2017_2018学年高中数学第二章圆锥曲线与方程2.1曲线与方程学案含解析新人教A版选修2_120
- 格式:doc
- 大小:758.00 KB
- 文档页数:10
高二数学圆锥曲线与方程试题答案及解析1.过抛物线的焦点的一直线交抛物线于两点,若线段的长为,则线段的长为 .【答案】【解析】根据题意,由于抛物线,可知焦点为(1,0),准线x=-1,则由于过抛物线的焦点的一直线交抛物线于两点,那么可知线段的长为,,那么设出直线PQ:y=k(x-1)与联立方程组得到,则可知=,故答案为【考点】抛物线的定义点评:解决的关键是理解抛物线定义中抛物线上点到焦点的距离等于到其准线的距离。
属于基础题。
2.已知动圆M与直线y =2相切,且与定圆C:外切,求动圆圆心M的轨迹方程.【答案】.【解析】设动圆圆心为M(x,y),半径为r,由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C(0,-3)为焦点,以y=3为准线的一条抛物线,其方程为.【考点】本题主要考查直线与圆的去位置关系,抛物线的定义,抛物线的标准方程。
点评:简单题,利用数形结合的方法,认识到“M到C(0,-3)的距离与到直线y=3的距离相等”,从而可利用抛物线的定义进一步求标准方程。
此乃常用方法。
3.双曲线的焦距为【答案】【解析】根据已知等轴双曲线,可知a=b=1,那么结合=2,因此可知其焦距2c的值为,故答案为。
【考点】本试题考查了双曲线的性质。
点评:解决该试题的关键是对于双曲线的方程中a,,b的求解,然后借助于平方关系式,得到结论,属于基础题。
4.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为__________ 。
【答案】【解析】设A、B的横坐标分别是m、n,由抛物线定义,得=m++n+= m+n+=3,故m+n=,,故线段AB的中点到y轴的距离为【考点】本题考查了抛物线的性质点评:抛物线的定义是解决抛物线的距离问题的常见方法5.设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率;(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.【答案】(1);(2);(3),0),由(c,0),A(0,b),知【解析】(1)设Q(x,由 ,可知为中点.从而得到,,进一步计算可求出记心率的值.(2)由⑴知,可求出△AQF的外接圆圆心为(-,0),半径r=|FQ|=,所以再利用圆心到直线l的距离等于半径a,可得到关于a的方程解出a值,从而得到椭圆C的方程.(3) 设,平行四边形是菱形可转化为,,所以,则,然后直线MN与椭圆方程联立,消y,再借助韦达定理来解决即可.,0),由(c,0),A(0,b)解:(1)设Q(x知,由于即为中点.故,故椭圆的离心率(4 分)(2)由⑴知得于是(,0) Q,△AQF的外接圆圆心为(-,0),半径r=|FQ|=所以,解得=2,∴c =1,b=,所求椭圆方程为(8 分)(3)由(Ⅱ)知:代入得设,则,(10分)由于菱形对角线垂直,则故则(12分)由已知条件知且故存在满足题意的点P且的取值范围是.(13分)6.设是三角形的一个内角,且,则方程表示的曲线是焦点在 _轴上的__ (填抛物线、椭圆、双曲线的一种)【答案】y、椭圆【解析】因为,所以,两边平方得:,因为是三角形的一个内角,所以,,所以。
第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程 2.1.2求曲线的轨迹方程一、教学目标(一)知识教学点使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.二、教材分析1.重点:求动点的轨迹方程的常用技巧与方法.(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法.(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)教具准备:与教材内容相关的资料。
教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.三、教学过程学生探究过程:(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,。
2.1曲线与方程[提出问题]在平面直角坐标系中:问题1:直线x=5上的点到y轴的距离都等于5,对吗?提示:对.问题2:到y轴的距离都等于5的点都在直线x=5上,对吗?提示:不对,还可能在直线x=-5上.问题3:到y轴的距离都等于5的点的轨迹是什么?提示:直线x=±5.[导入新知]曲线的方程、方程的曲线在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:①曲线上点的坐标都是这个方程的解;②以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.[化解疑难]“纯粹性”与“完备性”(1)定义中的关系①说明曲线上任何点的坐标都满足方程,即曲线上所有的点都符合这个条件而无例外,这是轨迹的“纯粹性”.(2)定义中的关系②说明符合条件的所有点都在曲线上而无遗漏,这是轨迹的“完备性”.在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A点的距离是多少?提示:|PA|=(x-2)2+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:(x-2)2+y2=(x+2)2+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.[导入新知]求曲线的方程的步骤[化解疑难]1.步骤(1)中“建立适当的坐标系”指坐标系建立的要恰当、合理.如定点作为原点,互相垂直的直线作为坐标轴等.合理地建立坐标系,能使运算更方便.2.步骤(2)可以不必写出,也就是说可以根据等量关系列出方程,即(2)(3)步合并.3.步骤(5)没有特殊情况可以省略不写.如有特殊情况,可以适当的说明,缺少的补上,多余的剔除.[例(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两坐标轴夹角平分线上的点与方程x+y=0之间的关系.[解](1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5;但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy =5.(3)第二、四象限两坐标轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两坐标轴夹角的平分线上.因此,第二、四象限两坐标轴夹角平分线上的点的轨迹方程是x +y =0.[类题通法]这类题目主要是考查“曲线的方程与方程的曲线”的定义中所列的两个条件,正好组成两个集合相等的充要条件,二者缺一不可.这就是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.[活学活用]命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( )A .方程f (x ,y )=0的曲线是CB .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上解析:选B “曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A ,C ,D 都不正确,B 正确.[例2] (1)(x +y -1)x -1=0; (2)4x 2-y 2+6x -3y =0.[解] (1)由方程(x +y -1)x -1=0,可得⎩⎪⎨⎪⎧x -1≥0,x +y -1=0或x -1=0, 即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1. (2)方程可化为(2x -y )(2x +y +3)=0, 即2x -y =0或2x +y +3=0.故原方程表示的是两条直线2x -y =0和2x +y +3=0.[类题通法]判断方程表示什么曲线,常需对方程进行变形,如配方、因式分解或利用符号法则、基本常识转化为熟悉的形式,然后根据化简后的特点判断.特别注意,方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线.另外,当方程中含有绝对值时,常采用分类讨论的思想.[活学活用]已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M ⎝⎛⎭⎫m2,-m 在此方程表示的曲线上,求m 的值. 解:(1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10, ∴点P 在方程x 2+(y -1)2=10表示的曲线上, 点Q 不在方程x 2+(y -1)2=10表示的曲线上. (2)x =m2,y =-m 适合方程x 2+(y -1)2=10,即⎝⎛⎭⎫m 22+(-m -1)2=10,解得m =2或m =-185.所以m 的值为2或-185.[例3] 过点P 121A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.[解] 法一:设点M 的坐标为(x ,y ). ∵M 为线段AB 的中点.∴A 点坐标是(2x,0),B 点坐标是(0,2y ). ∵l 1,l 2均过点P (2,4),且l 1⊥l 2, ∴PA ⊥PB ,当x ≠1时,k PA ·k PB =-1. 而k PA =4-02-2x =21-x ,k PB =4-2y 2-0=2-y 1,∴21-x ·2-y1=-1, 整理,得x +2y -5=0(x ≠1).当x =1时,A ,B 点的坐标分别为(2,0),(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0, 综上所述,点M 的轨迹方程是x +2y -5=0.法二:设点M 的坐标为(x ,y ),则A ,B 两点坐标分别是(2x,0),(0,2y ),连接PM . ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM |=(x -2)2+(y -4)2,|AB |=(2x )2+(2y )2, ∴2(x -2)2+(y -4)2=4x 2+4y 2.化简,得x +2y -5=0,即为所求轨迹方程. [类题通法]直接法、定义法、代入法是求轨迹方程(或轨迹)的常用方法,对于此类问题,在解题过程中,最容易出错的环节是求轨迹方程中自变量的取值范围,一定要慎重分析和高度重视.[活学活用]已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 的中点Q 的轨迹方程. 解:法一(直接法):如图所示,连接QC ,因为Q 是OP 的中点,所以∠OQC =90°. 设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+x 2+(y -3)2=9,所以OP 的中点Q 的轨迹方程为x 2+⎝⎛⎭⎫y -322=94(去掉原点).法二:(定义法):如图所示,因为Q 是OP 的中点, 所以∠OQC =90°,则Q 在以OC 为直径的圆上. 故Q 点的轨迹方程为x 2+⎝⎛⎭⎫y -322=94(去掉原点). 法三:(代入法):设P (x 1,y 1),Q (x ,y ),由题意得⎩⎨⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y . 又因为x 21+(y 1-3)2=9,所以4x 2+4⎝⎛⎭⎫y -322=9,即x 2+⎝⎛⎭⎫y -322=94(去掉原点).2.求轨迹方程[典例] (12分)在Rt △ABC 中,斜边长是定长2a (a >0),求直角顶点C 的轨迹方程.[解题流程][活学活用]已知线段AB 在直线y =-2上移动,|AB |=4,O 为坐标原点.求△AOB 的外心M 的轨迹方程.解:∵点A ,B 在直线y =-2上,且|AB |=4, 故设A (x 1,-2),B (x 1+4,-2),∴直线OA 的垂直平分线为y =x 12⎝⎛⎭⎫x -x 12-1,直线AB 的垂直平分线为x =x 1+2. 联立⎩⎪⎨⎪⎧y =x 12⎝⎛⎭⎫x -x 12-1,x =x 1+2, 消去x 1,得x 2=4(y +2). 故M 的轨迹方程为x 2=4(y +2).[随堂即时演练]1.方程x 2+xy =x 表示的曲线是( ) A .一个点 B .一条直线C .两条直线D .一个点和一条直线解析:选C由x2+xy=x,得x(x+y-1)=0,即x=0或x+y-1=0.由此知方程x2+xy=x表示两条直线.2.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所围成的图形的面积等于()A.π B.4πC.8π D.9π解析:选B设P(x,y),由|PA|=2|PB|,得(x+2)2+y2=2(x-1)2+y2,整理得x2-4x+y2=0,即(x-2)2+y2=4.所以点P的轨迹是以(2,0)为圆心,2为半径的圆,则其面积是22·π=4π.3.若点P(2,-3)在曲线x2-ky2=1上,则实数k=________.解析:将点P(2,-3)代入曲线方程得4-9k=1,∴k=1 3.答案:1 34.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则动点P的轨迹方程是________________.解析:圆(x-1)2+y2=1的圆心为点B(1,0),半径r=1,则|PB|2=|PA|2+r2.∴|PB|2=2.∴P的轨迹方程为(x-1)2+y2=2.答案:(x-1)2+y2=25.一个动点到直线x=8的距离是它到点A(2,0)的距离的2倍,求动点的轨迹方程.解:设动点坐标为(x,y),则动点到直线x=8的距离为|x-8|,到点A的距离为(x-2)2+y2.由已知,得|x-8|=2(x-2)2+y2,化简得3x2+4y2=48.所以动点的轨迹方程为3x2+4y2=48.[课时达标检测]一、选择题1.已知直线l:x+y-3=0及曲线C:(x-3)2+(y-2)2=2,则点M(2,1)()A.在直线l上,但不在曲线C上B.在直线l上,也在曲线C上C.不在直线l上,也不在曲线C上D.不在直线l上,但在曲线C上解析:选B 将点M (2,1)的坐标代入方程知M ∈l ,M ∈C . 2.曲线y =14x 2与x 2+y 2=5的交点坐标是( )A .(2,1)B .(±2,1)C .(2,1)或(25,5)D .(±2,1)或(±25,5)解析:选B 将x 2=4y 代入x 2+y 2=5,得y 2+4y -5=0,得(y +5)(y -1)=0,解得y =-5或y =1,y =-5不符合题意,舍去,∴y =1,则x 2=4,解得x =±2.3.方程x +|y -1|=0表示的曲线是( )解析:选B 方程x +|y -1|=0可化为|y -1|=-x ≥0,则x ≤0,因此选B.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN ―→|·|MP ―→|+MN ―→·NP ―→=0,则动点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:选B 设点P 的坐标为(x ,y ),则MN ―→=(4,0),MP ―→=(x +2,y ),NP ―→=(x -2,y ), ∴|MN ―→|=4,|MP ―→|=(x +2)2+y 2,MN ―→·NP ―→=4(x -2). 根据已知条件得4 (x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x .5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0D .4x -3y +16=0或4x -3y -24=0 解析:选B 由两点式,得直线AB 的方程是 y -04-0=x +12+1,即4x -3y +4=0, 线段AB 的长度|AB |=(2+1)2+42=5. 设点C 的坐标为(x ,y ), 则12×5×|4x -3y +4|5=10, 即4x -3y -16=0或4x -3y +24=0. 二、填空题6.方程x 2+2y 2-4x +8y +12=0表示的图形为________. 解析:对方程左边配方得(x -2)2+2(y +2)2=0. ∵(x -2)2≥0,2(y +2)2≥0,∴⎩⎪⎨⎪⎧(x -2)2=0,2(y +2)2=0, 解得⎩⎪⎨⎪⎧x =2,y =-2.从而方程表示的图形是一个点(2,-2). 答案:一个点(2,-2)7.已知两点M (-2,0),N (2,0),点P 满足PM ―→·PN ―→=12,则点P 的轨迹方程为____________.解析:设P (x ,y ),则PM ―→=(-2-x ,-y ),PN ―→=(2-x ,-y ). 于是PM ―→·PN ―→=(-2-x )(2-x )+y 2=12, 化简得x 2+y 2=16,此即为所求点P 的轨迹方程. 答案:x 2+y 2=168.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________________.解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20+1. 又因为M 为AB 的中点, 所以⎩⎨⎧x =0+x02,y =y 0-12,即⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1, 将其代入y 0=2x 20+1得,2y +1=2(2x )2+1,即y =4x 2.答案:y =4x 2三、解答题9.在平面直角坐标系中,已知动点P (x ,y ),PM ⊥y 轴,垂足为M ,点N 与点P 关于x 轴对称,且OP ―→·MN ―→=4,求动点P 的轨迹方程.解:由已知得M (0,y ),N (x ,-y ),则MN ―→=(x ,-2y ), 故OP ―→·MN ―→=(x ,y )·(x ,-2y )=x 2-2y 2. 依题意知x 2-2y 2=4,因此动点P 的轨迹方程为x 2-2y 2=4.10.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ ―→=OM ―→+ON ―→,求动点Q 的轨迹.解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0). 因为OQ ―→=OM ―→+ON ―→,即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),则x 0=x ,y 0=y 2.又因为点M 在圆C 上,所以x 20+y 20=4,即x 2+y 24=4(y ≠0).所以动点Q 的轨迹方程是x 24+y 216=1(y ≠0).。
高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。
解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。
3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。
利用“点差法”求弦的斜率,由点斜式写出方程。
故选B。
4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。
【考点】本题主要考查抛物线的定义、标准方程、几何性质。
点评:熟记抛物线的标准方程及几何性质。
5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。
【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。
点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。
第1课时 椭圆的简单几何性质[A 基础达标]1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5、3、0.8 B .10、6、0.8 C .5、3、0.6D .10、6、0.6解析:选B.把椭圆的方程写成标准形式为x 29+y 225=1,知a =5,b =3,c =4.所以2a =10,2b =6,ca=0.8.2.一椭圆的短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则该椭圆的标准方程是( )A.x 216+y 29=1或x 29+y 216=1 B.x 225+y 29=1或y 225+x 29=1 C.x 225+y 216=1或y 225+x 216=1 D .椭圆的方程无法确定解析:选C.由题可知,a =5且c =3,所以b =4, 所以椭圆方程为x 225+y 216=1或y 225+x 216=1.3.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( )A.x 24+y 216=1或x 216+y 24=1B.x 24+y 216=1 C.x 216+y 24=1 D.x 216+y 220=1 解析:选C.由已知a =4,b =2,椭圆的焦点在x 轴上,所以椭圆方程是x 216+y 24=1.故选C.4.已知焦点在x 轴上的椭圆:x 2a2+y 2=1,过焦点作垂直于x 轴的直线交椭圆于A ,B两点,且|AB |=1,则该椭圆的离心率为( )A.32B.12C.154D.33解析:选A.椭圆的焦点坐标为(±a 2-1,0),不妨设A ⎝ ⎛⎭⎪⎫a 2-1,12,可得a 2-1a 2+14=1,解得a =2,椭圆的离心率为e =a 2-1a =32.故选A.5.已知F 1,F 2是椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点,若存在点P 为椭圆上一点,使得∠F 1PF 2=60°,则椭圆离心率e 的取值X 围是( )A.⎣⎢⎡⎭⎪⎫22,1 B.⎝ ⎛⎭⎪⎫0,22 C.⎣⎢⎡⎭⎪⎫12,1 D.⎣⎢⎡⎭⎪⎫12,22 解析:选C.在△PF 1F 2中,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,得(2c )2=m 2+n 2-2mn cos 60°,配方得(m +n )2-3mn =4c 2,所以3mn =4a 2-4c 2,所以4a 2-4c 2=3mn ≤3·⎝ ⎛⎭⎪⎫m +n 22=3a 2,即a 2≤4c 2,故e 2=c 2a 2≥14,解得12≤e <1.故选C.6.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________. 解析:依题意得椭圆的焦点坐标为(0,5),(0,-5),故c =5,又2b =45,所以b =25,a 2=b 2+c 2=25,所以所求椭圆方程为x 220+y 225=1.答案:x 220+y 225=17.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的标准方程为________.解析:设椭圆的长半轴长为a ,由2a =12知a =6. 又e =c a =32,故c =33, 所以b 2=a 2-c 2=36-27=9.所以椭圆标准方程为x 236+y 29=1.答案:x 236+y 29=18.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点.已知点P (a ,b ),△F 1PF 2为等腰三角形,则椭圆的离心率e =________.解析:设F 1(-c ,0),F 2(c ,0)(c >0),由题意得|PF 2|=|F 1F 2|,即(a -c )2+b 2=2c .把b 2=a 2-c 2代入,整理得2⎝ ⎛⎭⎪⎫c a 2+ca-1=0,解得c a =-1(舍去)或c a =12.所以e =c a =12.答案:129.求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)短轴的一个端点与两焦点组成一个正三角形,且焦点到长轴上同侧顶点的距离为3.解:(1)由题意知,2c =8,c =4,所以e =c a =4a =12,所以a =8,从而b 2=a 2-c 2=48,所以椭圆的标准方程是y 264+x 248=1.(2)由已知⎩⎨⎧a =2c ,a -c =3,所以⎩⎨⎧a =23,c = 3.从而b 2=9,所以所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1. 10.如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.解:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).如题图所示,则有F 1(-c ,0),F 2(c ,0),A (0,b ),B (a ,0),直线PF 1的方程为x =-c ,代入方程x 2a 2+y 2b2=1,得y =±b 2a ,所以P ⎝⎛⎭⎪⎫-c ,b 2a . 又PF 2∥AB , 所以△PF 1F 2∽△AOB .所以|PF 1||F 1F 2|=|AO ||OB |,所以b 22ac =ba,所以b =2c .所以b 2=4c 2,所以a 2-c 2=4c 2,所以c 2a 2=15.所以e =c a =55. [B 能力提升]11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:选C.由题意得F (-1,0),设点P (x 0,y 0),则y 20=3⎝ ⎛⎭⎪⎫1-x 204(-2≤x 0≤2), OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14(x 0+2)2+2,当x 0=2时,OP →·FP →取得最大值为6.12.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:由题意得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),则由∠BFC =90°得BF →·CF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2·⎝ ⎛⎭⎪⎫c -32a ,-b 2=c 2-⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫-b 22=0⇒3c 2=2a 2⇒e =63.答案:6313.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有|OA |=|OF 2|,即b =c . 所以a =2c ,e =c a =22. (2)由题意知A (0,b ),F 1(-c ,0),F 2(c ,0). 其中,c =a 2-b 2,设B (x ,y ). 由AF 2→=2F 2B →⇔(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝ ⎛⎭⎪⎫3c2,-b 2.将B 点坐标代入x 2a 2+y 2b2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1, 解得a 2=3c 2.①又由AF 1→·AB →=(-c ,-b )·⎝ ⎛⎭⎪⎫3c2,-3b 2=32⇒b 2-c 2=1,即有a 2-2c 2=1.②由①②解得c 2=1,a 2=3, 从而有b 2=2.所以椭圆方程为x 23+y 22=1.14.(选做题)已知椭圆x 2+y 2b2=1(0<b <1)的左焦点为F ,左、右顶点分别为A ,C ,上顶点为B ,过F ,B ,C 三点作⊙P ,且圆心在直线x +y =0上,求此椭圆的方程.解:设圆心P 的坐标为(m ,n ),因为圆P 过点F ,B ,C 三点,所以圆心P 既在FC 的垂直平分线上,也在BC 的垂直平分线上,FC 的垂直平分线方程为x =1-c2.① 因为BC 的中点为⎝ ⎛⎭⎪⎫12,b 2, k BC =-b ,所以BC 的垂直平分线方程为y -b 2=1b ⎝⎛⎭⎪⎫x -12②由①,②联立,得x =1-c 2,y =b 2-c2b ,即m =1-c 2,n =b 2-c2b.因为P (m ,n )在直线x +y =0上, 所以1-c 2+b 2-c2b =0,可得(1+b )(b -c )=0, 因为1+b >0,所以b =c ,结合b 2=1-c 2得b 2=12,所以椭圆的方程为x 2+y 212=1,即x 2+2y 2=1.。
第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。
2018年秋高中数学第二章圆锥曲线与方程2.2 双曲线2.2.1 双曲线及其标准方程学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋高中数学第二章圆锥曲线与方程2.2 双曲线2.2.1 双曲线及其标准方程学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋高中数学第二章圆锥曲线与方程2.2 双曲线2.2.1 双曲线及其标准方程学案新人教A版选修1-1的全部内容。
2.2.1 双曲线及其标准方程学习目标:1.理解双曲线的定义、几何图形和标准方程的推导过程.(重点)2.掌握双曲线的标准方程及其求法.(重点)3.会利用双曲线的定义和标准方程解决简单的问题.(难点)[自主预习·探新知]1.双曲线的定义把平面内与两个定点F1,F2距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.思考:(1)双曲线定义中,将“小于|F1F2|"改为“等于|F1F2|”或“大于|F1F2|"的常数,其他条件不变,点的轨迹是什么?(2)双曲线的定义中,若|MF1|-|MF2|=2a(常数),且2a<|F1F2|,则点M的轨迹是什么?[提示](1)当距离之差的绝对值等于|F1F2|时,动点的轨迹是两条射线,端点分别是F,F2,当距离之差的绝对值大于|F1F2|时,动点的轨迹不存在.1(2)点M在双曲线的右支上.2.双曲线的标准方程1.思考辨析(1)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.(2)点A(1,0),B(-1,0),若|AC|-|BC|=2,则点C的轨迹是双曲线.()(3)在双曲线标准方程错误!-错误!=1中,a>0,b>0,且a≠b. ()[答案](1)×(2)×(3)×2.双曲线错误!-错误!=1的焦距为()A.3错误!B.4错误!C.3错误!D.4错误!D[c2=10+2=12,所以c=2错误!,从而焦距为4错误!。
2.1 曲线与方程[提出问题]在平面直角坐标系中:问题1:直线x=5上的点到y轴的距离都等于5,对吗?提示:对.问题2:到y轴的距离都等于5的点都在直线x=5上,对吗?提示:不对,还可能在直线x=-5上.问题3:到y轴的距离都等于5的点的轨迹是什么?提示:直线x=±5.[导入新知]曲线的方程、方程的曲线在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:①曲线上点的坐标都是这个方程的解;②以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.[化解疑难]“纯粹性”与“完备性”(1)定义中的关系①说明曲线上任何点的坐标都满足方程,即曲线上所有的点都符合这个条件而无例外,这是轨迹的“纯粹性”.(2)定义中的关系②说明符合条件的所有点都在曲线上而无遗漏,这是轨迹的“完备性”.在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P (x,y)到A点的距离是多少?提示:|PA|=x-2+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-2+y2=x+2+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.[导入新知]求曲线的方程的步骤[化解疑难]1.步骤(1)中“建立适当的坐标系”指坐标系建立的要恰当、合理.如定点作为原点,互相垂直的直线作为坐标轴等.合理地建立坐标系,能使运算更方便.2.步骤(2)可以不必写出,也就是说可以根据等量关系列出方程,即(2)(3)步合并.3.步骤(5)没有特殊情况可以省略不写.如有特殊情况,可以适当的说明,缺少的补上,多余的剔除.[例(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两坐标轴夹角平分线上的点与方程x+y=0之间的关系.[解] (1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5;但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限两坐标轴夹角平分线上的点的坐标都满足x+y=0;反之,以方程x+y =0的解为坐标的点都在第二、四象限两坐标轴夹角的平分线上.因此,第二、四象限两坐标轴夹角平分线上的点的轨迹方程是x+y=0.[类题通法]这类题目主要是考查“曲线的方程与方程的曲线”的定义中所列的两个条件,正好组成两个集合相等的充要条件,二者缺一不可.这就是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.[活学活用]命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( )A .方程f (x ,y )=0的曲线是CB .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上解析:选B “曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A ,C ,D 都不正确,B 正确.[例2] (1)(x +y -1)x -1=0; (2)4x 2-y 2+6x -3y =0.[解] (1)由方程(x +y -1)x -1=0,可得⎩⎪⎨⎪⎧x -1≥0,x +y -1=0或x -1=0,即x +y -1=0(x ≥1)或x =1.故方程表示一条射线x +y -1=0(x ≥1)和一条直线x =1. (2)方程可化为(2x -y )(2x +y +3)=0, 即2x -y =0或2x +y +3=0.故原方程表示的是两条直线2x -y =0和2x +y +3=0.[类题通法]判断方程表示什么曲线,常需对方程进行变形,如配方、因式分解或利用符号法则、基本常识转化为熟悉的形式,然后根据化简后的特点判断.特别注意,方程变形前后应保持等价,否则,变形后的方程表示的曲线不是原方程代表的曲线.另外,当方程中含有绝对值时,常采用分类讨论的思想.[活学活用]已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M ⎝ ⎛⎭⎪⎫m2,-m 在此方程表示的曲线上,求m 的值. 解:(1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10, ∴点P 在方程x 2+(y -1)2=10表示的曲线上, 点Q 不在方程x 2+(y -1)2=10表示的曲线上. (2)x =m2,y =-m 适合方程x 2+(y -1)2=10, 即⎝ ⎛⎭⎪⎫m 22+(-m -1)2=10,解得m =2或m =-185.所以m 的值为2或-185.[例3] 过点P 121A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.[解] 法一:设点M 的坐标为(x ,y ). ∵M 为线段AB 的中点.∴A 点坐标是(2x,0),B 点坐标是(0,2y ). ∵l 1,l 2均过点P (2,4),且l 1⊥l 2, ∴PA ⊥PB ,当x ≠1时,k PA ·k PB =-1. 而k PA =4-02-2x =21-x ,k PB =4-2y 2-0=2-y1,∴21-x ·2-y 1=-1, 整理,得x +2y -5=0(x ≠1).当x =1时,A ,B 点的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0, 综上所述,点M 的轨迹方程是x +2y -5=0.法二:设点M 的坐标为(x ,y ),则A ,B 两点坐标分别是(2x,0),(0,2y ),连接PM . ∵l 1⊥l 2,∴2|PM |=|AB |. 而|PM |=x -2+y -2,|AB |=x2+y2,∴2x -2+y -2=4x 2+4y 2.化简,得x +2y -5=0,即为所求轨迹方程. [类题通法]直接法、定义法、代入法是求轨迹方程(或轨迹)的常用方法,对于此类问题,在解题过程中,最容易出错的环节是求轨迹方程中自变量的取值范围,一定要慎重分析和高度重视.[活学活用]已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 的中点Q 的轨迹方程. 解:法一(直接法):如图所示,连接QC ,因为Q 是OP 的中点,所以∠OQC =90°. 设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+x 2+(y -3)2=9,所以OP 的中点Q 的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).法二:(定义法):如图所示,因为Q 是OP 的中点, 所以∠OQC =90°,则Q 在以OC 为直径的圆上.故Q 点的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).法三:(代入法):设P (x 1,y 1),Q (x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为x 21+(y 1-3)2=9,所以4x 2+4⎝ ⎛⎭⎪⎫y -322=9,即x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).2.求轨迹方程[典例] (12分)在Rt △ABC 中,斜边长是定长2a (a >0),求直角顶点C 的轨迹方程.[解题流程][活学活用]已知线段AB 在直线y =-2上移动,|AB |=4,O 为坐标原点.求△AOB 的外心M 的轨迹方程.解:∵点A ,B 在直线y =-2上,且|AB |=4, 故设A (x 1,-2),B (x 1+4,-2),∴直线OA 的垂直平分线为y =x 12⎝⎛⎭⎪⎫x -x 12-1,直线AB 的垂直平分线为x =x 1+2.联立⎩⎪⎨⎪⎧y =x 12⎝ ⎛⎭⎪⎫x -x 12-1,x =x 1+2,消去x 1,得x 2=4(y +2). 故M 的轨迹方程为x 2=4(y +2).[随堂即时演练]1.方程x 2+xy =x 表示的曲线是( ) A .一个点 B .一条直线 C .两条直线D .一个点和一条直线解析:选C 由x 2+xy =x ,得x (x +y -1)=0,即x =0或x +y -1=0.由此知方程x 2+xy =x 表示两条直线.2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π解析:选B 设P (x ,y ),由|PA |=2|PB |,得x +2+y 2=2x -2+y 2,整理得x 2-4x +y 2=0,即(x -2)2+y 2=4.所以点P 的轨迹是以(2,0)为圆心,2为半径的圆,则其面积是22·π=4π.3.若点P (2,-3)在曲线x 2-ky 2=1上,则实数k =________. 解析:将点P (2,-3)代入曲线方程得4-9k =1,∴k =13.答案:134.设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线,且|PA |=1,则动点P 的轨迹方程是________________.解析:圆(x -1)2+y 2=1的圆心为点B (1,0),半径r =1, 则|PB |2=|PA |2+r 2.∴|PB |2=2. ∴P 的轨迹方程为(x -1)2+y 2=2. 答案:(x -1)2+y 2=25.一个动点到直线x =8的距离是它到点A (2,0)的距离的2倍,求动点的轨迹方程. 解:设动点坐标为(x ,y ),则动点到直线x =8的距离为|x -8|,到点A 的距离为x -2+y 2.由已知,得|x -8|=2x -2+y 2,化简得3x 2+4y 2=48.所以动点的轨迹方程为3x 2+4y 2=48.[课时达标检测]一、选择题1.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上解析:选B 将点M (2,1)的坐标代入方程知M ∈l ,M ∈C . 2.曲线y =14x 2与x 2+y 2=5的交点坐标是( )A .(2,1)B .(±2,1)C .(2,1)或(25,5)D .(±2,1)或(±25,5)解析:选B 将x 2=4y 代入x 2+y 2=5,得y 2+4y -5=0,得(y +5)(y -1)=0,解得y =-5或y =1,y =-5不符合题意,舍去,∴y =1,则x 2=4,解得x =±2.3.方程x +|y -1|=0表示的曲线是( )解析:选B 方程x +|y -1|=0可化为|y -1|=-x ≥0,则x ≤0,因此选B.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN ―→|·|MP ―→|+MN ―→·NP ―→=0,则动点P (x ,y )的轨迹方程为( )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x解析:选B 设点P 的坐标为(x ,y ),则MN ―→=(4,0),MP ―→=(x +2,y ),NP ―→=(x -2,y ), ∴|MN ―→|=4,|MP ―→|=x +2+y 2,MN ―→·NP ―→=4(x -2).根据已知条件得4 x +2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x .5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0 解析:选B 由两点式,得直线AB 的方程是y -04-0=x +12+1,即4x -3y +4=0, 线段AB 的长度|AB |=+2+42=5.设点C 的坐标为(x ,y ), 则12×5×|4x -3y +4|5=10, 即4x -3y -16=0或4x -3y +24=0. 二、填空题6.方程x 2+2y 2-4x +8y +12=0表示的图形为________. 解析:对方程左边配方得(x -2)2+2(y +2)2=0. ∵(x -2)2≥0,2(y +2)2≥0,∴⎩⎪⎨⎪⎧x -2=0,y +2=0,解得⎩⎪⎨⎪⎧x =2,y =-2.从而方程表示的图形是一个点(2,-2). 答案:一个点(2,-2)7.已知两点M (-2,0),N (2,0),点P 满足PM ―→·PN ―→=12,则点P 的轨迹方程为____________.解析:设P (x ,y ),则PM ―→=(-2-x ,-y ),PN ―→=(2-x ,-y ). 于是PM ―→·PN ―→=(-2-x )(2-x )+y 2=12, 化简得x 2+y 2=16,此即为所求点P 的轨迹方程. 答案:x 2+y 2=168.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________________.解析:设M (x ,y ),B (x 0,y 0),则y 0=2x 20+1. 又因为M 为AB 的中点,所以⎩⎪⎨⎪⎧x =0+x 02,y =y 0-12,即⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1,将其代入y 0=2x 20+1得,2y +1=2(2x )2+1,即y =4x 2. 答案:y =4x 2三、解答题9.在平面直角坐标系中,已知动点P (x ,y ),PM ⊥y 轴,垂足为M ,点N 与点P 关于x 轴对称,且OP ―→·MN ―→=4,求动点P 的轨迹方程.解:由已知得M (0,y ),N (x ,-y ),则MN ―→=(x ,-2y ),故OP ―→·MN ―→=(x ,y )·(x ,-2y )=x 2-2y 2. 依题意知x 2-2y 2=4,因此动点P 的轨迹方程为x 2-2y 2=4.10.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ ―→=OM ―→+ON ―→,求动点Q 的轨迹.解:设点Q 的坐标为(x ,y ),点M 的坐标为(x 0,y 0)(y 0≠0),则点N 的坐标为(0,y 0).因为OQ ―→=OM ―→+ON ―→,即(x ,y )=(x 0,y 0)+(0,y 0)=(x 0,2y 0),则x 0=x ,y 0=y 2.又因为点M 在圆C 上, 所以x 20+y 20=4, 即x 2+y 24=4(y ≠0).所以动点Q 的轨迹方程是x 24+y 216=1(y ≠0).。