数学人教版八年级上册13.4课题学习 最短路径问题
- 格式:ppt
- 大小:1.05 MB
- 文档页数:9
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】课本P85页问题1练习、如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址【例2】P86页问题2【课堂检测】课本P93页、15题。
13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
13.4课题学习
最短路径问题请你在以下日常情境中,为牧民设计最短行动路线,并说明你利用了什么原理?
情境1:牧民从蒙古包出发,将马群赶到A 处放牧
作图:原理:。
情境2:牧马人从A 地出发,到一条笔直的河边l 处饮马
作图:
原理:。
情境3:牧马人从A 地出发,到一条笔直的河边l 饮马,然后骑马趟过河到B 地(河的宽度可忽略)。
作图:原理:。
情境4:傍晚,牧马人从的什么地方饮马,可使所走的路径最短?
追问:如何说明所做路径最短?
数学
问题数学
问题数学
问题
(1)(2)
情境5:如图,A为马厩,牧马人某一天要把马从马厩牵出,先到草地边某一处牧马,再到河边饮马,然后回到马厩.请你帮他确定这一天的最短路线.
数学
问题
知识迁移
2.如图,∠AOB=30°,P是∠AOB内任意一点,OP=3cm,M,N分别是射线OA和射线OB上的动点,则△PMN 周长的最小值是cm.
拓展提升
情境6:如图,牧人从A地出发,到一条笔直的河边l饮马,然后再到草地去喂马,最后返回到B地,牧人饮马,喂马,要如何行走,可使所走的路径最短?。