计算方法 第六章 解线性方程组的直接法
- 格式:ppt
- 大小:1.09 MB
- 文档页数:74
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
线性方程组的直接法直接法就是经il有限步算术运算,无需迭代可直接求得方程组精确解的方法。
线性方程组迭代法迭代法就是用某种极限11程去逐步JlifiSIl方程组精确解的方法•该方法具有对廿算机的存贮单元需求少,程序设廿简单、原始系数拒阵在it算过程中不变等优点,是求辭大里棉疏矩阵方程组的重要方法•迭代法不是用有限步运算求精确齡, 而是通过迭代产Sififfl解JI近精确解.如Jacobi H代、Gauss— Seidel迭代、SOR 迭代法等。
1. 线性方程组的直接法直接法就是经11有限步算术运算,无需迭代可直接求得方程组精确解的方法。
1.1 Cramer 法则Cramer法则用于判飾具有n个未知数的n个线性方程的方程组解的悄况。
当方程组的系数行列式不等干零时,方程组有解II解唯一。
如果方程组无齡或者有两个不同的解时,则系数行列式必为零。
如果齐次线性方程组的系数行列式不等于零,则没有非零解。
如果齐次线性方程组有非零解,则系数行列式必为零。
定理1如果方程组Ax = b中D = |A|H0,则Ax = b有解,目解事唯一的,解为X'=¥'x2=*'.%=*,Di是D巾第i列换成向量b所得的行列式。
Cramer法则解n元方程组有两个前提条件:1、未知数的个数等干方程的个数。
2、系数行列式不等于零时,线性方程组x x + x 2 + x 3 = a ax x 4- x 2 + = 1 有唯一解。
X x + 兀2 + ax3 = 11 1\-a \-a =_((/_ 1),0 G — l所以当dHl 时,方程组有唯一解。
定理2当齐次线性方程级Ar = O, |4卜°时该方程组有唯一的零解。
定理3齐次线性方程组曲=0有非零解<=>H = 0o1.2Gauss 消元法Gauss 消元法是线性代数中的一个算法,可用来为线11方程组求解,求出 矩晖的扶,以及求岀可逆方阵的逆葩阵。
解线性代数方程————————————————————————————————作者:————————————————————————————————日期:求解线性方程组的直接解法5.3特殊矩阵的三角分解①实对称矩阵的LDL T分解设A是实对称阵,且A的所有顺序主子式均不为零,则LDR分解中R=L T, 故可用以作LDL T分解.这就是说,当A的对角元素非零时,我们可以作LU分解,也就得到LDL T分解,L相同,是单位上三角阵,U的对角元素构成D.不过没有利用对称性,存储量运算量都未能节省—预计是一半。
试用n=3的计算表格说明如何实现节省。
d1=u11 =a11u12=a12l21=u12/d1u13=a13l31=u13/d1d2=u22=a22-l21u12u23=a23-l21u13l32=u23/d2u33=a33-l31u13-l32u23这样,可用上半部元素逐列计算D,L T。
也可用下半部元素逐行计算L,D。
引进輔助量t1, t2代替u1j,u2j,并利用对称性得到:d1=a11t1=a21l21= t1/d1d2= a22-t1l21t1=a31 l31=t1/d1t2=a32-t1l21l32=t2/d2d3=a33-t1l31-t2l32据此不难写出LDL T分解A=LDL T的计算公式和程序(逐行计算L,D).d1=a11for i=2:nfor j=1:i-1t j=a ij-l j1t1-l j2t2-…-l j,j-1t j-1l ij=t j/d jendd i=a ii-l i1t1-l i2t2-…- l i,i-1t i-1end存储约n(n+1)/2单元,乘加运算各约n3/6.利用LDL T分解解Ax=b分四步:1.分解A=LDL T2.解Lg=b 求g3.解Dy=g 求y4.解L T x=y 求x②实对称正定矩阵的LL T分解A实对称正定时顺序主子式皆正,可作LDL T,D的对角元素皆正,有正的平方根。
解线性方程组的直接方法1.1 主元的选取与算法的稳定性1.1.1问题提出Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
1.1.2实验内容考虑线性方程组n n n R b R A b Ax ∈∈=⨯,,编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。
1.1.3实验要求(1)取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。
取10n =计算矩阵的条件数。
让程序自动选取主元,结果如何?(2)现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
(3)取矩阵阶数20n =或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
(4)将上述矩阵A中的主元改为0.00006再重新作一次数值实验看看。
(5)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
1.1.4实验过程(1)程序:clear;clc;a=input('是否调整消元次序(是:1,否:0)');n=input('系数矩阵的阶数:');%构造题中给定形式的矩阵A(1,1)=6;A(1,2)=1;A(1,n+1)=7;%第n+1列取题中的bfor i=1:(n-2);A(i+1,i)=8;A(i+1,i+1)=6;A(i+1,i+2)=1;A(i+1,n+1)=15;end;A(n,n-1)=8;A(n,n)=6;A(n,n+1)=14;%自动消元if a==0;for i=1:(n-1);for j=(i+1):n;x=A(j,i)/A(i,i);for k=1:(n+1);A(j,k)=A(j,k)-x*A(i,k);end;end;end;y(n)=A(n,n+1)/A(n,n);for i=2:n;y(n-i+1)=A(n-i+1,n+1);for j=1:(i-1);y(n-i+1)=y(n-i+1)-A(n-i+1,n-j+1)*y(n-j+1);end;y(n-i+1)=y(n-i+1)/A(n-i+1,n-i+1);end;yend;%手动控制消元次序if a==1;for i=1:(n-1);A %显示每步消元的结果m=input('请选取作为主消元行的行号');for l=1:(n+1);c=A(i,l);A(i,l)=A(m,l);A(m,l)=c;end;for j=(i+1):n;x=A(j,i)/A(i,i);for k=1:(n+1);A(j,k)=A(j,k)-x*A(i,k);end;end;end;y(n)=A(n,n+1)/A(n,n);for i=2:n;y(n-i+1)=A(n-i+1,n+1);for j=1:(i-1);y(n-i+1)=y(n-i+1)-A(n-i+1,n-j+1)*y(n-j+1);end;y(n-i+1)=y(n-i+1)/A(n-i+1,n-i+1);end;yend;(2)数值实验结果及分析:1、根据要求当10n=时用Matlab算得Cond(A)=1727.6,让程序自动选主元,x=与精确解一致。