经典:常用铸造合金及其熔炼
- 格式:ppt
- 大小:2.35 MB
- 文档页数:76
铝合金熔炼与铸造铝合金是一种常见且广泛使用的金属材料,具有较低的密度、良好的导热性和耐腐蚀性,因此在许多行业中得到了广泛的应用。
铝合金的熔炼和铸造是制造铝合金制品的关键步骤。
本文将介绍铝合金熔炼和铸造的基本原理、工艺和注意事项。
一、铝合金熔炼1.1 熔炼原理铝合金熔炼的主要原理是将铝及其他合金元素加热至其熔点,使其融化成液态,以便进行后续的铸造工艺。
铝的熔点较低,约为660°C,因此相对较容易熔化。
而其他合金元素的加入可以改变铝合金的性质,例如提高其强度、耐腐蚀性或者改善加工性能。
1.2 熔炼工艺铝合金熔炼工艺一般分为两种:批量熔炼和连续熔炼。
批量熔炼是将一定量的铝和其他合金元素加入炉内,通过加热熔化成液态,并进行充分混合。
这种方法适用于小规模生产,常用的炉型有电阻炉和燃气炉。
而连续熔炼是将铝合金材料加入熔炉的顶部,通过炉内的加热和熔化过程,使得底部的液态铝合金不断流出。
这种方法适用于大规模生产,常用的炉型有回转炉和隧道炉。
1.3 熔炼注意事项在铝合金的熔炼过程中,需要注意以下几个方面。
首先,炉内的温度需要控制在适当的范围内,以避免过度燃烧或者过度冷却。
其次,需要保持良好的熔炼环境,防止氧气、水分或杂质等对炉内材料的影响。
最后,在加入其他合金元素时,需要根据配比和工艺要求进行准确的添加,以保证最终铝合金的性能。
二、铝合金铸造2.1 铸型设计铝合金铸造的第一步是进行铸型设计。
铸型设计的目的是根据最终产品的形状和要求,确定合适的铸造方法和材料,以及适当的铸型结构。
常见的铸型结构有砂型、金属型和陶瓷型等。
其中砂型是最常用的铸造方法,可以应用于各种形状和尺寸的产品。
2.2 铸造工艺铝合金的铸造工艺可以分为传统铸造和压铸两种。
传统铸造是将熔融的铝合金液体倒入铸型中,并通过自然冷却形成最终产品。
这种方法适用于小批量生产,但精度和表面光滑度相对较低。
压铸是将高压液压机将铝合金液体注入铸型中,通过压力传递和快速冷却,实现快速成型。
铸造合金材料及其熔炼知识全部在这里了铸造合金是高温合金合金化程度较高,不易变形而采用精密铸造成型的合金,属于高温合金中高温强度最高的一种;也是适于熔融状态下充填铸型获得一定形状和尺寸铸件毛坯的合金。
在有色金属合金中,铜合金、铝合金、镁合金、锌合金等都可用于铸造。
有色金属铸件广泛使用于机器制造、航空、汽车、建筑等工业中。
铸钢件在钢铁材料的使用中所占份额甚少,钢铁厂大多以钢材形式供货,因之冶炼厂大多和加工厂设于一地。
有色金属铸件在有色金属材料的使用中所占份额很大(有时几近半数),形成庞大复杂的铸造合金系列。
1 灰铸铁灰铸铁通常是指具有片状石墨的灰口铸铁,这中铸铁具有一定的机械性能、良好的铸造性能以及其它多方面的优良性能,因而在机械制造中业获得最广泛的应用。
表2为灰铸铁的新的国家标准。
该标准是以灰铸铁的抗拉强度作为分级依据的。
由于灰铸铁对冷却速率的敏感性(壁厚效应),同一种牌号铸铁在不同铸件壁厚条件下的实际强度有很大的差别(薄壁与厚壁之间在强度上的差别达50-80MPa)。
表2 灰铸铁分级2 球墨铸铁及蠕墨铸铁球墨铸铁和蠕墨铸铁一般是用稀土镁合金对铁液进行处理,以改善石墨形态,从而得到比灰铸铁有更高机械性能的铸铁。
球墨铸铁依照其基体和性能特点而分为六种:即铁素体(高韧性)球墨铸铁,珠光体(高强度)球墨铸铁,贝氏体(耐磨)球墨铸铁,奥氏体一贝氏体(耐磨)球墨铸铁,马氏体一奥氏体(抗磨)球墨铸铁及奥氏体(耐热、耐蚀)球墨铸铁。
蠕墨铸铁具有不同比例的珠光体—铁素体基体组织。
铸铁性能与其石墨的蠕化程度(蠕化率)及基体有关。
在石墨蠕化良好条件下,珠光体蠕墨铸铁的强度和硬度较高,耐磨性强。
适于制造耐磨零件,如汽车的刹车鼓等。
而铁素体蠕墨铸铁的导热性较好,在高温作用下,不存在珠光体分解问题,组织较稳定,适用于制造在高温下工作、需要有良好的抗热疲劳能力、导热性的零件,如内燃机汽缸盖、进排气岐管等。
3 可锻铸铁可锻铸铁是将白口铸铁通过固态石墨化热处理(包括有或无脱碳过程)得到的具有团絮状石墨的铁碳合金。
第一章:根据各元素对共晶点实际碳量的影响,将这些元素的量折算成碳量增减,谓之碳当量,以CE表示,只考虑Si、P时,CE=C+1/3(Si+P)共晶度:铸铁偏离共晶点的程度还可用铸铁的实际含碳量和共晶点的实际含碳量的比值来表示,这个比值称为共晶度,以S c表示。
S c =铁/(4.26%-1/3(Si+P))如S c>1过共晶、S c=共晶S c<1为亚共晶铸铁六种石墨分布分类1、片状:形成条件:石墨成核能力强,冷却速度慢,过冷度小2、菊花状:实际上中心是D形外围是A形,开始时过冷大,成核条件差、先出D型,后期放出凝固潜热,过冷减小而析出A型3、块片状:过共晶时在冷速较小时形成4、枝晶点状:冷速打过冷大导致G强烈分枝5、枝晶片状冷速小初生γ枝晶6、星状:过共晶冷速较大。
第二章:金相组织由金属基体和片状石墨组成。
主要金属基体:p F 及p+F石墨片以不同的数量、大小、形态分布于基体中。
此外,还有少量非金属夹杂物:硫化物、磷化物等。
硫化物:1、硫可以以硫化铁的形式完全溶解于铁液中,但凝固时硫在固溶体或渗碳体中的溶解度很小。
锰较低、冷速较大时,形成三元硫化物或以富铁硫化物形态存在共晶团晶界上,能降低铸铁的强度性能2、当锰量较高时,则形成高熔点的MnS或S质点,对强度性能则无多大影响。
3、磷共晶常沿晶团晶界呈网状、岛状或鱼骨状分布。
它的性质硬而脆,是铸铁的性能降低,脆性增加,因此质量要求高的铸件常要限制磷的含量。
灰铸铁的性能特点1、强度性能:一方面由于它在铸铁中占有一定量的体积,是金属基体承受负荷的有效面积减少;另一方面,更为重要的是,在承受负荷时造成应力集中现象。
石墨的缺口作用主要取决于石墨的形状和分布,尤其形状为主,石墨的缩减作用取决于石墨的大小、数量和分布。
灰铸铁的硬度取决与基体,细化共晶团的措施是提高铸铁力学性能的有力手段。
灰铸铁中由于有大量的石墨片存在,减少了对外来缺口对力学性能影响的敏感性。
2.硬度分散。