当前位置:文档之家› 某一天是星期几的算法

某一天是星期几的算法

某一天是星期几的算法
某一天是星期几的算法

首先开门见山的列出其中一个算法:

public string CaculateWeekDay(int y, int m, int d)

{

if (m == 1)

m = 13;

if (m == 2)

m = 14;

int week = (d + 2 * m + 3 * (m + 1) / 5 + y + y / 4 - y / 100 + y / 400) % 7;//基姆拉尔森计算公式

string weekstr = "";

switch (week)

{

case 0: weekstr = "星期一"; break;

case 1: weekstr = "星期二"; break;

case 2: weekstr = "星期三"; break;

case 3: weekstr = "星期四"; break;

case 4: weekstr = "星期五"; break;

case 5: weekstr = "星期六"; break;

case 6: weekstr = "星期日"; break;

}

return weekstr;

}

其次列出一些理论计算公式:

——蔡勒(Zeller)公式

历史上的某一天是星期几?未来的某一天是星期几?关于这个问题,有很多计算公式(两个通用计算公式和一些分段计算公式),其中最著名的是蔡勒(Zeller)公式。即w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1

公式中的符号含义如下,w:星期;c:世纪-1;y:年(两位数);m:月(m大于等于3,小于等于14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月来计算,比如2003年1月1日要看作2002年的13月1日来计算);d:日;[ ]代表取整,即只要整数部分。(C是世纪数减一,y是年份后两位,M是月份,d是日数。1月和2月要按上一年的13月和14月来算,这时C和y均按上一年取值。)

算出来的W除以7,余数是几就是星期几。如果余数是0,则为星期日。

以2049年10月1日(100周年国庆)为例,用蔡勒(Zeller)公式进行计算,过程如下:

蔡勒(Zeller)公式:w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1

=49+[49/4]+[20/4]-2×20+[26× (10+1)/10]+1-1

=49+[12.25]+5-40+[28.6]

=49+12+5-40+28

=54 (除以7余5)

即2049年10月1日(100周年国庆)是星期5。

你的生日(出生时、今年、明年)是星期几?不妨试一试。

不过,以上公式只适合于1582年10月15日之后的情形(当时的罗马教皇将恺撒大帝制订的儒略历修改成格里历,即今天使用的公历)。

过程的推导:(对推理不感兴趣的可略过不看)

星期制度是一种有古老传统的制度。据说因为《圣经·创世纪》中规定上帝用了六

天时间创世纪,第七天休息,所以人们也就以七天为一个周期来安排自己的工作和生

活,而星期日是休息日。从实际的角度来讲,以七天为一个周期,长短也比较合适。所

以尽管中国的传统工作周期是十天(比如王勃《滕王阁序》中说的“十旬休暇”,即是

指官员的工作每十日为一个周期,第十日休假),但后来也采取了西方的星期制度。

在日常生活中,我们常常遇到要知道某一天是星期几的问题。有时候,我们还想知

道历史上某一天是星期几。通常,解决这个方法的有效办法是看日历,但是我们总不会

随时随身带着日历,更不可能随时随身带着几千年的万年历。假如是想在计算机编程中

计算某一天是星期几,预先把一本万年历存进去就更不现实了。这时候是不是有办法通

过什么公式,从年月日推出这一天是星期几呢?

答案是肯定的。其实我们也常常在这样做。我们先举一个简单的例子。比如,知道

了2004年5月1日是星期六,那么2004年5月31日“世界无烟日”是星期几就不难推算出

来。我们可以掰着指头从1日数到31日,同时数星期,最后可以数出5月31日是星期一。

其实运用数学计算,可以不用掰指头。我们知道星期是七天一轮回的,所以5月1日是星

期六,七天之后的5月8日也是星期六。在日期上,8-1=7,正是7的倍数。同样,5月15 日、5月22日和5月29日也是星期六,它们的日期和5月1日的差值分别是14、21和28,也都是7的倍数。那么5月31日呢?31-1=30,虽然不是7的倍数,但是30除以7,余数为2,这就是说,5月31日的星期,是在5月1日的星期之后两天。星期六之后两天正是星期一。

这个简单的计算告诉我们计算星期的一个基本思路:首先,先要知道在想算的日子

之前的一个确定的日子是星期几,拿这一天做为推算的标准,也就是相当于一个计算的“原点”。其次,知道想算的日子和这个确定的日子之间相差多少天,用7除这个日期

的差值,余数就表示想算的日子的星期在确定的日子的星期之后多少天。如果余数是

0,就表示这两天的星期相同。显然,如果把这个作为“原点”的日子选为星期日,那

么余数正好就等于星期几,这样计算就更方便了。

但是直接计算两天之间的天数,还是不免繁琐。比如1982年7月29日和2004年5月

1日之间相隔7947天,就不是一下子能算出来的。它包括三段时间:一,1982年7月29

日以后这一年的剩余天数;二,1983-2003这二十一个整年的全部天数;三,从2004年

元旦到5月1日经过的天数。第二段比较好算,它等于21*365+5=7670天,之所以要加

5,是因为这段时间内有5个闰年。第一段和第三段就比较麻烦了,比如第三段,需要把

5月之前的四个月的天数累加起来,再加上日期值,即31+29+31+30+1=122天。同理,第一段需要把7月之后的五个月的天数累加起来,再加上7月剩下的天数,一共是155天。

所以总共的相隔天数是122+7670+155=7947天。

仔细想想,如果把“原点”日子的日期选为12月31日,那么第一段时间也就是一个

整年,这样一来,第一段时间和第二段时间就可以合并计算,整年的总数正好相当于两

个日子的年份差值减一。如果进一步把“原点”日子选为公元前1年12月31日(或者天文

学家所使用的公元0年12月31日),这个整年的总数就正好是想算的日子的年份减一。这

样简化之后,就只须计算两段时间:一,这么多整年的总天数;二,想算的日子是这一

年的第几天。巧的是,按照公历的年月设置,这样反推回去,公元前1年12月31日正好是星期日,也就是说,这样算出来的总天数除以7的余数正好是星期几。那么现在的问题就只有一个:这么多整年里面有多少闰年。这就需要了解公历的置闰规则了。

我们知道,公历的平年是365天,闰年是366天。置闰的方法是能被4整除的年份在

2月加一天,但能被100整除的不闰,能被400整除的又闰。因此,像1600、2000、2400 年都是闰年,而1700、1800、1900、2100年都是平年。公元前1年,按公历也是闰年。

因此,对于从公元前1年(或公元0年)12月31日到某一日子的年份Y之间的所有整年中的闰年数,就等于

[(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400],

[...]表示只取整数部分。第一项表示需要加上被4整除的年份数,第二项表示需要去掉

被100整除的年份数,第三项表示需要再加上被400整除的年份数。之所以Y要减一,这样,我们就得到了第一个计算某一天是星期几的公式:

W = (Y-1)*365 + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] + D.(1)

其中D是这个日子在这一年中的累积天数。算出来的W就是公元前1年(或公元0年)12月

31日到这一天之间的间隔日数。把W用7除,余数是几,这一天就是星期几。比如我们来算2004年5月1日:

W = (2004-1)*365 + [(2004-1)/4] - [(2004-1)/100] + [(2004-1)/400] +

(31+29+31+30+1)

= 731702,

731702 / 7 = 104528……6,余数为六,说明这一天是星期六。这和事实是符合的。

上面的公式(1)虽然很准确,但是计算出来的数字太大了,使用起来很不方便。仔

细想想,其实这个间隔天数W的用数仅仅是为了得到它除以7之后的余数。这启发我们是不是可以简化这个W值,只要找一个和它余数相同的较小的数来代替,用数论上的术语来说,就是找一个和它同余的较小的正整数,照样可以计算出准确的星期数。

显然,W这么大的原因是因为公式中的第一项(Y-1)*365太大了。其实,

(Y-1)*365 = (Y-1) * (364+1)

= (Y-1) * (7*52+1)

= 52 * (Y-1) * 7 + (Y-1),

这个结果的第一项是一个7的倍数,除以7余数为0,因此(Y-1)*365除以7的余数其实就

等于Y-1除以7的余数。这个关系可以表示为:

(Y-1)*365 ≡ Y-1 (mod 7).

其中,≡是数论中表示同余的符号,mod 7的意思是指在用7作模数(也就是除数)的情

况下≡号两边的数是同余的。因此,完全可以用(Y-1)代替(Y-1)*365,这样我们就得到

了那个著名的、也是最常见到的计算星期几的公式:

W = (Y-1) + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] + D.(2)

这个公式虽然好用多了,但还不是最好用的公式,因为累积天数D的计算也比较麻烦。是不是可以用月份数和日期直接计算呢?答案也是肯定的。我们不妨来观察一下各

个月的日数,列表如下:

月份:1月2月3月4月5月6月7月8月9月10月11月12月

--------------------------------------------------------------------------

天数:31 28(29) 31 30 31 30 31 31 30 31 30 31

如果把这个天数都减去28(=4*7),不影响W除以7的余数值。这样我们就得到另一张表:

月份:1月2月3月4月5月6月7月8月9月10月11月12月

------------------------------------------------------------------------

剩余天数: 3 0(1) 3 2 3 2 3 3 2 3 2 3

平年累积: 3 3 6 8 11 13 16 19 21 24 26 29

闰年累积: 3 4 7 9 12 14 17 20 22 25 27 30

仔细观察的话,我们会发现除去1月和2月,3月到7月这五个月的剩余天数值是3,2,3,2,

3;8月到12月这五个月的天数值也是3,2,3,2,3,正好是一个重复。相应的累积天数中,

后一月的累积天数和前一月的累积天数之差减去28就是这个重复。正是因为这种规律的

存在,平年和闰年的累积天数可以用数学公式很方便地表达:

╭ d;(当M=1)

D = { 31 + d;(当M=2)(3)

╰ [ 13 * (M+1) / 5 ] - 7 + (M-1) * 28 + d + i.(当M≥3)

其中[...]仍表示只取整数部分;M和d分别是想算的日子的月份和日数;平年i=0,闰年

i=1。对于M≥3的表达式需要说明一下:[13*(M+1)/5]-7算出来的就是上面第二个表中的

平年累积值,再加上(M-1)*28就是想算的日子的月份之前的所有月份的总天数。这是一

个很巧妙的办法,利用取整运算来实现3,2,3,2,3的循环。比如,对2004年5月1日,有:

D = [ 13 * (5+1) / 5 ] - 7 + (5-1) * 28 + 1 + 1

= 122,

这正是5月1日在2004年的累积天数。

假如,我们再变通一下,把1月和2月当成是上一年的“13月”和“14月”,不仅仍

然符合这个公式,而且因为这样一来,闰日成了上一“年”(一共有14个月)的最后一

天,成了d的一部分,于是平闰年的影响也去掉了,公式就简化成:

D = [ 13 * (M+1) / 5 ] - 7 + (M-1) * 28 + d.(3≤M≤14)(4)

上面计算星期几的公式,也就可以进一步简化成:

W = (Y-1) + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] + [ 13 * (M+1) / 5 ] - 7

+ (M-1) * 28 + d.

因为其中的-7和(M-1)*28两项都可以被7整除,所以去掉这两项,W除以7的余数不变,

公式变成:

W = (Y-1) + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] + [ 13 * (M+1) / 5 ] + d.

(5)

当然,要注意1月和2月已经被当成了上一年的13月和14月,因此在计算1月和2月的日子的星期时,除了M要按13或14算,年份Y也要减一。比如,2004年1月1日是星期四,用这

个公式来算,有:

W = (2003-1) + [(2003-1)/4] - [(2003-1)/100] + [(2003-1)/400] + [13*(13+1)/5] + 1

= 2002 + 500 - 20 + 5 + 36 + 1

= 2524;

2524 / 7 = 360……4.这和实际是一致的。

公式(5)已经是从年、月、日来算星期几的公式了,但它还不是最简练的,对于年

份的处理还有改进的方法。我们先来用这个公式算出每个世纪第一年3月1日的星期,列

表如下:

年份:1(401,801,...,2001) 101(501,901, (2101)

--------------------------------------------------------------------

星期: 4 2

===================================================================

年份:201(601,1001,...,2201) 301(701,1101, (2301)

--------------------------------------------------------------------

星期:0 5

可以看出,每隔四个世纪,这个星期就重复一次。假如我们把301(701,1101, (2301)

年3月1日的星期数看成是-2(按数论中对余数的定义,-2和5除以7的余数相同,所以可以做这样的变换),那么这个重复序列正好就是一个4,2,0,-2的等差数列。据此,我们

可以得到下面的计算每个世纪第一年3月1日的星期的公式:

W = (4 - C mod 4) * 2 - 4.(6)

式中,C是该世纪的世纪数减一,mod表示取模运算,即求余数。比如,对于2001年3月1日,C=20,则:

W = (4 - 20 mod 4) * 2 - 4

= 8 - 4

= 4.

把公式(6)代入公式(5),经过变换,可得:

(Y-1) + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] ≡ (4 - C mod 4) * 2 - 1

(mod 7).(7)

因此,公式(5)中的(Y-1) + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400]这四项,在计算

每个世纪第一年的日期的星期时,可以用(4 - C mod 4) * 2 - 1来代替。这个公式写

出来就是:

W = (4 - C mod 4) * 2 - 1 + [13 * (M+1) / 5] + d.(8)

有了计算每个世纪第一年的日期星期的公式,计算这个世纪其他各年的日期星期的公式就很容易得到了。因为在一个世纪里,末尾为00的年份是最后一年,因此就用不着再考虑“一百年不闰,四百年又闰”的规则,只须考虑“四年一闰”的规则。仿照由公式(1)

简化为公式(2)的方法,我们很容易就可以从式(8)得到一个比公式(5)更简单的计算任意

一天是星期几的公式:

W = (4 - C mod 4) * 2 - 1 + (y-1) + [y/4] + [13 * (M+1) / 5] + d.(9)

式中,y是年份的后两位数字。

如果再考虑到取模运算不是四则运算,我们还可以把(4 - C mod 4) * 2进一步改写

成只含四则运算的表达式。因为世纪数减一C除以4的商数q和余数r之间有如下关系:

4q + r = C,

其中r即是C mod 4,因此,有:

r = C - 4q

= C - 4 * [C/4].(10)

(4 - C mod 4) * 2 =(4 - C + 4 * [C/4]) * 2

=8 - 2C + 8 * [C/4]

≡ [C/4] - 2C + 1 (mod 7).(11)

把式(11)代入(9),得到:

W = [C/4] - 2C + y + [y/4] + [13 * (M+1) / 5] + d - 1.(12)

这个公式由世纪数减一、年份末两位、月份和日数即可算出W,再除以7,得到的余数是几就表示这一天是星期几,唯一需要变通的是要把1月和2月当成上一年的13月和14月,C和y都按上一年的年份取值。因此,人们普遍认为这是计算任意一天是星期几的最好的公式。这个公式最早是由德国数学家克里斯蒂安·蔡勒(Christian Zeller, 1822-

1899)在1886年推导出的,因此通称为蔡勒公式(Zeller’s Formula)。为方便口算,

式中的[13 * (M+1) / 5]也往往写成[26 * (M+1) / 10]。

现在仍然让我们来算2004年5月1日的星期,显然C=20,y=4,M=5,d=1,代入蔡勒公式,有:

W = [20/4] - 40 + 4 + 1 + [13 * (5+1) / 5] + 1 - 1

= -15.

注意负数不能按习惯的余数的概念求余数,只能按数论中的余数的定义求余。为了方便

计算,我们可以给它加上一个7的整数倍,使它变为一个正数,比如加上70,得到55。

再除以7,余6,说明这一天是星期六。这和实际是一致的,也和公式(2)计算所得的结

果一致。

最后需要说明的是,上面的公式都是基于公历(格里高利历)的置闰规则来考虑

的。对于儒略历,蔡勒也推出了相应的公式是:

W = 5 - C + y + [y/4] + [13 * (M+1) / 5] + d - 1.(13)

这样,我们终于一劳永逸地解决了不查日历计算任何一天是星期几的问题。

补充: 算出负数要加上7

生命周期评价

第二章产品清洁生产 第一节生命生命周期评价的理念 生命周期评价的理念 生命周期评价 Life Cycle Assessment Life Cycle Analysis (一)定义 国际环境毒理学与化学学会(SETAC):通过识别和量化能源和材料的消耗和废物的排放,评价产品(和服务)在其生命周期中的环境负荷,并提出预防和改进措施。 评价面向产品整个生命周期,包括原材料的获取和加工、生产、运输分配、使用、维护和再使用、循环再生、以及处理处置。 国际标准化组织(ISO):生命周期评价是对一个产品系统的生命周期中的输入、输出及潜在环境影响进行的综合评价。 美国环保局(EPA):通过对特定产品、过程或服务的整个生命周期的分析,对产品或活动进行整体评价的概念或方法。 生命周期评价包括三个组成部分-清单、影响和改进,是一个交互式发展的程序。 Procter & Gamble公司:显示产品制造商对其产品从设计到处置全过程中造成的环境负荷承担责任的态度,是保证环境确实而不是虚假地得到改善的定量方法。 美国3M公司:在从制造到加工、处理乃至最终作为残留有害废物处置的全过程中,检查如何减少或消除废物的方法。 (二)特点 全过程化 定量化 体现环境保护手段由简单、局部、粗放向复杂、全面、精细方向发展的趋势。 (三)分类 概念型LCA:定性的清单分析评估环境影响,不宜作为公众传播和市场促销的依据,但可以帮助决策人员认识哪些产品在环境影响方面具有竞争和优势。 简化型或速成型LCA:涉及全部生命周期,但仅限于简化的评价,着重主要的环境因素、潜在环境影响等,多用于内部评估和不要求提供正式报告的场合。 详细型LCA:包括目的和范围确定、清单分析、影响评价、结果解释4个阶段。 (四)生命周期评价的发展 生命周期评价是20世纪70年代初至90年代发展起来的理论。当前生命周期评价已形成了基本的概念框架和技术框架。 国际标准化组织(ISO)-负责生命周期评价理论的完善和方法的国际标准化工作。 1、起源 生命周期评价起源于20世纪60年代末70年代初美国开展的一系列针对包装品的分析、评价,当时称为资源与环境状况分析(REPA)。 标志:1969年美国中西部资源研究所(MRI)开展的可口可乐饮料包装瓶评价。 起源阶段的特征: (1)由工业企业发起,秘密进行,研究结果作为企业内部产品开发与管理的决策支持工具。--可口可乐玻璃瓶转向塑料瓶。《SCIENCE》发表文章(1976年4月)。 (2)大多数研究的对象是产品包装品。 (3)采用能源分析方法。由于能源分析方法在当时已比较成熟,而且很多与产品有关的污染物排放显然与能源利用有关。 2、发展 随着20世纪70年代末到80年代中期出现的全球性固体废弃物问题,资源与环境状况分析法(REPA)逐渐成为一种资源分析工具。 这时期的REPA着重于计算固体废弃物产生量和原材料消耗量。 发展阶段的特征: (1)政府积极支持和参与。欧洲经济合作委员会开始关注生命周期评价,要求工业企业对其产品生产过程中的能源、资源以及固体废弃物排放进行全面的监测与分析。(2)案例发展缓慢,方法论研究兴起。REPA缺乏统一的研究方法论,分析所需的数据常常无法得到,对不同的产品采取不同的分析步骤,同类产品的评价程序和数据也不统一。这些都促进对评价方法的研究。 3、趋于成熟 80年代末以后,区域性与全球性环境问题日益严重,可持续发展思想的普及以及可持续行动计划的兴起,促使大量的REPA研究重新开始。 REPA涉及研究机构、管理部门、工业企业、产品消费者,但是使用REPA的目的和侧重点各不相同,所分析的产品和系统也变得越来越复杂,急需对REPA的方法进一步研究和统一。 1989年荷兰“国家居住、规划与环境部(VROM)”针对传统的“末端控制”环境政策,首次提出了制订面向产品的环境政策。提出了要对产品整个生命周期内的所有环境影响进行评价;同时也提出了要对生命周期评价的基本方法和数据进行标准化。 1990年“国际环境毒理学与化学学会(SETAC)”首次主持召开有关生命周期评价的国际研讨会,首次提出了“生命周期评价”的概念。在以后的几年里,SETAC主持和召开了多次学术研讨会,对生命周期评价理论与方法进行了广泛研究。 1993年SETAC根据在葡萄牙的一次学术会议的主要结论,出版了一本纲领性报告:“LCA纲要:实用指南”。该报告为生命周期评价方法提供了一个基本技术框架,成为生命周期评价研究出现飞跃的一个里程碑。 目前生命周期评价在方法论上还不十分成熟。SETAC和ISO 积极促进生命周期评价方法论的国际标准化研究。 ISO14040标准《生命周期评价-原则与框架》已于1997年颁布,该标准体系目的是对生命周期评价的概念、技术框架及实施步骤进行标准化。 欧洲、美国、日本等国家和地区制定了一些促进LCA的政策和法规,如“生态标志计划”、“生态管理与审计法规”、“包装及包装废物管理准则”等。因此,这一阶段出现了大量LCA案例,如日本已完成数十种产品的LCA,丹麦用3年时间对10种产品类型进行了LCA等。 1996年,第一份专门关注生命周期评价的学术期刊《International Journal of Life Cycle Assessment》

小学趣味数学——根据年、月、日推算是星期几的公式

小学趣味数学——根据年、月、日推算是星期几的公式 有时候,想知道公元某年某月某日是星期几,可以用下面的公式算出来: 这里的方括号表示只取商的整数部分。式中: x :这一年是公元多少年。 y :这一天是这一年的第几天。 s :星期几。不过要先除以7,再取余数。没有余数是星期日,余数是1、2、3、4、5、6,分别是星期一、星期二、星期三、星期四、星期五、星期六。 比如,2010年国庆节(10月1日)是星期几? x =2010。 y =31+28+31+30+31+30+31+31+30+1=31×5+30×3+28+1=274。 s =2010-1+502-20+5+274=2770,2770÷7余5。 所以,2010年国庆节是星期五。 y x x x x s +?? ????-+??????--??????-+-=40011001411

如果,你只想知道这个公式怎样用,到这儿就可以了。而要想知道这个公式的道理是什么,那可就说来话长了。 “星期制”是公元321年3月7日,古罗马皇帝君士坦丁宣布开始实行的,并且规定这一天为星期一。实际上,就是把公元元年元旦(公元1年1月1日)规定为星期一。(相当于公式中的x=1,y=1,所以s=1。) 通常1年有365天,365÷7=52……1,就是说比52个星期多1天。所以,同一个日期,下一年是星期几,就要比上一年向后推1天。比如,上一年元旦是星期三,下一年元旦就是星期四。 “通常每过1年,把同一日期是星期几向后推1天”,是理解这个公式的关键。 要想知道某年某月某日是星期几,首先,要知道这一年元旦以公元元年元旦是星期一为起点,已经把星期几向后推了多少天,还要知道这一天是这一年的第几天。而要知道这一年元旦已经把星期几向后推了多少天,可以从公元元年到这一年已经过了多少年算起,先按1年向后推1天计算,再根据闰年的规定进行调整。 闰年的规定是:年份是4的倍数的一般都是闰年,其中,年份是整百数的一般不是闰年,只有年份是400的倍数的才

(完整版)周期比合理情况与调整

今天看到一个悬赏的帖子,关于振型为扭转时的调整的,给他回复了,不过很多人可能不容易找到,并且这是我们这种新手一般会遇到的问题,所以就再发一个帖子,当然了,帖子的内容不是我写的,谁写的这些也无从查起了,但是其内容还是很有价值的,在这里对其人表示敬意。如其人看到了,感觉有不妥之处联系我,立刻删除,绝对尊重别人的成果,当然了,最好一直留着供是大家互相学习。 1)SATWE程序中的振型是以其周期的长短排序的。2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。6)当第二振型为扭转时当第二振型为扭转时当第二振型为扭转时当第二振型为扭转时,,,,说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大说明结构沿两个主轴方向的侧移刚度相差较大,,,,结构的扭转刚度相对其中一主轴(第一振型转角方向)的侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的侧移刚度则过小,此时宜适当削弱结构内部宜适当削弱结构内部宜适当削弱结构内部宜适当削弱结构内部沿沿沿沿““““第三振型转角方向第三振型转角方向第三振型转角方向第三振型转角方向””””的刚度的刚度的刚度的刚度,或适当加强结构外围或适当加强结构外围或适当加强结构外围或适当加强结构外围((((主要是沿第一振型转主要是沿第一振型转主要是沿第一振型转主要是沿第一振型转角方向角方向角方向角方向))))的刚度的刚度的刚度的刚度。7)某主轴方向的层间位移角小于限值(见高规表4.6.3,下同)较多时,对该主轴方向宜采用“加强结构外围刚度”的方法;某主轴方向的层间位移角大于限值较多时,对该主轴方向宜采用“削弱结构内部刚度”的方法;某主轴方向的层间位移角接近限值时,对该主轴方向宜同时采用“加强结构外围刚度”和“削弱结构内部刚度”的方法。8)在进行上述调整的同时,应注意使周期比满足高规4.3.5条的要求。9)当第一振型为扭转时,周期比肯定不满足规范的要求;当第二振型为扭转时,周期比较难满足规范的要求。【答1】简单的说,当扭转周期不在第一周期时,就是有一个轴的平面刚度超过了扭转刚度。把扭转周期下面那个轴的刚度调弱或把第一周期对应的轴刚度调强就解决了。举个例子,振型号周期转角平动系数(X+Y) 扭转系数1 2.1675 177.14 0.95 ( 0.95+0.00 ) 0.05 2 1.7877 13.5 3 0.08 ( 0.07+0.01 ) 0.92 3 1.5541 88.93 0.99 ( 0.00+0.99 ) 0.01 第一周期是X向的,刚度正常,第二周期是扭转周期,调这个,把第三周期对应的Y轴调弱点,让Y轴刚度小于扭转刚度。扭转就调过来了。【答2】理论上不错,实际上应尽量调小结构中部Y向刚度,要不在调大Y向周期时,扭转周期也在变大. 【答3】1,2周期平动,3周期扭转,不成主要削弱中间,加强周边,通过振型图看哪里强虚弱哪里,哪里弱加强哪里【答4】周边不宜过分加强.不然会引起内力过于集中,对基础和构件设计不利合理的结构应该有合适的刚度大小和布置.举个例

生命周期评价(LCA)方法概述

1 生命周期评价方法的概念和起源 生命周期评价(LCA)是一种评价产品、工艺或活动,从原材料采集,到产品生产、运输、销售、使用、回用、维护和最终处置整个生命周期阶段有关的环境负荷的过程。它首先辨识和量化整个生命周期阶段中能量和物质的消耗以及环境释放,然后评价这些消耗和释放对环境的影响,最后辨识和评价减少这些影响的机会。 生命周期评价(LCA)最早出现于二十世纪60年代末、70年代初,当时被称为资源与环境状况分析(REPA)。作为生命周期评价研究开始的标志是1969年由美国中西部资源研究所针对可口可乐公司的饮料包装瓶进行的评价研究,该研究使可口可乐公司抛弃了过去长期使用的玻璃瓶,转而采用塑料瓶包装。随后,美国ILLIN0IS大学、富兰克林研究会、斯坦福大学的生态学居研究所以及欧洲、日本的一些研究机构也相继开展了一系列针对其它包装品的类似研究。这一时期的工作主要由工业企业发起,研究结果作为企业内部产品开发与管理的决策支持工具。1990年由国际环境毒理学与化学学会(S ETAC)首次主持召开了有关生命周期评价的国际研讨会,在该次会议上首次提出了生命周期评价(Life Cycle Assessment,LCA)的概念。在以后的几年里,SETAC又主持和召开了多次学术研讨会,对生命周期评价(LCA)从理论与方法上进行了广泛的研究,对生命周期评价的方法论发展作出了重要贡献。1993年SETAC根据在葡萄牙的一次学术会议的主要结论,出版了一本纲领性报告“生命周期评价(LCA)纲要:实用指南”。该报告为LCA方法提供了一个基本技术框架,成为生命周期评价方法论研究起步的一个里程碑。 2 生命周期评价方法的主要内容 1993年SETAC在“生命周期评价纲要:实用指南”中将生命周期评价的基本结构归纳为四个有机联系的部分:定义目标与确定范围、清单分析、影响评价和改善评价,如图1所示。

平动与扭转周期

一、位移比、层间位移比控制 规范条文: 新高规的3.4.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。 高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求: 结构休系Δu/h限值 框架1/550 框架-剪力墙,框架-核心筒1/800 筒中筒,剪力墙1/1000 框支层1/1000 名词释义: (1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。 控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点: 1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。 结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移 Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移 Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。 Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值 即要求: Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5 Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5 Y方向相同

周期问题——《巧算“星期几”》

周期问题——《巧算“星期几”》 教学目标: 1、根据时间、日期的知识,解决一些时间问题。 2、掌握计算共经过的天数: 从头到尾总天数除以7得出的余数是几,就从第一周期第一项开始数几,即可推知是星期几。算头不算尾、算尾不算头的总天数除以7得出的余数是几,就从第一周期第一项的下一项开始数几,推知是星期几。 教学过程: 一、实践畅销 1、探究1: 平南小学从2011年12月1日到2011年12月20日举行第三届英语节活动,活动一共举行了多少天? T::请独立思考,比一比谁能快速得出结果? S1:20天S2:19天 T:谁的想法对?用什么方法验证? S:可以将日期列一列。 S:可以列算式20-1=19 19+1=20 T:为什么要加1?(头尾都要算,所以要加1) 小结:计算从某年(月日)起到某年(月、日)共经过的天数,一般要连头带尾算,也就是经过的年数(天数)=结尾数-开始数+1。 板书:经过的年数(天数)=结尾数-开始数+1 2、试一试:根据上面的方法,算算经过的天数。 2012年的春节从2012年1月22日到2012年1月31日,经过了()天。 2008年3月10日到2008年4月10日,经过了()天。 T:先独立思考,再将你的想法和同桌交流。 反馈:1)31-22+1=10天2)31-10+10+1=32天 3、探究2: 2012年第二学期从2月7日开学到2012年6月25日放假,一共有()天。 T:这道题的天数较多,你准备用什么办法解决? 先试一试,填一填,再集体反馈 反馈:可以用分段推算的方法。 注意考虑2012年是闰年,注意考虑到2月份有29天。 可以将这些天分段如下: 第一段:2月7日到2月29日,共23天。 第二段:3月共31天。 第三段:4月共30天 第四段:5月共31天 第五段:6月1日到6月25日共25天。 合计天数:23+31+30+31+25=140天 追问:如果开学那天是周二,放假那天是周几? S1:140/7=20,没有余数,所以是周二 S2:应该是周一。 T:有两种意见,哪一种对呢? 我们以一个周期来观察,可以发现第八天时,会与第一天的周几重复,也就是说当余数为1

高层结构周期比的调整

浅析高层结构周期比的调整 摘要:通过周期比的相关概念分析,指出控制周期比的目的,实际是控制结构的扭转效应;控制周期比的实质,实际是避免结构的扭转破坏。同时,对周期比计算时应注意的问题做了一些总结。重点阐述了几种周期比有效调整的方式方法。 关键词:周期比;扭转周期;平动周期;振型;扭转刚度;侧移刚度 abstract: through the analysis of related concepts of cycle ratio, and points out that the control cycle than the objective, practical is to control the torsion effect; the control cycle than real, practical is to avoid the damage of structure torsion. the methods for several cycles than effective adjustment method. keywords: periodic ratio;torsional period;translation period;vibration; torsional stiffness;lateral stiffness 中图分类号:tu973文献标识码:a 文章编号:2095-2104(2012)引言 国内、外历次大地震震害表明,平面不规则、质量与刚度偏心和抗扭刚度太弱的结构,在地震中极易遭受到严重的破坏。国内一些振动台模型试验结果也表明,过大的扭转效应会导致结构的严重破坏。限制结构的抗扭刚度成为限制结构扭转效应的一个主要方面,而限制结构的抗扭刚度不能太弱,关键是限制结构的周期比。

结构周期的调整方法-九

结构周期的调整方法九 扭转周期发生在第五阵型需不需要调整?说明了什么,扭转周期能不能发生在第一周期,如果发生在第一周期和第二周期怎么调整? 答:从结果上看抗扭刚度偏大,抗扭构件可削弱些造价上可能会经济些,也就是说出现在第五阵型是可能的,主要是不经济,具体要不要调整是各结构优化的问题,而不是结构安全问题。 个人认为扭转周期发生在哪个振型都是有可能的,是平动还是扭动,是侧向刚度与扭转刚度比值的体现,扭转周期越靠前,说明扭转刚度越大,结构越不安全,构件更容易因为扭转而破坏,因为竖向构件在受到扭矩总用时,离结构刚心越远的竖向构件将承受越大的剪力,构件的剪力破坏是脆性的,而目前结构设计均基于小震作用的组合内力进行配筋,中震和大震通过构造措施来实现的,例如强柱弱梁,强剪弱弯,也就是在结构在中震和大震作用下产生的扭矩作用将明显增大结构构件的剪力,造成竖向墙柱构件不足以抵抗水平剪力,从而导致发生脆性剪切破坏,甚至导致整体结构倒塌,当第一阵型是扭转周期的时候,扭转时间最长,使得发生扭转破坏的几率最大,非常危险。附: 第一或第二振型为扭转时的调整方法

1)SATWE程序中的振型是以其周期的长短排序的。 2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;高规8.1.7条7款“抗震设计时,剪力墙的布置宜使各主轴方向的侧移刚度接近”。 3)结构的刚度(包括侧移刚度和扭转刚度)与对应周期成反比关系,即刚度越大周期越小,刚度越小周期越大。 4)抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比关系,结构外围的抗侧力构件对结构的扭转刚度贡献最大。 5)当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,或沿两主轴适当削弱结构内部的刚度。

(完整word版)三年级奥数年月日(时钟问题)

思维拓展四:年月日问题 一、知识要点 (一)天数的计算方法:(1)数天数(2)用加减法计算。所求的天数经过不同的月份时,要采用分段计算的方法。 (二)求某个月份中的一段时间的总天数方法:“尾日期-首日期+1” (三)周期问题的解题方法: (1)找出排列规律,确定排列周期。 (2)确定排列周期后,用总数除以周期。 ①如果没有余数,正好有整数个周期,那么结果为周期里的最后一个 ②如果有余数,即比整数个周期多n个,那么结果为下一个周期的第n个。 二、典型例题 例【2】2008年元旦是星期二,那么,2012年元旦是星期几? 分析:从2008年元旦到2012年元旦这四年中,2008年是闰年,其余三年是平年.四年的天数加上2012年元旦这一天,共有 366+365×3+1=1462(天) 一共是1462÷7=208(周)……6(天) 从星期二开始算,第六天是星期日.所以,2012年元旦是星期日.

注:一个星期有7天一个月最少有28天,最多有31天,是4个星期零3天(31÷7=4……3)。也就是说,一个月中无论是星期几,最少有4个,最多有5个。

例【6】镜子里的时间 前几天,我对着镜子整理衣服的时候,意外的发现,镜子里闹钟的指针竟然与桌上闹钟的指针正好相反。我睁大眼睛看了好一会。之后,我拨弄着闹钟发现:当我把时间拨到了3时的时候,镜子里反射出的时间不是3时而是9时!我很好奇,又把时间拨到1时,发现镜子里的时间指向11时;然后把时间拨到3时30分,镜子里的时间是8时30分。我又这样反复试验,观察了好几次,惊喜的发现了一个规律,那就是: 每次实际时间和镜子里的时间,相加都是12时! 【巩固】 (1)小亮要画一幅画,刚开始画时,他从镜子中看到钟面上的时刻是6时45分,当他画完时,看真正的时钟也是6时45分,小亮画画用了多长时间? (2)早上醒来,明明从镜子里看到钟面上的时刻是6:30.你知道钟面上的实际时刻是多少吗? 【练习】 1.在一年里连续两个月共有60日的是哪两个月? 2.如果今天是星期二,那么从明天开始,第32天是星期几? 3.昨天是9日,今天是星期三,29日是星期几

三年级下册数学素材-根据年、月、日推算是星期几的公式 人教新课标(2014秋)

人教版小学三年级数学下册根据年、月、日推算是星期几的公式 有时候,想知道公元某年某月某日是星期几,可以用下面的公式算出来: 这里的方括号表示只取商的整数部分。式中: x :这一年是公元多少年。 y :这一天是这一年的第几天。 s :星期几。不过要先除以7,再取余数。没有余数是星期日,余数是1、2、3、4、5、6,分别是星期一、星期二、星期三、星期四、星期五、星期六。 比如,2010年国庆节(10月1日)是星期几? x =2010。 y =31+28+31+30+31+30+31+31+30+1=31×5+30×3+28+1=274。 s =2010-1+502-20+5+274=2770,2770÷7余5。 所以,2010年国庆节是星期五。 如果,你只想知道这个公式怎样用,到这儿就可以了。y x x x x s +?? ????-+??????--??????-+-=40011001411

而要想知道这个公式的道理是什么,那可就说来话长了。 “星期制”是公元321年3月7日,古罗马皇帝君士坦丁宣布开始实行的,并且规定这一天为星期一。实际上,就是把公元元年元旦(公元1年1月1日)规定为星期一。(相当于公式中的x=1,y=1,所以s=1。) 通常1年有365天,365÷7=52……1,就是说比52个星期多1天。所以,同一个日期,下一年是星期几,就要比上一年向后推1天。比如,上一年元旦是星期三,下一年元旦就是星期四。 “通常每过1年,把同一日期是星期几向后推1天”,是理解这个公式的关键。 要想知道某年某月某日是星期几,首先,要知道这一年元旦以公元元年元旦是星期一为起点,已经把星期几向后推了多少天,还要知道这一天是这一年的第几天。而要知道这一年元旦已经把星期几向后推了多少天,可以从公元元年到这一年已经过了多少年算起,先按1年向后推1天计算,再根据闰年的规定进行调整。 闰年的规定是:年份是4的倍数的一般都是闰年,其中,年份是整百数的一般不是闰年,只有年份是400的倍数的才是闰年。

判断具体某一天是星期几

最后写一个很有用的星期的介绍 如何计算某一天是星期几? ——蔡勒(Zeller)公式 历史上的某一天是星期几?未来的某一天是星期几?关于这个问题,有很多计算公式(两个通用计算公式和一些分段计算公式),其中最著名的是蔡勒(Zeller)公式。即w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1 公式中的符号含义如下,w:星期;c:世纪-1;y:年(两位数);m:月(m大于等于3,小于等于14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月来计算,比如2003年1月1日要看作2002年的13月1日来计算);d:日;[ ]代表取整,即只要整数部分。(C 是世纪数减一,y是年份后两位,M是月份,d是日数。1月和2月要按上一年的13月和14月来算,这时C和y均按上一年取值。) 算出来的W除以7,余数是几就是星期几。如果余数是0,则为星期日。 以2049年10月1日(100周年国庆)为例,用蔡勒(Zeller)公式进行计算,过程如下: 蔡勒(Zeller)公式:w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1 =49+[49/4]+[20/4]-2×20+[26×(10+1)/10]+1-1

=49+[12.25]+5-40+[28.6] =49+12+5-40+28 =54 (除以7余5) 即2049年10月1日(100周年国庆)是星期5。 你的生日(出生时、今年、明年)是星期几?不妨试一试。 不过,以上公式只适合于1582年10月15日之后的情形(当时的罗马教皇将恺撒大帝制订的儒略历修改成格里历,即今天使用的公历)。 过程的推导:(对推理不感兴趣的可略过不看) 星期制度是一种有古老传统的制度。据说因为《圣经·创世纪》中规定上帝用了六 天时间创世纪,第七天休息,所以人们也就以七天为一个周期来安排自己的工作和生 活,而星期日是休息日。从实际的角度来讲,以七天为一个周期,长短也比较合适。所 以尽管中国的传统工作周期是十天(比如王勃《滕王阁序》中说的“十旬休暇”,即是 指官员的工作每十日为一个周期,第十日休假),但后来也采取了西方的星期制度。

计算星期的算法

计算任何一天是星期几的几种算法 近日在论坛上看到有人在问星期算法,特别整理了一下,这些算法都是从网上搜索而来,算法的实现是我在项目中写的。希望对大家有所帮助。 一:常用公式 W = [Y-1] + [(Y-1)/4] - [(Y-1)/100] + [(Y-1)/400] + D Y是年份数,D是这一天在这一年中的累积天数,也就是这一天在这一年中是第几天。二:蔡勒(Zeller)公式 w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1 公式中的符号含义如下,w:星期;c:世纪;y:年(两位数);m:月(m大于等于3,小于等于14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月来计算,比如2003年1月1日要看作2002年的13月1日来计算);d:日;[ ]代表取整,即只要整数部分。相比于通用计算公式而言,蔡勒(Zeller)公式大大降低了计算的复杂度。 三:对蔡勒(Zeller)公式的改进 作者:冯思琮 相比于另外一个通用计算公式而言,蔡勒(Zeller)公式大大降低了计算的复杂度。不过,笔者给出的通用计算公式似乎更加简洁(包括运算过程)。现将公式列于其下: W=[y/4]+r (y/7)-2r(c/4)+m’+d 公式中的符号含义如下,r ( )代表取余,即只要余数部分;m’是m的修正数,现给出1至12月的修正数1’至12’如下:(1’,10’)=6;(2’,3’,11’)=2;(4’,7’)=5;5’=0;6’=3;8’=1;(9’,12’)=4(注意:在笔者给出的公式中,y为润年时1’=5;2’=1)。其他符号与蔡勒(Zeller)公式中的含义相同。 四:基姆拉尔森计算公式 这个公式名称是我给命名的,哈哈希望大家不要见怪。 W= (d+2*m+3*(m+1)/5+y+y/4-y/100+y/400) mod 7 在公式中d表示日期中的日数,m表示月份数,y表示年数。 注意:在公式中有个与其他公式不同的地方: 把一月和二月看成是上一年的十三月和十四月,例:如果是2004-1-10则换算成:2003-13-10来代入公式计算。

浅析建筑结构模型周期比的调整方法

浅析建筑结构模型周期比的调整方法 周期比是建筑结构中一个非常重要的控制信息,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不至于出现过大(相对于侧移)的扭转效应。随着时代发展,现阶段建筑方案越来越复杂,其平面形状也越来越多不规则,因此满足周期比也越来越困难。理解结构刚度和周期之间的关系,归纳周期比的调整方法,使结构布局更合理,缩短模型的调整时间,为周期比的调整提供参依据 标签:建筑结构;周期比;刚度 1、概述 周期比控制什么?如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不至于出现过大(相对于侧移)的扭转效应。一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性 周期比是新高規的3.4.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。 周期比不满足要求,如何调整?一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周期比不满足要求说明结构的扭转刚度相对于侧移刚度较大,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。 2、周期比的调整方法 当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴(一般都靠近X轴和Y轴)方向的侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。 当第二振型为扭转时,说明结构沿两个主轴方向的侧移刚度相差较大,结构的扭转刚度相对其中一主轴(侧移刚度较小方向)的侧移刚度是合理的;但相对于另一主轴(侧移刚度较大方向)的侧移刚度则过小,此时宜适当加强结构外围(主要是沿侧移刚度较大方向)的刚度,并适当削弱结构内部沿侧移刚度较大方向的刚度。 1)最有效原则:削弱内部刚度,增强周边刚度,尽量周边均匀对称连续; 2)有较大凹入的部位加拉梁;

人教2011版小学数学三年级预知未来的某一天是星期几

预知未来 今天是2016年的六一儿童节,看!同学们玩得可开心了。好学的丹丹小朋友问老师:“罗老师,今年的六一儿童节是星期三,那明年的六一儿童节还是星期三吗?”同学们,我们如何预知未来的某一天是星期几呢? 以往我们也遇到类似的问题,但经过的天数不多,我们是用数一数的方法来解决。但这里跨度为一年,显然,用数一数的方法太麻烦了!今天,就让我们一起去学习新的方法吧! 首先,让我们一起来回顾相关的知识: 掌握了这些知识,我们就能用好方法来解决此类问题!我们将从以下三种情况:同一月份、不同月份、不同年份对此类问题进行研究。 首先,我们先来看以下这种情况: ①同一月份: 已知2016年6月1日是星期三,问:2016年6月10日是星期几? 第一、先确定从第一天到最后一天一共经过几天。由于是在同一月份中,所以可以直接用10-1算出经过9天。 第二、确定经过的天数中包含几周,余几天。 由于一周有7天,用9÷7,求出经过1周,余2(天) 第三、以一周为期,列一个简单的日历表,看余数确定最后的结 果。 刚刚经过的一个星期就是从当周的周四到下周三,余数应该从下周四开始看起,余一天就是周四,余两天就是周五。由此得到:2016年6月10日是星期五。 刚刚我们解决的问题是计算同一月份中的某一天是星期几,那如果不是同一月份的呢?我们,一起来看看这个问题:

②不同月份: 已知2016年6月1日是星期三,问:2016年8月1日是星期几?同样的,我们先确定从第一天到最后一天一共经过几天。 由于6月是小月,七月是大月,所以一共有61天。 第二、确定经过的天数中包含几周,余几天。 61÷7,求出经过8(周),余5(天) 第三、列简单的日历表,看余数确定结果。 经过第一周是从周四到下周三(鼠标显示),第二周到第八周也是从周四到下周三,这里共有八周。余数从周四开始看起,余一天是周四,余两天是周五,余三天是周六,依次类推,所以余5天就是周一。 由此得到:2016年8月1日是星期一。通过日历表,我们知道每经过一个星期都是从周四到下周三,这里七天一个循环,这就是日期的周期性。根据周期性,我们知道无论经过几周都是从周四到下周三,所以这里可以直接通过余数,来确定结果。这道题余数是5,所以可根据日历表直接看出最后的日期是星期一。 相信经过刚才的学习,丹丹小朋友提的问题,你们已经知道怎么做了吧。接下来就让我们一起来解决这个问题: ③不同年份: 已知2016年6月1日是星期三,问:2017年6月1日是星期几? 第一、先确定经过几天。 从2016年6月1日到2017年6月1日刚好经过一年,这一年是365天还是366天呢? 停

周期比调整

周期比调整常遇问题分析 1.基本概念的理解 ●第一周期为平动的原因 按照动力学理论,结构第一周期只与结构本身质量、刚度和边界条件有关,与外界力无关,地震只是提供一个激振力,基底剪力是反映这个激振效果的一个指标,除此以外,结构周期还与地震参数有关,比如加速度的值。动力学上认为结构的第一周期应该是发生振型时所需能量最小(第二周期所需要的能量次之,依次往后),因此第一振型所需要的能量是最小且最容易发生的,这也接受了扭转振型不能出现在第一周期的原因。 ●主振型 主振型:对于地震作用引起的结构反映而言,每个参与振型都有一定的贡献,贡献最大的振型就是主振型,其中贡献指标是指基底剪力和应变能。一般而言,基底剪力的贡献大小比较直观。对于主振型来说,它可能不是最容易被激振起的振型,但是一旦被激振起,那么它就是结构振动的主导因素。 对于扭转为主的振型, 周期最长的称为第一扭转为主的振型, 其周期称为扭转为主的第一自振周期Tt 。平动为主的振型中, 根据确定的两个水平坐标轴方向X 、Y , 可区分为X 向平动为主的振型和Y 向平动为主的振型。假定X 、Y 方向平动为主的第一振型(即两个方向平动为主的振型中周期最长的振型) 的周期值分别记为T1 X和T1 Y,其中的大者位T1,小者为T2。 结构扭转第一自振周期与地震作用方向的平动第一自振周期之比值接近时,

由于振动耦联作用,扭转效应明显。对结构扭转为主的第一自振周期Tt 与平动为主的第一自振周期T1 之比值进行了限制的目的就是控制结构扭转刚度不能过弱, 以减小扭转效应。 关于T1和T2的要求,如下: (1)如果一个结构X,Y方向周期相差很大时,前几个平动周期往往是一个方向的(如均为X方向或均为Y方向)。此时要求Tt/T1<0.9即可; (2)如果一个结构X,Y方向周期相差不大时,应使第一第二振型周期以平动为主(此时第一第二振型分别是X,Y向),此时要求Tt/T1和Tt/T2均<0.9。 2.常遇问题分析及解决措施 ●问题1. 关于扭转周期发生在第五周期的调整 若第一扭转周期发生过于靠后,说明其结构抗扭刚度偏大,经济性差,宜削弱抗扭构件的刚度。扭转周期越靠前,说明扭转刚度越小,结构越不安全,构件更容易因为扭转而破坏,其原因是由于结构在受到扭矩时,离结构刚心越远的竖向构件将承受越大的剪力,易发生脆性破坏。当第一阵型是扭转周期的时候,扭转时间最长,使得发生扭转破坏的几率最大,结构风险性很大。 ●问题2.关于第一或第二振型为扭转时的调整方法 1)SATWE程序中的振型是以其周期的长短排序的。 2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”;高规7.1.1条条文说明“在抗震结构中……宜使两个方向的刚度接近”;

根据公历日期计算星期的公式

根据公历日期计算星期的公式 蔡勒(Zeller)公式:是一个计算星期的公式,随便给一个日期,就能用这个公式推算出是星期几。 公式如下: W = [C/4] - 2C + y + [y/4] + [13 * (M+1) / 5] + d - 1 公式中的符号含义如下: w:星期;(w对7取模得:0-星期日,1-星期一,2-星期二,3-星期三,4-星期四,5-星期五,6-星期六) c:世纪(前两位数) y:年(后两位数) m:月(m大于等于3,小于等于14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月来计算,比如2003年1月1日要看作2002年的13月1日来计算) d:日 [ ]代表取整,即只要整数部分。 下面以中华人民共和国成立100周年纪念日那天(2049年10月1日)来计算是星期几,过程如下: w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1 =49+[49/4]+[20/4]-2×20+[26×(10+1)/10]+1-1 =49+[12.25]+5-40+[28.6] =49+12+5-40+28 =54 (除以7余5) 即2049年10月1日(100周年国庆)是星期五。

再比如计算2006年4月4日,过程如下: w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1 =6+[6/4]+[20/4]-2*20+[26*(4+1)/10]+4-1 =-12 (除以7余2,注意对负数的取模运算!) 不过,以上的公式都只适合于1582年(我国明朝万历十年)10月15日之后的情形。 罗马教皇格里高利十三世在1582年组织了一批天文学家,根据哥白尼日心说计算出来的数据,对儒略历作了修改。将1582年10月5日到14日之间的10天宣布撤销,继10月4日之后为10月15日。 后来人们将这一新的历法称为“格里高利历”,也就是今天世界上所通用的历法,简称格里历或公历。 若要计算1582年10月4日及之前的日期是星期几,则公式为: y+[y/4]+[c/4]-2c+[26(m+1)/10]+d+3

生命周期评价

1 生命周期评价(LCA)的产生背景 生命周期评价(LCA),有时也称为“生命周期分析”、“生命周期方法”、“摇篮到坟墓”、“生态衡算”等。其最初应用可追溯到1969年美国可口可乐公司对不同饮料容器的资源消耗和环境释放所作的特征分析。该公司在考虑是否以一次性塑料瓶替代可回收玻璃瓶时,比较了两种方案的环境友好情况,肯定了前者的优越性。自此以后,LCA方法学不断发展,现已成为一种具有广泛应用的产品环境特征分析和决策支持工具。 最初LCA主要集中在对能源和资源消耗的关注,这是由于20世纪60年代末和70年代初爆发的全球石油危机引起人们对能源和资源短缺的恐慌。后来,随着这一问题不再象以前那样突出,其他环境问题也就逐渐进行人们的视野,LCA方法因而被进一步扩展到研究废物的产生情况,由此为企业选择产品提供判断依据。在这方面,最早的事例之一是70年代初美国国家科学基金的国家需求研究计划(RANN)。在该项目中,采用类似于清单分析的“物料——过程——产品”模型,对玻璃、聚乙烯和聚氯乙烯瓶产生的废物进行分析比较。另一个早期事例是美国国家环保局利用LCA方法对不同包装方案中所涉及的资源与环境影响所作的研究。 80年代中期和90年代初,是LCA研究的快速增长时期。这一时期,发达国家推行环境报告制度,要求对产品形成统一的环境影响评价方法和数据;一些环境影响评价技术,例如对温室效应和资源消耗等的环境影响定量评价方法,也不断发展。这些为LCA方法学的发展和应用领域的拓展奠定了基础。虽然当时对LCA的研究仍局限于少数科学家当中,并主要分布在欧洲和北美地区,但是那时对LCA的研究已开始从实验室阶段转变到实际中来了。 90年代初期以后,由于欧洲和北美环境毒理学和化学学会(SETAC)以及欧洲生命周期评价开发促进会(SPOLD)的大力推动,LCA方法在全球范围内得到较大规模的应用。国际标准化组织制定和发布了关于LCA的ISO14040系列标准。其他一些国家(美国、荷兰、丹麦、法国等)的政府和有关国际机构,如联合国环境规划署(UNEP),也通过实施研究计划和举办培训班,研究和推广LCA的方法学。在亚洲,日本、韩国和印度均建立了本国的LCA学会。此阶段,各种具有用户友好界面的LCA软件和数据库纷纷推出,促进了LCA的全面应用。 从90年代中期以来,LCA在许多工业行业中取得了很大成果,许多公司已经对他们的供应商的相关环境表现进行评价。同时,LCA结果已在一些决策制订过程中发挥很大的作用。 生命周期评价(LCA)作为一种产品环境特征分析和决策支持工具技术上已经日趋成熟,并得到较广泛的应用。由于它也同时是一种有效的清洁生产工具,在清洁生产审计、产品生态设计、废物管理、生态工业等方面发挥应有的作用。 2 生命周期分析(LCA)的定义 关于LCA的定义,尽管存在不同的表述,但各国际机构目前已经趋向于采用比较一致的框架和内容,其总体核心是:LCA是对贯穿产品生命全过程——从获取原材料、生产、使用直至最终处置——的环境因素及其潜在影响的研究。 这里给出UNEP的定义: “LCA是评价一个产品系统生命周期整个阶段——从原材料的提取和加工,到产品生产、包

相关主题
文本预览
相关文档 最新文档