西南交大峨眉校区高数上学期期末考试试卷2答案
- 格式:doc
- 大小:238.00 KB
- 文档页数:3
高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目:高等数学I 班级:姓名:学号:成绩: 一、填空题(5153'=⨯')1、()3)2ln(--=x x x f 的定义域是_2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos 223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是()A.x cos 1-B.2x x +C.1-x eD.x x sin )ln(1+2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。
A .h h a f a f h )()(lim0--→B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→D .h h a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上() A.上升且凹的B.上升且凸的C.下降且凹的D.下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是()A.)(d )(d d x f x x f x b a =⎪⎭⎫ ⎝⎛⎰ B.x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C.()x x f x x f d )(d )(d=⎰ D.C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xe x ()A.发散B.收敛于1C.收敛于21D.收敛于21-三、算题('488'6=⨯)1、求极限xxx x 30sin sin tan lim -→2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x ,计算xy d d5、求积分⎰x e xd6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。
高等数学a上期末考试试题和答案高等数学A上期末考试试题一、选择题(每题3分,共30分)1. 极限的定义是()。
A. 函数在某点的值B. 函数在某点的增量C. 函数在某点的导数D. 函数在某点的无穷小答案:D2. 函数f(x)=x^2在x=0处的导数是()。
A. 0B. 1C. 2D. 3答案:C3. 定积分∫₀¹x²dx的值是()。
A. 1/3B. 1/2C. 1D. 2答案:C4. 函数f(x)=sinx在x=π/2处的值是()。
A. 0B. 1C. -1D. π/2答案:B5. 函数f(x)=e^x的原函数是()。
A. e^xB. e^(-x)C. ln(x)D. x答案:A6. 函数f(x)=x^3-3x^2+2的极值点是()。
A. 0B. 1C. 2D. 3答案:B7. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B8. 函数f(x)=ln(x)的定义域是()。
A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B9. 函数f(x)=x^3-6x^2+11x-6的拐点是()。
A. 1B. 2C. 3D. 4答案:B10. 函数f(x)=x^4-4x^3+6x^2-4x+1的零点是()。
A. 0B. 1C. 2D. 3答案:B二、填空题(每题3分,共30分)11. 函数f(x)=x^3-3x^2+2的导数是______。
答案:3x^2-6x12. 函数f(x)=e^x的二阶导数是______。
答案:e^x13. 函数f(x)=ln(x)的不定积分是______。
答案:xln(x)-x+C14. 函数f(x)=x^2-4x+4的顶点坐标是______。
答案:(2, 0)15. 函数f(x)=sinx+cosx的周期是______。
答案:2π16. 函数f(x)=x^3-3x^2+2的单调增区间是______。
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
期末教学质量检测 数学试题卷(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求.1. 平面∥平面,,则直线和的位置关系( )αβ,a b αβ⊂⊂a b A. 平行 B. 平行或异面C. 平行或相交D. 平行或相交或异面【答案】B 【解析】 【分析】利用平面∥平面,可得平面与平面没有公共点,根据,可得直线,没有公共αβαβ,a b αβ⊂⊂a b 点,即可得到结论.【详解】∵平面平面,∴平面与平面没有公共点 //αβαβ∵,,∴直线,没有公共点 a α⊂b β⊂a b ∴直线,的位置关系是平行或异面, a b 故选:B.2. 双曲线的左、右焦点坐标分别是 ,虚轴长为4,则双曲线的标准方程是( )()()123,03,0F F -,A.B.22154x y -=22154y x -=C.D.221134x y -=221916x y -=【答案】A 【解析】【分析】根据双曲线的几何性质即可求解的值.,,a b c 【详解】由题意,双曲线的左、右焦点坐标分别是,所以, 12(3,0),(3,0)F F -3c =又虚轴长为,则,所以,所以,424b =2b =a = 所以双曲线的标准方程为, 22154x y -=故选:A.3. 已知表示两条不同直线,表示平面,下列说法正确的是 ,m n αA. 若,则 B. 若,则 ,m n ααA A m n A ,m n αα⊥∥m n ⊥C. 若,则 D. 若,则,m m n α⊥⊥n α⊥,m n m α⊥∥n αA 【答案】B 【解析】【分析】根据直线与平面的位置关系,可判定A ,利用线面垂直的性质,可判定B ;根据线面垂直的性质和直线与平面的位置关系,可判定C 、D ,得到答案.【详解】由题意,对于A 中,若,则与相交、平行或异面,所以不正确; ,m n ααA A m n 对于B 中,若,根据线面垂直的性质可知是正确的; ,m n αα⊥∥m n ⊥对于C 中,若,则与平行、相交或在平面内,所以不正确; ,m m n α⊥⊥n α对于D 中,若,则与的位置关系不确定,所以不正确,故选B.,m n m α⊥∥n α【点睛】本题主要考查了空间中直线与平面的位置关系的判定,其中解答中熟记空间中线面位置关系的判定定理和线面垂直的性质是解答本题的关键,着重考查了推理与论证能力,属于基础题.4. 在空间直角坐标系中,已知,则的中点关于平面的对称点坐标()()1,0,2,3,2,4M N --MN Q xOy 是()A. B.C.D.()1,1,1-()1,1,1--()1,1,1--()1,1,1【答案】D 【解析】 【分析】由中点坐标公式可得点,再由关于平面对称的点的特征即可得解. ()1,1,1Q -xOy 【详解】因为,所以的中点,()()1,0,2,3,2,4M N --MN ()1,1,1Q -所以点关于平面的对称点坐标是. Q xOy ()1,1,1故选:D.5. 已知椭圆的两个焦点是,点在椭圆上,若,则的面积是22142x y +=12F F 、P 12||||2PF PF -=12PF F ∆A.B.C.D.1+1+【答案】D 【解析】【详解】,可得,2212+1,4,242x y PF PF c =∴+== 122PF PF -= 123,1PF PF ==,是直角三角形,的面积故选(2219+= 21PF F ∴∆12PF F ∴∆21211122PF F F ⨯=⨯⨯=D.6. 某四棱锥的三视图如图所示,该四棱锥的表面积是A. 32B. 16+C. 48D. 16+【答案】B 【解析】【详解】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B .点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.7. 已知为椭圆上的点,点到椭圆焦点的距离的最小值为,最大值为1P 2222:1(0)x y C a b a b+=>>P 28,则椭圆的离心率为( ) A.B.C.D.35455453【答案】B 【解析】【分析】根据点到椭圆焦点的距离的最小值为,最大值为18,列出a ,c 的方程组,进而解出a ,c ,最P 2后求出离心率.【详解】因为点到椭圆焦点的距离的最小值为,最大值为18, P 2所以,210188a c a a c c -==⎧⎧⇒⎨⎨+==⎩⎩所以椭圆的离心率为:. 45c e a ==故选:B.8. 在长方体中,,,为的中点,则异面直线与1111ABCD A B C D -12AB AA ==1AD =E 1CC 1BC AE 所成角的余弦值为 ( )A .B.C.D.【答案】B 【解析】【分析】建立空间直角坐标系结合空间向量的数量积即可求解.【详解】解:由题意,在长方体中,以为原点建立如图所示的空间直角坐标系D由题知,,为的中点,则12AB AA ==1AD =E 1CC ,,, ()1,0,0A ()1,2,0B ()10,2,2C ()0,2,1E 所以,()1,2,1AE =- ()11,0,2BC =-设直线与所成角为,则1BC AE α11cos AE BC AE BC α⋅====所以直线与 1BC AE 故选:B .9. 已知矩形,,,将矩形沿对角线折成大小为的二面角ABCD 4AB =3BC =ABCD AC θ,则折叠后形成的四面体的外接球的表面积是B ACD --ABCD A. B.C.D. 与的大小有关9π16π25πθ【答案】C 【解析】【详解】由题意得,在二面角内的中点O 到点A,B,C,D 的距离相等,且为,所以点O 即D B AC --AC 522AC =为外接球的球心,且球半径为,所以外接球的表面积为.选C . 52R =24=25S R ππ=10. 已知点P 是抛物线上的-个动点,则点P 到点A(0, 1)的距离与点P 到y 轴的距离之和的最小214x y =值为 A. 2 B.C.D.11+【答案】C 【解析】【详解】抛物线,可得:y 2=4x ,抛物线的焦点坐标(1,0). 214x y =依题点P 到点A (0,1)的距离与点P 到y 轴的距离之和的最小值,就是P 到(0,1)与P 到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P 到点A (0,1)的距离与P 到该抛物线焦点坐标的距离之和减1,.1故选C .11. 已知为坐标原点,双曲线:的右焦点为,直线过点且与的右支交于,O C 2213y x -=F l F C M 两点,若,,则直线的斜率为( )N 2OM ON OA +=8OA OF ⋅=l k A. B.C.D.2±±3±【答案】B 【解析】【分析】根据点差法,结合平面向量坐标表示公式、斜率的公式进行求解即可.【详解】设,,,由题可知,是线段的中点,()11,M x y ()22,N x y ()00,A x y ()2,0F A MN ,∴,∵,分别是双曲线右支上的点,∴两式相减并整理得028OA OF x ⋅== 04x =M N 221122221,31,3y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,∴,即, ()()()()1212121203y y y y x x x x +-+--=002203y k x⋅-=0403y k⋅-=又,∴,∴. 00022AF y yk k x ===-0y =±k =故选:B【点睛】关键点睛:应用点差法,结合平面向量运算的坐标表示公式是解题的关键.12. 已知是椭圆上一点,,是椭圆的左,右焦点,点是的内心,延长交M 2212516x y +=1F 2F I 12MF F ∆MI线段于,则的值为( )12F F N MI INA.B.C.D.53354334【答案】A 【解析】【分析】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点作垂直直M 2212516x y +=12F F B I IA 线于点,设的内切圆半径为,则,由得:12F F A 12MF F ∆r IA r =121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,问38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35题得解.【详解】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点I 作垂直直M 2212516x y +=12F F B IA 线于点,设的内切圆半径为,则,由三角形面积相等即:12F F A 12MF F ∆r IA r =得:121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,故38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35选A .【点睛】本题主要是利用三角形相似将所求的比值转化成三角形相似比问题,即构造两个三角形相似来处理,对于内切圆问题通常利用等面积法列方程.即:即:=++(其中是ABC S A IBC S A IAC S A IAB S A I ABC A 的内切圆圆心),从而解决问题. ⇔1()2ABC S r a b c =++A 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13. 若抛物线上任意一点到点的距离与到直线的距离相等,则___________. 22y px =(1,0)=1x -p =【答案】 2【解析】【分析】直接由抛物线的定义求解即可. 【详解】由抛物线的定义可得,解得. 12p=2p =故答案为:2.14. 已知直线与圆相切,则a 的值为_____________. 340x y a ++=221x y +=【答案】 5±【解析】 【分析】利用圆心到直线的距离,直接求的值.d r =a【详解】由题意可知圆心到直线的距离,d r =1d ∴==解得:. 5a =±故答案为:5±【点睛】本题考查直线与圆的位置相切,求参数,属于简单题型.15. 设点,分别为椭圆C :的左,右焦点,点是椭圆上任意一点,若使得1F 2F 2214x y +=P C 成立的点恰好是4个,则实数的一个取值可以为_________.12PF PF m ⋅=m 【答案】0(答案不唯一) 【解析】【分析】当时,说明椭圆上存在4点满足条件. 120PF PF ⋅=【详解】当时,,则,0m =120PF PF ⋅= 12PF PF ⊥由椭圆方程可知,,,,因为,所以以为直径的圆与椭圆有4个交点,使24a =21b =23c =c b >12F F 得成立的点恰好有4个,所以实数的一个取值可以为0.120PF PF ⋅=m 故答案为:0(答案不唯一)16. 在长方体中,已知底面为正方形,为的中点,,1111ABCD A B C D -ABCD P 11A D 2AD =,点为正方形所在平面内的一个动点,且满足,则线段的长度的1AA =Q ABCD QC =BQ 最大值是________. 【答案】 6【解析】【分析】在正方形所在平面内建立平面直角坐标系,设,由,可得ABCD (,)Q x y QC =,进而可得出结果.22(2)4x y ++=【详解】在正方形所在平面内建立平面直角坐标系,设, ABCD (,)Q x y 则有,, 2223(1)PQ x y =++-222(2)(2)QC x y =-+-因为,所以,QC =2222(2)(2)622(1)x y x y -+-=++-整理得,22(2)4x y ++=所以点的轨迹是以为圆心,以为半径的圆, Q (2,0)-2所以线段长度的最大值为. BQ 2226⨯+=故答案为6【点睛】本题主要考查点线面间的距离计算,以及立体几何中的轨迹问题,常用坐标系的方法处理,属于常考题型.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知圆经过坐标原点和点,且圆心在轴上. C O ()4,0x (1)求圆的方程;C (2)设直线经过点,且与圆相交所得弦长为的方程. l ()1,2l C l 【答案】(1)()2224x y -+=(2)或. 10x -=34110x y +-=【解析】【分析】(1)设圆的方程为,再利用待定系数法求出,即可得解;C ()()2220x a y rr -+=>,a r (2)分类讨论直线的斜率存在与不存在两种情况,结合弦长公式及点到直线的距离公式即可求解. 【小问1详解】依题意,设圆的方程为,C ()()2220x a y rr -+=>则有,解得, ()22224a r a r⎧=⎪⎨-=⎪⎩224a r =⎧⎨=⎩所以圆的方程为; C ()2224x y -+=【小问2详解】由弦长公式知,解得,==1d =即圆心到直线的距离为1,()2,0C l当直线斜率不存在时,即符合题意,l 1x =当直线斜率存在时,设直线方程为,即,l 2(1)y k x -=-20kx y k --+=,解得, 1=34k =-所以直线的方程为,即, l 32(1)4y x -=--34110x y +-=综上,直线的方程为或.l 10x -=34110x y +-=18. 如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.C ABED -ABED ,G F ,EC BD(1)求证:;//GF ABC 平面(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说BC H GFH ∥ACD H 明理由.【答案】(1)见证明;(2)见解析【解析】【分析】(1)由四边形为正方形可知,连接必与相交于中点,证得,利用ABED AE BD F GF AC A 线面平行的判定定理,即可得到面;GF A ABC (2)由点分别为中点,得,由线面平行的判定定理,证得面,G H ,CE CB GH EB AD ∥∥GH A ,由面面平行的判定定理,即可得到证明.ACD 【详解】(1)证明:由四边形为正方形可知,连接必与相交于中点ABED AE BD F 故GF AC A ∵面GF ⊄ABC ∴面GF A ABC (2)线段上存在一点满足题意,且点是中点BC H H BC理由如下:由点分别为中点可得:,G H ,CE CBGH EB AD A A ∵面GH ⊄ACD ∴面GH A ACD 由(1)可知,面GF A ACD 且GF GH G ⋂=故面面GFH A ACD 【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直,着重考查了推理与论证能力. 19. 如图,在多面体中,矩形,矩形所在的平面均垂直于正方形所在ABCDEFG ADEF CDEG ABCD 的平面,且.2,3AB AF ==(1)求多面体的体积;ABCDEFG (2)求平面与平面所成锐二面角的余弦值.BFG ADEF【答案】(1)10(2【解析】【分析】(1)利用补形法和体积差减去三棱锥的体积即可;B FHG -(2)以为坐标原点,分别为轴正方向建立空间直角坐标系,求出平面与平A ,,AB AD AF ,,x y z BFG 面的法向量,,求出,并结合立体图形判定二面角为锐角,从ADEF 21,1,3m ⎛⎫=- ⎪⎝⎭()1,0,0n = ,m n 而进一步求出二面角余弦值即可.【小问1详解】平面,同理均与平面垂直,故可将多面体补成如图所示的,AF AD AF ⊥∴⊥ ABCD ,ED GC ABCD 长方体,此长方体体积为,三棱锥的体积为,故此ABCD FHGE -22312⨯⨯=B FHG -12323⨯⨯=多面体的体积为10;【小问2详解】以为坐标原点,分别为轴正方向建立空间直角坐标系,则A ,,AB AD AF ,,x y z ,()()()()()0,0,0,2,0,0,0,2,0,0,0,3,2,2,3A B D F G ,设平面的法向量为,()()2,0,3,2,2,0BF FG ∴=-= BFG (),,m x y z =则,令得, 230220x z x y -+=⎧⎨+=⎩1x =21,1,3m ⎛⎫=- ⎪⎝⎭ 又为正方形,,故平面,ABCD AB AD ∴⊥AB ⊥ADEF 为平面的一个法向量,()1,0,0n∴= ADEF ,cos ,m n ==故平面与平面BFG ADEF 20. 已知在平面直角坐标系中,椭圆的离心率为,过焦点的直xOy 2222:1(0)x y C a b a b+=>>12(1,0)F 线与椭圆交于两点.l ,A B (1)求椭圆的标准方程;C (2)从下面两个条件中任选其一作为已知,证明另一个成立:①;②直线的斜率满足:. 415=AB l k 214k =【答案】(1) 22143x y +=(2)答案见解析【解析】【分析】(1)由椭圆的性质求解,(2)联立直线与椭圆方程公式,由弦长公式与韦达定理化简求解,【小问1详解】依题意,有:,则,121c a c ⎧=⎪⎨⎪=⎩21a b c =⎧⎪=⎨⎪=⎩故椭圆的标准方程为:· 22143x y +=【小问2详解】选①作为已知:当直线斜率不存在时,与椭圆交点为,此时,不合题意, :1l x =3(1,2±41215=≠AB 当直线斜率存在时,设,联立,有:, :l y kx k =-22::143l y kx k x y C =-⎧⎪⎨+=⎪⎩2222(43)84120k x k x k +-+-=,22222(8)4(43)(412)169(1)∆=--+-=⋅+k k k k 则, 22211243+=-==⋅+k AB x k 令,则有:, 154AB =22221511220151616443+=⋅⇒+=++k k k k 解得, 214k =选②作为已知:依题意,,则直线, 12k =±1:(1)2=±-l y x 联立,有, ()22112:143y x x y C ⎧=±-⎪⎪⎨⎪+=⎪⎩242110x x --=,2(2)44(11)180∆=--⨯⨯-=则, 2154AB x =-==即 415=AB 21. 如图,在四棱柱中,底面是正方形,平面平面,1111ABCD A B C D -ABCD 11A ADD ⊥ABCD ,.2AD =11AA A D =(1)求证:; 1A D AB ⊥(2)若直线与平面,求的长度. AB 11A DC 1AA 【答案】(1)证明见解析(2)12AA =【解析】【分析】(1)利用面面垂直的性质可证得平面,再利用线面垂直的性质可证得结论成立; AB ⊥11AA D D (2)取的中点,连接,证明出平面,以点为坐标原点,、、AD O 1AO 1A O ⊥ABCD O AB AD 1OA 的方向分别为、、的正方向建立空间直角坐标系,设,其中,利用空间向量法可得x y z 1A O a =0a >出关于的方程,求出的值,即可求得棱的长.a a 1AA 【小问1详解】证明:因为四边形为正方形,则,ABCD AB AD ⊥因为平面平面,平面平面,平面, 11A ADD ⊥ABCD 11 A ADD ABCD AD =AB ⊂ABCD 平面,AB ∴⊥11AA D D 平面,所以,.1A D ⊂Q 11AA D D 1AB A D ⊥【小问2详解】解:取的中点,连接,AD O 1AO,为的中点,则,11AA A D = O AD 1A O AD ⊥因为平面平面,平面平面,平面, 11AA D D ⊥ABCD 11AA D D ⋂ABCD AD =1AO ⊂11AA D D 所以,平面,1A O ⊥ABCD 以点为坐标原点,、、的方向分别为、、的正方向建立如下图所示的空间直角坐标O AB AD 1OA x y z 系,设,其中,1A O a =0a>则、、、、,()0,1,0A -()2,1,0B -()10,0,A a ()12,2,C a ()0,1,0D ,,,()2,0,0AB = ()112,2,0A C =u u u u r ()10,1,A D a =- 设平面的法向量为,则,取,则, 11A C D (),,m x y z = 1112200m A C x y m A D y az ⎧⋅=+=⎪⎨⋅=-=⎪⎩ x a =(),,1m a a =-- 由题意可得cos ,AB m AB m AB m ⋅<>====⋅,解得,则.0a > a =12AA == 22. 已知以动点为圆心的与直线:相切,与定圆:相外切. P P A l 12x =-F A 221(1)4x y -+=(Ⅰ)求动圆圆心的轨迹方程;P C (Ⅱ)过曲线上位于轴两侧的点、(不与轴垂直)分别作直线的垂线,垂足记为、C x M N MN x l 1M ,直线交轴于点,记、、的面积分别为、、,且1N l x A 1AMM ∆AMN ∆1ANN ∆1S 2S 3S 22134S S S =,证明:直线过定点.MN 【答案】(Ⅰ);(Ⅱ)详见解析.24y x =【解析】【分析】(Ⅰ)根据题意,点到直线的距离与到的距离相等,由抛物线的定义可得解; P =1x -(1,0)F (Ⅱ)设、,用坐标表示、、,利用韦达定理,代入即得解. 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭1S 2S 3S 【详解】(Ⅰ)设,半径为,则,,所以点到直线的距离(,)P x y P A R 12R x =+1||2PF R =+P =1x -与到的距离相等,故点的轨迹方程为.(1,0)F P C 24y x =(Ⅱ)设,,则、 ()11,M x y ()22,N x y 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭设直线:()代入中得MN x ty n =+0t ≠24y x =2440y ty n --=,124y y t +=1240y y n =-<∵、 1111122S x y =+⋅3221122S x y =+⋅∴ 131********S S x x y y ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭ 12121122ty n ty n y y ⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭ ()22121211422t y y n t y y n n ⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2221144422nt t n n n ⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 221242t n n ⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦又212111222S n y y n =+⋅-=+∴ ()()22222211116164422S n t n n t n ⎛⎫⎛⎫=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭ 222222131114842222S S S nt n t n n n ⎛⎫⎛⎫=⇔=+⇔=+⇒= ⎪ ⎪⎝⎭⎝⎭∴直线恒过 MN 1,02⎛⎫ ⎪⎝⎭【点睛】本题考查了直线和抛物线综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.。
2023-2024学年四川省成都市校级联考高二(上)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知向量a =(1,1,2),b =(−3,2,0),则a +b 在a 上的投影向量为( )A. (32,32,322) B. (1510, 1510, 3010)C. (34,34,3 24) D. (−25,35, 25)2.平面直角坐标系内,与点A(1,1)的距离为1且与圆(x−1)2+(y−4)2=4相切的直线有( )A. 4条B. 3条C. 2条D. 0条3.设−A 、−B 分别是事件A 、B 的对立事件,P(A)>0,P(B)>0,则下列结论不正确的是( )A. P(A)+P(−A )=1B. 若A 、B 是互斥事件,则P(A ∩B)=P(A)P(B)C. P(A ∪−A )=1D. 若A 、B 是独立事件,则P(A ∩B)=P(A)P(B)4.如图,在平行六面体ABCD−A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°,则AC1⋅BD 1=( )A. 12B. 1C. 32D. 25.在样本频率分布直方图中共有9个小矩形,若其中1个小矩形的面积等于其他8个小矩形面积和的25,且样本容量为210,则该组的频数为( )A. 28B. 40C. 56D. 606.已知双曲线C :x 22−y 24=1的左、右焦点分别为F 1,F 2,过F 1作其中一条渐近线的垂线,垂足为P ,则|P F 2|为( )A.3B. 23C. 2D. 47.已知抛物线y 2=4x 的焦点为F ,其上有两点A ,B ,若AB 的中点为M ,满足MF 的斜率等于1,则|BF|的最大值是( )A. 7B. 8C. 5+23D. 108.半径为R 的光滑半球形碗中放置着4个半径为r 的质量相同的小球,且小球的球心在同一水平面上,今将另一个完全相同的小球至于其上方,若小球不滑动,则Rr 的最大值是( )A. 25+1B. 27+1C. 211+1D. 213+1二、多选题:本题共4小题,共20分。
四川省乐山市峨眉山第一中学2020年高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知全集,集合,集合,则集合为()A. B.C. D.参考答案:D.试题分析:先根据补集的定义知,,;然后由交集的定义知,.故应选D.考点:集合的基本运算.2. 下列函数中,在其定义域是减函数的是( )A. B. C. D.参考答案:【知识点】函数单调性的判断与证明. B3【答案解析】D 解析:A.该函数为二次函数,在其定义域上没有单调性;B.该函数为反比例函数,在其定义域上没有单调性;C.f(x)=,∴x<0时f(x)是增函数,即在其定义域上不是减函数;D.f(x)在定义域(﹣∞,2)上,x增大时,f(x)减小,所以该函数在其定义域上是减函数.故选D.【思路点拨】根据二次函数的单调性,反比例函数的单调性,指数函数的单调性,含绝对值函数的单调性,对数函数的单调性及单调性的定义即可找出正确的选项.3. 已知实数、满足,则目标函数的最大值是(A);(B);(C);(D).参考答案:C略4. 列四个函数中,在(0,1)上为增函数的是 ( )A. B. C. D.参考答案:B5. 复数等于()A.i B.-2i C.2i D.3-i参考答案:A6. 下列命题中,错误的是 ( )(A)一条直线与两个平行平面中的一个相交,则必与另一个平面相交(B)平行于同一平面的两个不同平面平行(C)如果平面不垂直平面,那么平面内一定不存在直线垂直于平面(D)若直线不平行平面,则在平面内不存在与平行的直线参考答案:D7. 函数在下列哪个区间上是增函数( ) A .(-∞,] B .[,+∞)C .[1,2]D .(-∞,-1]∪[2,+∞)参考答案:A 略8. 某流程如右图所示,现输入如下四个函数,则可以输出的函数是( )A .B .C .D .参考答案: D9. 若复数,复数是z 的共轭复数,则=( )A .﹣2iB .﹣2C .iD .2参考答案:A【考点】复数代数形式的乘除运算.【分析】由已知求得,代入整理得答案.【解答】解:∵,∴,∴=,故选:A .10. 实数x ,y 满足,则的最小值为3,则实数b 的值为A .B .—C .D .—参考答案:二、 填空题:本大题共7小题,每小题4分,共28分11. 的展开式中的系数是 (用数字作答).参考答案: 36展开式的通项为,由,得,所以,所以的系数是36.12. 如图,在△ABC 中,已知B=,D 是BC 边上一点,AD=10,AC=14,DC=6,则AB= .参考答案:5【考点】余弦定理.【专题】计算题;转化思想;分析法;三角函数的求值;解三角形. 【分析】根据余弦定理弦求出C 的大小,利用正弦定理即可求出AB 的长度. 【解答】解:∵AD=10,AC=14,DC=6,∴由余弦定理得cosC===,∴sinC==,由正弦定理得, 即AB==5,故答案为:5.【点评】本题主要考查解三角形的应用,利用余弦定理和正弦定理是解决本题的关键,要求熟练掌握相应的公式.13. 函数y=的定义域是 .参考答案:(﹣∞,﹣3)∪(﹣3,﹣1]∪[4,+∞)【考点】函数的定义域及其求法. 【专题】计算题.【分析】让被开方数为非负数,故x 2﹣3x ﹣4≥0;分母不为0,故|x+1|﹣2≠0,联解不等式组即可求出自变量x 的取值范围,最后将其定数集合的形式.【解答】解:由题意得:?所以自变量x 的范围是:x≤﹣1且x≠﹣3,或x≥4 故答案为:(﹣∞,﹣3)∪(﹣3,﹣1]∪[4,+∞).【点评】本题考查函数有意义时自变量的取值范围,属于基础题.具体考查的知识点为:分式有意义时分母不为0;二次根式的被开方数是非负数,注意根据相应的范围决定取值的取舍.14. 已知复数满足,则= ;参考答案:1 略15. 从中随机选取一个数,从中随机选取一个数,则关于的方程有两个虚根的概率是 ▲ .参考答案:略16. 点A ,B 是抛物线上的两点,F 是拋物线C 的焦点,若,AB 中点D 到抛物线C 的准线的距离为d ,则的最大值为 .参考答案:设,,则,,∴,当且仅当时取等号.17. 如图,在直角梯形ABCD 中,已知BC∥AD,AB⊥AD,AB =4,BC =2,AD =4,若P 为CD 的中点,则的值为________.参考答案:建立坐标系,应用坐标运算求数量积.以点A 为坐标原点,AD 、AB 所在直线为x 、y 轴建立平面直角坐标系,则A(0,0),B(0,4),C(2,4),D(4,0),P(3,2),所以=(-3,-2)·(-3,2)=5.三、 解答题:本大题共5小题,共72分。
2024届峨眉山市高二上数学期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若直线a 不平行于平面α,则下列结论正确的是()A.α内的所有直线均与直线a 异面 B.直线a 与平面α有公共点C.α内不存在与a 平行的直线 D.α内的直线均与a 相交2.已知0,0a b >>,则“114a b a b +++=”是“11()4a b a b ⎛⎫++= ⎪⎝⎭”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知椭圆1C :()2211221110x y a b a b +=>>与双曲线2C :()2222222210x y a b a b -=>>有相同的焦点1F 、2F ,椭圆1C 的离心率为1e ,双曲线2C 的离心率为2e ,点P 为椭圆1C 与双曲线2C 的交点,且123F PF π∠=,则1223e e +的最大值为()B.C.D.4.过双曲线22221x y a b-=(0a >,0b >)的左焦点F 作圆O :222x y a +=的两条切线,切点分别为A ,B ,双曲线的左顶点为C ,若120ACB ∠=︒,则双曲线的渐近线方程为()A.y =B.y =C.y =D.33y x =±5.在空间直角坐标系下,点()3,6,2M -关于y 轴对称的点的坐标为()A.()3,6,2- B.()3,6,2---C.()3,6,2- D.()3,6,2--6.函数()y f x =是偶函数且在(],0-∞上单调递减,()20f -=,则()230f x ->的解集为()A.()3,0,4⎛⎫-∞+∞ ⎪⎝⎭B.30,4⎛⎫⎪⎝⎭C.40,3⎛⎫ ⎪⎝⎭ D.()4,0,3⎛⎫-∞+∞⎪⎝⎭7.过点()1,1P -且垂直于:210l x y -+=的直线方程为()A.210x y ++= B.210x y +-=C.230x y --= D.230x y -+=8.设函数()f x 在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图象可能为()A. B.C. D.9.曲线2()e 25x f x x x =+--在0x =处的切线的倾斜角是()A.56πB.23πC.4π D.34π10.已知函数()2ln f x x ax =+,那么“0a >”是“()f x 在()0,+¥上为增函数”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件11.已知直线:60l x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则CD =A.2B.3C.72D.412.函数()x f x e =,则曲线()y f x =在点(0,(0))f 处的切线方程为()A.y x =B.e y x =+C.e 1y x =+ D.1y x =+二、填空题:本题共4小题,每小题5分,共20分。
四川省成都市西南交通大学附属中学2021-2022学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在数列{a n}中,a1=,a n+1=1﹣,则a10=()A.2 B.3 C.﹣1 D.参考答案:D【分析】由a1=,a n+1=1﹣,可得a n+3=a n.即可得出.【解答】解:∵a1=,a n+1=1﹣,∴a2=1﹣2=﹣1,同理可得:a3=2,a4=,…,∴a n+3=a n.∴a10=a3×3+1=a1=.故选:D.2. 如图,它表示电流在一个周期内的图象,则的解析式为A. B.C. D.参考答案:A略3. 已知定义域为R的函数f(x)在区间(8, +∞)上为减函数,且函数y= f(x+8)为偶函数,则A. f(6)> f(7)B. f(6)> f(9)C. f(7)> f(9)D. f(7)> f(10)参考答案:D略4. 设集合,,则A∪B等于()A.{3} B.{3,4} C.{1,2,3} D.{1,2,3,4}参考答案:D5. 把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()A 、一条线段B 、一段圆弧C 、圆上一群孤立点 D、一个单位圆参考答案:D6. 已知函数,则下列结论不正确的是()A. 2π是f(x)的一个周期B.C. f(x)的值域为RD. f(x)的图象关于点对称参考答案:B【分析】利用正切函数的图像和性质对每一个选项逐一分析得解.【详解】A.的最小正周期为,所以是的一个周期,所以该选项正确;B. 所以该选项是错误的;C. 的值域为R,所以该选项是正确的;D. 的图象关于点对称,所以该选项是正确的.故选:B【点睛】本题主要考查正切函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于基础题.7. sin330°=( )A. B. – C. D. –参考答案:Bsin330°=sin(270°+60°)=–cos60°=–.故选B.8. (4分)函数y=的图象大致是()A.B.C.D.参考答案:A考点:函数的图象.专题:计算题;作图题;函数的性质及应用.分析:法一:作函数y=的图象,从而判断;法二:利用排除法,利用选项中易于判断的不同点求解.解答:(法一):作函数y=的图象如下,故选A;(法二):利用排除法,∵2x﹣1≠0,∴x≠0;故排除C;当x<0时,x2>0,2x﹣1<0;故y<0;故排除B;再由当x→+∞时,→0;故排除D;故选A.点评:本题考查了函数图象的作法与应用,属于中档题.9. 已知全集U=R ,集合A={x|x+1<0},B={x|x ﹣3<0},那么集合(?U A )∩B=( ) A .{x|﹣1≤x<3}B .{x|﹣1<x <3}C .{x|x <﹣1}D .{x|x >3}参考答案:A【考点】交、并、补集的混合运算.【分析】先对两个集合进行化简,再根据集合运算的性质求集合(C U A )∩B 【解答】解:A={x|x+1<0}=(﹣∞,﹣1),B={x|x ﹣3<0}=(﹣∞,3), ∴C U A=[﹣1,+∞) ∴(C U A )∩B=[﹣1,3) 故选A10. 计算等于 ( ) A.B.C.D.1参考答案: D 略二、 填空题:本大题共7小题,每小题4分,共28分11. 在直角坐标系中,下列各语句正确的是第一象限的角一定是锐角;⑵终边相同的角一定相等;⑶相等的角,终边一定相同;⑷小于90°的角一定是锐角;⑸象限角为钝角的终边在第二象限;⑹终边在直线上的象限角表示为k 360°+60°,.参考答案:⑶⑸ 略12. 已知某等差数列共有10项,若奇数项和为15,偶数项和为30,则公差为参考答案:313. 已知a >0,则的最小值是参考答案:试题分析:,当且仅当时等号成立取得最小值考点:不等式性质14. (5分)函数f (x )=log 2x ,则f (3)+f ()= .参考答案:3考点: 函数的值. 专题: 函数的性质及应用.分析: 直接利用函数的解析式,求解函数值即可.解答: 函数f (x )=log 2x ,则f (3)+f ()=log 23+log 2=log 23+log 28﹣log 23=3. 故答案为:3.点评: 本题考查函数值的求法,对数的运算法则的应用,考查计算能力.15. 设,则的值域是参考答案:解析:。
一、填空题(每小题2分,共20分)1. 0,2.21,3. t −,4. 4,5. )41 0(]41 0[,或,,6. (0, 2), 6. C x x ++arctan 3)1(分给缺C ,8. 0,9. 34−,10. 23.二、试解下列各题(每小题6分,共24分)1. xx x x x x 4sin 3553lim 22++=∞→原式 2分 444sin 3553lim20⋅⋅++=→xx x x x 4分 5124153=⋅⋅=6分 2. )1(sin )]1sin(sin ['⋅−='xx y 2分)1(1cos )]1sin(sin ['⋅−=xx x 3分x x x 1cos )1sin(sin 12=4分dx x x x dx y dy 1cos )1sin(sin 12='= 6分3. x x x d )111(22+−=⎰原式 1分 dx x dx x dx x ⎰⎰⎰+−++=21)1111(21 3分 .111ln 21C xx x +−−+= 6分 dx xx⎰+=422cos 2cos 1 4.π原式 2分⎰+=42)1(sec 21πdx x 3分40)(tan 21πx x += 5分 821π+= 6分三、试解下列各题(每小题7分,共28分)42021lim 1.x e x x x −→−−=原式 2分30422lim 2x xe x x x −→+−= 4分 22012422lim 22x e x e x x x −−→−+−= 5分x e x xe x x x 24812lim 2230−−→+−= 6分21−= 7分)(02/1 4422x x x e x ++−=−或用泰勒公式3分, 答案2分2. )(x df x ⎰=原式 1分dx x f x xf ⎰−=)()( 3分C xxx x x +−'=ln )ln ( 5分 C xx+−=ln 21 7分 分给求出注:2 ln 1)ln ()( xxx x x f −='= 1 2 1 0 1 3.==−====−t x t x dt dx t x 时,,时,且,则,令 1分 dt t f ⎰−=11 )(原式 2分dt tdt e t ⎰⎰+++=−1 0 01 11 114分 1001)1ln()]1ln([t e t t +++−=− 6分)1ln(e += 7分⎪⎩⎪⎨⎧<+≥=−−1 111 1)1(1x e x x x f x ,,或 2分 dx xdx e x ⎰⎰−+=2 1 10 1111+原式 4分下面同上}2 1 2{ }1 1 1{ 4.21−=−=,,,,,两平面的法向量为n n 1分所求直线的方向向量2111−−=kj s 2分}3 4 1{,,= 4分334112−=+=−z y x 对称式方程为6分 ⎪⎩⎪⎨⎧+=+−=+= 3341 2t z t y t x 参数方程为 7分四、应用题(每小题7,共21分)分 其体积为 则圆柱体的底面半径,设内接圆柱体的高为3 20)4()2( 1.2222R h h R h V hR r h <<−=−=π分4 )43(22h R V −='πR h V 3320=='得:唯一驻点 令 5分 023<−=''h V π又,圆柱体体积最大时故当,332R h = 7分dx x x dx x x V ⎰⎰−+−=2422422)cos (sin )sin (cos 2.πππππ3分dx x dx x ⎰⎰−=2442cos 2cos πππππ4分2442sin 22sin 2πππππxx−=5分π= 7分)1(3d 3.12 C x x y y +=''='⎰1分232632−==−x y y x 得又由 2分 得 代入)1(32)2,0(='∴−y 3分 '=+y x 332 4分23232d )323(C x x x x y ++=+=∴⎰5分.2322)2,0(31−+=∴−=−x x y C ,代入得再将 7分。
《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x =(C )()f x x = 和 ()()2g x x =(D )()||x f x x= 和 ()g x =1 2.函数()()sin 420ln 10x x f x x a x ⎧+-≠⎪=+⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f - 二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2.33- 3. 2 4.arctan ln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②22ln ||x a x C -++ ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc + ②()22ln x a x c +++ ③()222x x x e c -++ 四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7.20_______________________.x td e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+ 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五.sin 1,122dy dy tt t y dxdx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰由10,0y x C ==⇒=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d = 6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ).A 、2sinx B 、 2sin x - C 、 C x +2sin D 、2sin 2x - 7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C x x++-2ln 18、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=* 二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y s i n ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积. 2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x c o s l i m 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C e x+sin B 、C x e x +cos sin C 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x 二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x ;5、微分方程 023=+'-''y y y 的通解是 . 三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ; 2、求 x x y arccos 12-= 的导数;第 11 页 3、求函数21x xy -=的微分;4、求不定积分⎰+dx x xln 21 ; 5、求定积分 ⎰ee dx x 1ln ;6、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、x e x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、x x e C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e- ; 6、x e x y 122-= ; 四、1、29 ; 2、图略。