹣=ab﹣.故答案为:ab﹣πb2.13.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.14.【解答】解:整理只含xy的项得:(k﹣3)xy,∴k﹣3=0,k=3.故答案为:3.15.【解答】解:多项式2x2+3x3﹣x+5x4﹣1的各项是2x2,3x3,﹣x,5x4,﹣1,按x降幂排列为5x4+3x3+2x2﹣x﹣1.故答案为:5x4+3x3+2x2﹣x﹣1.16.【解答】解:∵a2m b3和﹣7a2b3是同类项,∴2m=2,解得m=1.故答案为:1.17.【解答】解:原式=(﹣1+7﹣9)ab=﹣3ab.故答案为﹣3ab.18.【解答】解:设“□”为a,∴(4x2﹣6x+7)﹣(4x2﹣口x+2)=4x2﹣6x+7﹣4x2+ax﹣2=(a﹣6)x+5,∵该题标准答案的结果是常数,∴a﹣6=0,解得a=6,∴题目中“□”应是6.故答案为:6.三.解答题19.【解答】解:∵多项式y2+xy﹣4x3+1是六次多项式,单项式x2n y5﹣m与该多项式的次数相同,∴m+1+2=6,2n+5﹣m=6,解得:m=3,n=2,则(﹣m)3+2n=﹣27+4=﹣23.20.【解答】解:(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.21.【解答】解:∵多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,该多项式不含二次项,∴a﹣2=0,2b+1=0,解得:a=2,b=﹣,∴3a+2b=3×2+2×(﹣)=5.22.【解答】解:①A+B=ax2+x﹣1+3x2﹣2x+1=(a+3)x2﹣x∵A与B的和中不含x2项,∴a+3=0,解得a=﹣3.②B﹣2A=3x2﹣2x+1﹣2×(﹣3x2+x﹣1)=3x2﹣2x+1+6x2﹣2x+2=9x2﹣4x+3.故答案为:﹣3.23.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab (2)∵|3a+1|+(2﹣3b)2=0,∴3a+1=0,2﹣3b=0,解得a=﹣,b=,∴A﹣2B=a2﹣8ab=﹣8×(﹣)×=+=24.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=,b=﹣4时,原式=﹣3﹣8=﹣11.25.【解答】解:x﹣2(x﹣y2)+(﹣x+y2),=x﹣2x+y2﹣x+y2,=﹣3x+y2,当x=﹣2,时,原式=﹣3×(﹣2)+()2=6+=6.26.【解答】解:(1)∵(3x2﹣x+1)﹣(2x2﹣3x﹣2),=3x2﹣x+1﹣2x2+3x+2,=x2+2x+3,∴甲、乙、丙三位同学的多项式是“友好多项式”;(2)∵甲、乙、丁三位同学的多项式是“友好多项式”,∴分两种情况:①(2x2﹣3x﹣2)﹣(3x2﹣x+1)或(3x2﹣x+1)﹣(2x2﹣3x﹣2),(2x2﹣3x﹣2)﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3(3x2﹣x+1)﹣(2x2﹣3x﹣2)=3x2﹣x+1﹣2x2+3x+2=x2+2x+3,②(3x2﹣x+1)+(2x2﹣3x﹣2),=5x2﹣4x﹣1;∴丁的多项式是﹣x2﹣2x﹣3 或x2+2x+3或5x2﹣4x﹣1.27.【解答】解:(1)∵A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关,∴2A﹣B=2(x2﹣mx+2)﹣(nx2+2x﹣1)=2x2﹣2mx+4﹣nx2﹣2x+1=(2﹣n)x2﹣(2m+2)x+5,∴2﹣n=0,2m+2=0,解得:n=2,m=﹣1;(2)﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]=﹣3m2n+6mn2﹣m2n﹣2mn2+4m2n+5mn2=9mn2,当n=2,m=﹣1时,原式=9×(﹣1)×22=﹣36.28.【解答】解:(1)﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)原式=3(x+2y)﹣8=3×3﹣8=1;(3)∵y﹣xy=﹣2,xy+x=﹣6,∴xy﹣y=2,x+y=xy+x+y﹣xy=﹣8,则原式=2x+2(xy﹣y)2﹣3(xy﹣y)2+3y﹣xy=2x+3y﹣xy﹣(xy﹣y)2=2(x+y)+(y﹣xy)﹣(xy﹣y)2=﹣16+(﹣2)﹣4=﹣22.29.【解答】解:(1)由题意,可得所挡的二次三项式为:(x2﹣5x+1)﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣3时,x2﹣8x+4=(﹣3)2﹣8×(﹣3)+4=9+24+4=37.30.【解答】解:(1)由长方体纸盒的平面展开图知,a与﹣1、b与2、c与3是相对的两个面上的数字或字母,因为相对的两个面上的数互为相反数,所以a=1,b=﹣2,c=﹣3.故答案为:1,﹣2,﹣3.(2)5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc=5a2b﹣(2a2b﹣6abc+3a2b)+4abc=5a2b﹣2a2b+6abc﹣3a2b+4abc=10abc.当a=1,b=﹣2,c=﹣3时,原式=10×1×(﹣2)×(﹣3)=10×6=60.31.【解答】解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵|a+|与b2互为相反数,∴|a+|+b2=0,则a=﹣,b=0,6a2+3b2﹣10ab+11=6×+11=.32.【解答】解:由题意可知:x2+ax﹣y+b+bx2﹣3x+6y﹣3=(b+1)x2+(a﹣3)x+5y+b﹣3该多项式的值与x无关,所以b+1=0,a﹣3=0所以b=﹣1,a=3原式=3a2﹣6ab+3b2﹣(3a2﹣2ab+3b2)=3a2﹣6ab+3b2﹣3a2+2ab﹣3b2=﹣4ab=1233.【解答】解:(1)﹣2﹣(﹣5)=3,1﹣(﹣3)=4,;(2)|x﹣(﹣3)|=|x+3|,∵|x+3|=2,∴x+3=±2,∴x=﹣1或﹣5;(3)由题意可知:当x在﹣1与2之间时,此时,代数式|x+1|+|x﹣2|取最小值,最小值为2﹣(﹣1)=3,此时x的取值范围为:﹣1≤x≤2;故答案为:(1)3,4;(2)|x+3|,﹣1或﹣5;(3)3,﹣1≤x≤2.34.【解答】解:∵B=2x2+3x﹣4,A+2B=5x2+8x﹣10,∴A=5x2+8x﹣10﹣2(2x2+3x﹣4)=5x2+8x﹣10﹣4x2﹣6x+8=x2+2x﹣2,∴A﹣2B=x2+2x﹣2﹣2(2x2+3x﹣4)=x2+2x﹣2﹣4x2﹣6x+8=﹣3x2﹣4x+6.35.【解答】解:(1)(3x2﹣6x+8)+(6x﹣5x2﹣2)=3x2﹣6x+8+6x﹣5x2﹣2=﹣2x2+6;(2)设“□”是a,则原式=(ax2﹣6x+8)+(6x﹣5x2﹣2)=ax2﹣6x+8+6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案是6,∴a﹣5=0,解得a=5.36.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.。
2021北京初一数学上学期期末汇编:代数式(解答题)一.解答题(共6小题)1.(2020秋•海淀区校级期末)定义:对于一个有理数x ,我们把{}x 称作x 的相伴数;若0x ,则1{}12x x =-;若0x <,则1{}12x x =-+.例:11{1}1122=⨯-=-. (1)求3{}2,{1}-的值; (2)当0a >,0b <时,有{}{}a b =,试求代数式2()22a b a b +--的值.2.(2020秋•海淀区校级期末)点O 为数轴的原点,点A 、B 在数轴上的位置如图所示,点A 表示的数为5,线段AB 的长为线段OA 长的1.2倍.点C 在数轴上,M 为线段OC 的中点.(1)点B 表示的数为 ;(2)若线段5BM =,则线段OM 的长为 ;(3)若线段(05)AC a a =<<,求线段BM 的长(用含a 的式子表示).3.(2020秋•昌平区期末)数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A ,B 两点,已知A ,B 两点所表示的数互为相反数.①如果点A 所表示的数是5-,那么点B 所表示的数是 ;②在图1中标出原点O 的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小慧提供的信息,标出隐藏的原点O 的位置,写出此时点C 所表示的数是 ;(3)如图3,数轴上标出若干个点,其中点A ,B ,C ,D 所表示的数分别为a ,b ,c ,d . ①用a ,c 表示线段AC 的长为 ;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如1)BC =,且210d a -=.判断此时数轴上的原点是A ,B ,C ,D 中的哪一点,并说明理由.4.(2020秋•顺义区期末)我们规定:若有理数a ,b 满足a b ab +=,则称a ,b 互为“等和积数”,其中a 叫做b 的“等和积数”, b 也叫a 的“等和积数”.例如:因为11(1)22+-=-,11(1)22⨯-=-,所以11(1)(1)22+-=⨯-,则12与1-互为“等和积数”.请根据上述规定解答下列问题:(1)有理数2的“等和积数”是;(2)有理数1(填“有”或“没有” )“等和积数”;(3)若m的“等和积数”是25,n的“等和积数”是37,求34m n+的值.5.(2020秋•海淀区校级期末)如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即91313a=++=;步骤2:计算前6位数字中奇数位数字的和b,即6028b=++=;步骤3:计算3a与b的和c,即313847c=⨯+=;步骤4:取大于或等于c且为10的整数倍的最小数d,即50d=;步骤5:计算d与c的差就是校验码X,即50473X=-=.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为,校验码Y的值为.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.6.(2020秋•朝阳区期末)阅读材料:数学活动课上,小智同学提出一个猜想;把一个三位正整数的百位上的与个位上的数交换位置,十位上的数不变,原数与所得数的差等于99乘原数的百位上的数与个位上的数的差.例如:78228799(72)-=⨯-.回答问题:(1)小智的猜想是否正确?若正确,对任意情况进行说明;若不正确,说明理由.(2)已知一个五位正整数的万位上的数为m,个位上的数为n,把万位上的数与个位上的数交换位置,其余数位上的数不变,原数与所得数的差等于.(用含m,n的式子表示)2021北京初一数学上学期期末汇编:代数式(解答题)参考答案一.解答题(共6小题)1.【分析】(1)根据对称数的定义求得即可;(2)由对称数的定义化简,然后代入代数式确定即可.【解答】解:(1)3131{}12224=⨯-=-,13{1}(1)122-=-⨯-+=; (2)0a >,0b <,{}{}a b =,即111122a b -=-+,解得:4a b +=, 故222()22()2()488a b a b a b a b +--=+-+=-=.【点评】本题考查了代数式求值,能够根据相伴数的概念化简是解题的关键.2.【分析】(1)由题意可求得6AB =,则可求得1OB =,根据题意可得结果;(2)分点M 位于点B 左侧和右侧两种情况可求得结果;(3)分点C 位于点A 左侧和右侧两种情况,表示出OM 的长,再求出BM 的长即可.【解答】解:(1)由题意得1.2 1.256AB OA ==⨯=,651OB ∴=-=,∴点B 表示的数为1-,故答案为:1-;(2)当点M 位于点B 左侧时,点M 表示的数为156--=-,当点M 位于点B 右侧时,点M 表示的数为154-+=,|6|6OM ∴=-=,或|4|4OM ==,故答案为:4或6.(3)AC a =且05a <<,∴点C 始终在原点右侧,当点C 位于点A 左侧时,5OC a =-,52a OM -∴=, 则5171222a BM a -=+=-+,当点C位于点A右侧时,5OC a=+,5 2aOM +∴=,则5171222aBM a+=+=+.【点评】此题考查了数形结合与分类讨论解决问题的能力,关键是能确定数轴上的点表示的数与对满足条件的点的不同情况的全面考虑.3.【分析】(1)①根据相反数的定义即可求解;②原点O即为AB的中点,在图1中标出即可;(2)根据28AB=以及A、B两点之间有6个点,求出相邻两点间的距离,进而求解即可;(3)①根据两点间的距离公式即可求解;②根据数轴上标出的若干个点中每相邻两点相距1个单位,可得7AD=,即7d a-=,与210d a-=联立,求出a、d,进而求解即可.【解答】解:(1)①A,B两点所表示的数互为相反数,点A所表示的数是5-,∴点B所表示的数是5.故答案为:5;②原点O的位置如图1所示:(2)28AB=,数轴上A、B两点之间标出了6个点,且标出的点中任意相邻两点间的距离都相等,∴相邻两点间的距离为2874÷=,8420-+⨯=,∴原点O在数轴上A点右边的第二个点,如图2所示,∴此时点C所表示的数是044+=.故答案为:4;(3)①数轴上点A,C所表示的数分别为a,c,且c a>,∴线段AC的长为c a-.故答案为:c a-;②如图3,数轴上的原点是B点,理由如下:数轴上标出的若干个点中每相邻两点相距1个单位,7AD d a∴=-=,又210d a-=,3a ∴=-,4d =,0b ∴=,∴数轴上的原点是B 点.【点评】本题考查了列代数式,数轴的应用,两点间的距离公式,相反数的定义等知识,利用数形结合是解题的关键.4.【分析】(1)根据“等和积数”的定义即可判断;(2)根据“等和积数”的定义即可解决问题;(3)根据“等和积数”的定义,计算m 和n 的值此,代入求值即可.【解答】解:(1)设2与x 互为“等和积数”,22x x ∴+=,2x ∴=,∴有理数2的“等和积数”是2;故答案为:2;(2)设1与x 互为“等和积数”,1x x ∴+=,此方程无解,∴有理数1没有“等和积数”;故答案为:没有;(3)m 的“等和积数”是25,n 的“等和积数”是37, 2255m m ∴+=,3377n n +=, 23m ∴=-,34n =-, 23343()4()23534m n ∴+=⨯-+⨯-=--=-. 【点评】本题考查有理数的混合运算、“等和积数”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5.【分析】(1)根据特定的算法代入计算即可求解;(2)根据特定的算法依次求出a ,b ,c ,d ,再根据d 为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解答】解:(1)《数学故事》的图书码为978753Y ,77317a ∴=++=,98522b =++=,则“步骤3”中的c 的值为3172273⨯+=,校验码Y 的值为80737-=.故答案为:73,7;(2)依题意有123a m m =++=+,6006b =++=,33(3)6315c a b m m =+=++=+,3156321d c X m m =+=++=+, d 为10的整数倍,3m ∴的个位数字只能是9,m ∴的值为3;(3)可设这两个数字从左到右分别是p ,q ,依题意有9211a p p =++=+,617b q q =++=+,3(11)(7)340c p q p q =+++=++,校验码为8,3p q ∴+的个位是2,||4p q -=,4p ∴=,0q =或9p =,5q =或2p =,6q =.故这两个数字从左到右分别是4,0或9,5或2,6.【点评】本题考查了列代数式、正确理解题意,学会探究规律、利用规律是解题的关键.6.【分析】(1)设一个三位正整数的百位上的数为a ,十位上的数为b ,个位上的数为c ,分别表示出该三位正整数和新三位正整数,再用原数减去新数,化简可得;(3)求出原数与所得数的差即可求解.【解答】解:(1)小智的猜想正确.证明如下:设一个三位正整数的百位上的数为a ,十位上的数为b ,个位上的数为c ,则该三位正整数为10010a b c ++,新三位正整数为10010c b a ++,因为10010(10010)a b c c b a ++-++1001010010a b c c b a =++---9999a c =-99()a c =-,所以小智的猜想是正确的;(2)原数与所得数的差等于10000(10000)1000010000999999999999()m n n m m n n m m n m n +-+=+--=-=-. 故答案为:9999()m n -.【点评】本题考查了列代数式,关键是读懂题意,列出正确的解析式.。
2020-2021备战中考数学备考之一元二次方程组压轴突破训练∶培优篇附答案解析(1)一、一元二次方程1.解方程:(x+1)(x﹣3)=﹣1.【答案】x1=1+3,x2=1﹣3【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x2﹣2x=2,配方得:x2﹣2x+1=3,即(x﹣1)2=3,解得:x1=1+3,x2=1﹣3.2.解方程:(2x+1)2=2x+1.【答案】x=0或x=1 2 .【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.3.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.4.关于x的方程(k-1)x2+2kx+2=0(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k-1)x2+2kx+2=0的两个根,记S=++ x1+x2,S的值能为2吗?若能,求出此时k的值.若不能,请说明理由.【答案】(1)详见解析;(2)S的值能为2,此时k的值为2.【解析】试题分析:(1)本题二次项系数为(k-1),可能为0,可能不为0,故要分情况讨论;要保证一元二次方程总有实数根,就必须使△>0恒成立;(2)欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.试题解析:(1)①当k-1=0即k=1时,方程为一元一次方程2x=1,x=有一个解;②当k-1≠0即k≠1时,方程为一元二次方程,△=(2k)²-4×2(k-1)=4k²-8k+8="4(k-1)" ²+4>0方程有两不等根综合①②得不论k为何值,方程总有实根(2)∵x ₁+x ₂=,x ₁ x ₂=∴S=++ x1+x2=====2k-2=2,解得k=2,∴当k=2时,S 的值为2∴S 的值能为2,此时k 的值为2.考点:一元二次方程根的判别式;根与系数的关系.5.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm 若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.6.解方程:(x +1)(x -1)=2【答案】x 123x 223【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可. 试题解析:(x +1)(x -1)=2x 2-2∵a=1,b=-c=-1∴△=b 2-4ac=8+4=12>0∴∴x1x 27.用适当的方法解下列一元二次方程:(1)2x 2+4x -1=0;(2)(y +2)2-(3y -1)2=0.【答案】(1)x 1=-1x 2=-12)y 1=-14,y 2=32. 【解析】试题分析:(1)根据方程的特点,利用公式法解一元二次方程即可;(2)根据因式分解法,利用平方差公式因式分解,然后再根据乘积为0的方程的解法求解即可.试题解析:(1)∵a=2,b=4,c=-1∴△=b 2-4ac=16+8=24>0∴x=2b a -±=4122-=-⨯∴x 1=-1x 2=-1 (2)(y +2)2-(3y -1)2=0[(y+2)+(3y-1)][ (y+2)-(3y-1)]=0即4y+1=0或-2y+3=0 解得y 1=-14,y 2=32.8.设m 是不小于﹣1的实数,关于x 的方程x 2+2(m ﹣2)x+m 2﹣3m+3=0有两个不相等的实数根x 1、x 2,(1)若x 12+x 22=6,求m 值;(2)令T=121211mx mx x x +--,求T 的取值范围.【答案】(1)m=522)0<T≤4且T≠2. 【解析】【分析】由方程方程由两个不相等的实数根求得﹣1≤m<1,根据根与系数的关系可得x1+x2=4﹣2m,x1•x2=m2﹣3m+3;(1)把x12+x22=6化为(x1+x2)2﹣2x1x2=6,代入解方程求得m的值,根据﹣1≤m<1对方程的解进行取舍;(2)把T化简为2﹣2m,结合﹣1≤m<1且m≠0即可求T得取值范围.【详解】∵方程由两个不相等的实数根,所以△=[2(m﹣2)]2﹣4(m2﹣3m+3)=﹣4m+4>0,所以m<1,又∵m是不小于﹣1的实数,∴﹣1≤m<1∴x1+x2=﹣2(m﹣2)=4﹣2m,x1•x2=m2﹣3m+3;(1)∵x12+x22=6,∴(x1+x2)2﹣2x1x2=6,即(4﹣2m)2﹣2(m2﹣3m+3)=6整理,得m2﹣5m+2=0解得m=;∵﹣1≤m<1所以m=.(2)T=+=====2﹣2m.∵﹣1≤m<1且m≠0所以0<2﹣2m≤4且m≠0即0<T≤4且T≠2.【点睛】本题考查了根与系数的关系、根的判别式,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.9.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.10.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.【答案】(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x ,根据题意得:400(1﹣x )2=361,解得:x 1=0.05=5%,x 2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.11.已知关于x 的方程(a ﹣1)x 2+2x +a ﹣1=0.(1)若该方程有一根为2,求a 的值及方程的另一根;(2)当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.【答案】(1)a=15,方程的另一根为12;(2)答案见解析. 【解析】【分析】(1)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b 2-4ac =0求出a 的值,再代入解方程即可.【详解】(1)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 1=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =1时,方程为2x =0,解得:x =0.②当a≠1时,由b 2-4ac =0得4-4(a -1)2=0,解得:a =2或0.当a =2时, 原方程为:x 2+2x +1=0,解得:x 1=x 2=-1;当a =0时, 原方程为:-x 2+2x -1=0,解得:x 1=x 2=1.综上所述,当a =1,0,2时,方程仅有一个根,分别为0,1,-1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.12.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.【解析】【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1﹣x)2=39.2,解得:x1=0.3=30%,x2=1.7(不合题意,舍去).答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,整理得:a2+75a﹣2500=0,解得:a1=25,a2=﹣100(不合题意,舍去),∴80(1+a%)=80×(1+25%)=100.答:乙网店在“双十一”购物活动这天的网上标价为100元.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.【答案】(1)销售单价至少为35元;(2)m=16.【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可. 试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670, 150+m ﹣150×m%﹣m%×m=162, m ﹣m 2=12, 60m ﹣3m 2=192,m 2﹣20m+64=0,m 1=4,m 2=16,∵要使销售量尽可能大,∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.14.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。
2020-2021初中数学代数式知识点总复习含答案解析(2)一、选择题1.下列命题正确的个数有()①若 x2+kx+25 是一个完全平方式,则 k 的值等于 10;②一组对边平行,一组对角相等的四边形是平行四边形;③顺次连接平行四边形的各边中点,构成的四边形是菱形;④黄金分割比的值为≈0.618.A.0 个B.1 个C.2 个D.3 个【答案】C【解析】【分析】根据完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定即可一一判断;【详解】①错误.x2+kx+25是一个完全平方式,则 k 的值等于±10 ②正确.一组对边平行,一组对角相等,可以推出两组对角分别相等,即可判断是平行四边形;③错误.顺次连接平行四边形的各边中点,构成的四边形是平行四边形;④正确.黄金分割比的值为≈0.618;故选C.【点睛】本题考查完全平方式的定义,黄金分割的定义,平行四边形的判定,菱形的判定等知识,解题的关键是熟练掌握基本知识.2.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.3.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a,用含a的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a【答案】C【解析】【分析】由等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,得出规律:2+22+23+…+2n =2n+1-2,那么250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249),将规律代入计算即可.【详解】解:∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…∴2+22+23+…+2n =2n+1-2,∴250+251+252+…+299+2100=(2+22+23+...+2100)-(2+22+23+ (249)=(2101-2)-(250-2)=2101-250,∵250=a ,∴2101=(250)2•2=2a 2,∴原式=2a 2-a .故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n+1-2.4.下列计算正确的是( )A .235x x x +=B .236x x x =gC .633x x x ÷=D .()239x x = 【答案】C【解析】【分析】根据合并同类项的法则,同底数的乘除法以及幂的乘方的运算法则分别求出结果再起先判断即可得解.【详解】A. 2x 与3x 不能合并,故该选项错误;B. 235x x x =g ,故该选项错误;C. 633x x x ÷=,计算正确,故该选项符合题意;D. ()236x x =,故该选项错误.故选C.【点睛】此题主要考查了合并同类项,同底数的乘除法以及幂的乘方的运算,熟练掌握运算法则是解决此题的关键.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235a a a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.7.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a-= D .(﹣2a )3=﹣8a 3 【答案】D【解析】【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案.【详解】A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a,故此选项错误;D、(﹣2a)3=﹣8a3,正确.故选D.【点睛】此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定【答案】A【解析】【分析】利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】=(AB-a)·a+(CD-b)(AD-a)=(AB-a)·a+(AD-a)(AB-b)=(AB-a)(AD-b)+(CD-b)(AD-a)=(AB-a)(AD-b)+(AB-b)(AD-a)∴-=(AB-a)(AD-b)+(AB-b)(AD-a)-(AB-a)·a-(AD-a)(AB-b)=(AB-a)(AD-a-b)∵AD<a+b,∴-<0,故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.11.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.12.计算的值等于( )A .1B .C .D .【答案】C【解析】【分析】直接利用幂的乘方运算法则、积的乘方运算法则将原式变形进而得出答案.【详解】原式===.故选C.【点睛】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键.13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.14.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(-10%)(+15%)万元B.(1-10%)(1+15%)万元C.(-10%+15%)万元D.(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.15.多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.2,3 B.2,2 C.3,3 D.3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.16.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.17.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( ) A .0B .92C .﹣92D .32 【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.18.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.7 B.12 C.13 D.25【答案】C【解析】【分析】设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,由图乙得:(a+b)2−a2−b2=12,即2ab=12,所以a2+b2=13,即正方形A,B的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.19.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,则第6个图形中棋子的颗数为()A .63B .64C .65D .66【答案】D【解析】【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.【详解】解:∵通过观察可以发现:第1个图形中棋子的个数为()11211=⨯⨯-;第2个图形中棋子的个数为()62221=⨯⨯-;第3个图形中棋子的个数为()153231=⨯⨯-;第4个图形中棋子的个数为()284241=⨯⨯-;L L第n 个图形中棋子的个数为()21n n -∴第6个图形中棋子的个数为()626166⨯⨯-=.故选:D【点睛】本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.20.通过计算大正方形的面积,可以验证的公式是( )A .B .C .D .【答案】C【解析】【分析】 根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
2020-2021初中数学代数式技巧及练习题附答案解析一、选择题1.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )A .19cmB .20cmC .21cmD .22cm【答案】B【解析】【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.【详解】解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,化简得:444(2)-+a b ,代入26a b +=得:原式=44−4×6=44−24=20(cm),故选:B .【点睛】本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.2.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235aa a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.8.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.9.下列各运算中,计算正确的是( )A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【答案】B【解析】试题解析:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选B.【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.下列运算正确的是()A.x3+x5=x8 B.(y+1)(y-1)=y2-1 C.a10÷a2=a5 D.(-a2b)3=a6b3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A、x3+x5,无法计算,故此选项错误;B、(y+1)(y-1)=y2-1,正确;C、a10÷a2=a8,故此选项错误;D、(-a2b)3=-a6b3,故此选项错误.故选:B.【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.13.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.14.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.15.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.16.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .17.已知多项式x -a 与x 2+2x -1的乘积中不含x 2项,则常数a 的值是( )A .-1B .1C .2D .-2【答案】C【解析】 分析:先计算(x ﹣a )(x 2+2x ﹣1),然后将含x 2的项进行合并,最后令其系数为0即可求出a 的值.详解:(x ﹣a )(x 2+2x ﹣1)=x 3+2x 2﹣x ﹣ax 2﹣2ax +a=x 3+2x 2﹣ax 2﹣x ﹣2ax +a=x 3+(2﹣a )x 2﹣x ﹣2ax +a令2﹣a =0,∴a =2.故选C .点睛:本题考查了多项式乘以多项式,解题的关键是熟练运用运算法则,本题属于基础题型.18.图(1)是一个长为2a ,宽为2()b a b >的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .abB .2()a b +C .2()a b -D .22a b -【答案】C【解析】【分析】 图(2)的中间部分是正方形,边长为a-b ,根据图形列面积关系式子即可得到答案.【详解】中间部分的四边形是正方形,边长为:a+b-2b=a-b ,∴面积是2()a b -,故选:C.【点睛】此题考查完全平方公式的几何背景,观察图形得到线段之间的关系是解题的关键.19.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( )A.45B.1625C.1 D.-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.20.观察下列图形:()它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23【答案】C【解析】【分析】设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.【详解】解:设第n个图形共有a n(n为正整数)个五角星,∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,∴a n=3n+1(n为正整数),∴a7=3×7+1=22.故选:C.【点睛】本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.。