计算方法第六章迭代法
- 格式:ppt
- 大小:1.08 MB
- 文档页数:55
数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。
对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。
迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。
故能有效地解一些高阶方程组。
1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。
若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。
再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。
kB 称为迭代矩阵。
若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。
本章主要讨论具有这种形式的各种迭代方法。
1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。
定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。
定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。
迭代法(iterative method
迭代法是一种数学方法,通过不断地迭代逼近来求解数学问题。
这种方法通常用于求解方程、优化问题、积分问题等。
迭代法的基本思想是:给定一个初始值或初始解,然后根据一定的规则进行迭代,每次迭代都得到一个新的解,直到满足某个终止条件为止。
这个终止条件可以是精度要求、迭代次数限制等。
常见的迭代法包括:
1.牛顿迭代法:用于求解非线性方程的根,通过不断地逼近方程的根来求解。
2.梯度下降法:用于求解最优化问题,通过不断地沿着负梯度的方向搜索来找到最优
解。
3.牛顿-拉夫森方法:结合了牛顿法和二分法的优点,用于求解非线性方程的根。
4.雅可比迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。
5.高斯-赛德尔迭代法:用于求解线性方程组,通过不断地逼近方程组的解来求解。
使用迭代法时需要注意初始值的选择、迭代规则的合理性、终止条件的设定等问题,以确保迭代过程的收敛性和有效性。
同时,迭代法也有一定的局限性,对于一些非线性问题或复杂问题,可能需要进行多次迭代或者采用其他方法进行求解。
迭代法
迭代法也叫辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。
对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。
若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。
称所构造的序列为迭代序列。
求通项公式的方法(用迭代法)已知数列{An},a1=2,an=2a(n-1)-1(n>或=2)求通项公式
an=2a(n-1)-1 an-1=2(a(n-1)-1 ) n>或=2
所以an-1 为等比数列
an-1=(a1-1)*2^(n-1)
an-1=2^(n-1)
an=2^(n-1)+1
牛顿迭代法求开方
数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数的泰勒级数的前面几项来寻找方程的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收
敛。
另外该方法广泛用于计算机编程中。
用迭代法求平方根
对于A>1,求其平方根可构造用如下公式迭代:
f(x)=(1/a)(x+a/x),a=A/(A-1),迭代初值x0=[√A]+1,[x]为x的取整.如想求70的平方根,可令初值x0=9.
对于A1,用如上方法求出平方根后,在成10^(-n),即得结果.。
计算方法第六章迭代法迭代法是一种重要的数值计算方法,在数学和计算机科学中有广泛的应用。
本章将介绍迭代法的基本概念、原理和应用,以及相关的数学原理和计算技巧。
首先,我们来了解迭代法的基本概念。
迭代法是通过逐步逼近的方式得到一个问题的解。
迭代法的基本思路是从一个初始值开始,通过重复计算和更新,得到更加接近最终解的近似值。
迭代法的优点是简单和灵活,但需要注意选择合适的迭代公式和初始值,以及控制迭代的停止条件。
迭代法的原理可以用以下的一般形式表示:```x_(n+1)=f(x_n)```其中,x_n表示第n次迭代得到的近似值,x_(n+1)表示第(n+1)次迭代的近似值,f是一个函数,表示迭代公式。
迭代法的思想是通过不断迭代更新x的值,直到满足一些停止条件为止。
迭代法的应用非常广泛,特别是在求解非线性方程和优化问题方面有重要的应用。
在求解非线性方程时,我们可以将方程转化为形式为f(x)=0的等式,然后通过迭代法逼近方程的根。
在优化问题中,我们可以通过最小化或最大化一个函数来寻找最优解,也可以使用迭代法逐步逼近最优解。
在迭代法的实际应用中,我们需要注意一些数学原理和计算技巧。
首先,迭代法的收敛性是关键的,即通过迭代公式逐步逼近的值是否趋于问题的解。
在评估迭代法的收敛性时,常用的方法有判断迭代序列的极限是否存在和是否满足一些收敛条件。
其次,选择合适的迭代公式和初始值对于迭代法的成功应用非常重要。
迭代公式应该是简单和有效的,能够在迭代过程中逐步逼近问题的解。
初始值的选择也会直接影响迭代的结果,通常需要根据问题的特点和经验进行选择。
另外,迭代法的计算精度和计算效率也是需要考虑的问题。
在迭代过程中,我们需要根据问题的要求不断调整迭代的次数和迭代的停止条件,以达到较高的计算精度。
同时,我们也需要通过优化迭代公式和使用更加高效的计算技巧来提高计算的效率。
最后,迭代法的应用还可以进一步扩展到其他领域。
例如,在图像处理中,我们可以使用迭代法逐步改进图像的质量;在机器学习中,我们可以使用迭代法来调整模型的参数,以求得更好的拟合效果。