人教版版七年级数学上册 具有相反意义的量 教案
- 格式:doc
- 大小:92.50 KB
- 文档页数:6
相反数人教版数学七年级上册教案一、教学目标1.知识与技能:(1)理解相反数的概念。
(2)掌握相反数的性质。
(3)能够运用相反数解决实际问题。
2.过程与方法:(1)通过观察、操作、思考,探索相反数的规律。
(2)通过合作交流,提高解决问题的能力。
3.情感态度与价值观:(1)培养学生对数学的兴趣。
(2)培养学生的合作精神。
二、教学重点与难点1.教学重点:(1)相反数的概念。
(2)相反数的性质。
2.教学难点:(1)相反数在实际问题中的应用。
三、教学过程第一环节:导入新课1.谈话导入:同学们,我们在学习数学过程中,经常会遇到一些具有相反意义的量,比如东西和南北、收入和支出等。
那么,在数学中,有没有一种数表示相反的意义呢?今天,我们就来学习相反数。
第二环节:新课教学1.相反数的概念(1)引导学生观察生活中的相反现象,如温度计上的正负温度。
(2)引导学生理解相反数的概念:只有符号不同的两个数叫做互为相反数,0的相反数是0。
2.相反数的性质(1)引导学生探究相反数的性质:互为相反数的两个数相加等于0。
(2)举例验证:-3和3互为相反数,-3+3=0。
3.相反数在实际问题中的应用(1)引导学生分析实际问题,如:小明从家出发,向东走3米,再向西走5米,问小明最终距离家的位置是多少米?(2)引导学生运用相反数解决问题:3+(-5)=-2,即小明最终距离家的位置是2米。
第三环节:课堂练习1.基本练习:判断下列各数是否互为相反数。
(1)-5和5(2)-2和3(3)0和-12.提高练习:已知数a的相反数是-3,求a的值。
第四环节:课堂小结1.本节课我们学习了相反数的概念和性质,知道了只有符号不同的两个数互为相反数,互为相反数的两个数相加等于0。
2.我们还学会了运用相反数解决实际问题。
第五环节:课后作业1.完成课后练习题。
2.思考:生活中还有哪些相反的现象可以用相反数表示?四、教学反思本节课通过生活实例引入相反数的概念,让学生在实际问题中发现和运用相反数。
初中数学《具有相反意义的量》教案1.1 具有相反意义的量教学目的:1、知识与技艺〔1〕经过实例,感受引入正数的必要性和合理性,能运用正正数表示生活中具有相反意义的量。
〔2〕了解有理数的意义,体会有理数运用的普遍性。
2、进程与方法经过实例的引入,看法到正数的发生是来源于消费和生活,会用正、正数表示具有相反意义的量,能按要求对有理数停止分类。
重点、难点:1、重点:正数、正数有意义,有理数的意义,能正确对有理数停止分类。
2、难点:对正数的了解以及正确地对有理数停止分类。
教学进程:一、创设情形,导入新课大家知道,数学与数是分不开的,如今我们一同来回想一下,小学里曾经学过哪些类型的数?先生答后,教员指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实践需求而发生的.为了表示一团体、两只手、……,我们用到整数1,2,……为了表示〝没有人〞、〝没有羊〞、……,我们要用到0.但在实践生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、协作交流,解读探求1、某市某一天的最高温度是零上5℃,最高温度是零下5℃。
要表示这两个温度,假设只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
理想生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,〝高于〞和〝低于〞其意义是相反的。
〝运进〞和〝运出〞,其意义是相反的。
存折上,银行是怎样区分存款和取款的?同窗们能举例子吗?先生回答后,教员提出:怎样区别相反意义的量才好呢?待先生思索后,请先生回答、评议、补充。
教员小结:同窗们成了发明家.甲同窗说,用不同颜色来区分,比如,白色5℃表示零下5℃,黑色5℃表示零上5℃;乙同窗说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,5℃表示零下5℃…….其实,中国现代数学家就曾经采用不同的颜色来区分,古时叫做〝正算黑,负算赤〞.如今这种方法在记账的时分还运用.所谓〝赤字〞,就是这样来的。
1.1 具有相反意义的量(教案)1.能用正、负数表示生活中具有相反意义的量;(重点)2.理解正负数的意义,会判断一个数是正数还是负数;(重点)3.理解有理数的意义,会对有理数进行分类.(难点)一、情境导入今年年初,一股北方的冷空气大规模地向南侵袭我国,造成大范围急剧降温,部分地区降温幅度超过10℃,南方有的地区的温度达到-1℃,北方有的地区甚至达-25℃,给人们生活带来了极大的不便.这里出现了一种新数——负数,负数有什么特点?你知道它们表示的实际意义吗?二、合作探究探究点一:正、负数的认识【类型一】 区分正数和负数下列各数哪些是正数?哪些是负数?-1,2.5,+43,0,-3.14,120,-1.732,-27中,正数是______________;负数是______________.解析:区分正数和负数要严格按照正、负数的概念,注意0既不是正数也不是负数.在-1,2.5,+43,0,-3.14,120,-1.732,-27中,负数有-1,-3.14,-1.732,-27;正数有2.5,+43,120;0既不是正数也不是负数.故答案为2.5,+43,120;-1,-3.14,-1.732,-27. 方法总结:对于正数和负数不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数,要看其本质是正数还是负数.0既不是正数也不是负数,后面会学到+(-3)不是正数,-(-2)不是负数.【类型二】 对数“0”的理解下列对“0”的说法正确的个数是( )①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数;⑤0是自然数.A .3B .4C .5D .0 解析:0除了表示“无”的意义,还表示其他的意义,所以②不正确;0既不是正数也不是负数,所以④不正确;其他的都正确.故选A.方法总结:“0”的意义不要单纯地认为表示“没有”的含义,其实“0”表示的意义非常广泛,比如:冰水混合物的温度就是0℃,0是正、负数的分界点等.【类型三】 对正、负数有关的规律探究观察下面依次排列的一列数,请接着写出后面的3个数,你能说出第10个数、第105个数、第2016个数吗?(1)一列数:1,-2,3,-4,5,-6,______,______,______,…;(2)一列数:-1,12,-3,14,-5,16,____,____,____,…. 解析:(1)对第n 个数,当n 为奇数时,此数为n ;当n 为偶数时,此数为-n ;(2)对第n 个数,当n 为奇数时,此数为-n ;当n 为偶数时,此数为1n.故(1)中应填7,-8,9;第10个数为-10,第105个数是105,第2016个数是-2016;(2)中应填-7,18,-9;第10个数为110,第105个数是-105,第2016个数是12016. 方法总结:解答探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数字排列的特征.探究点二:具有相反意义的量【类型一】 用正、负数表示具有相反意义的量如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0mB .0.5mC .-0.8mD .-0.5m解析:由水位升高0.8m 时水位变化记作+0.8m ,根据相反意义的量的含义,则水位下降0.5m 时水位变化就记作-0.5m ,故选D.方法总结:用正、负数表示相反意义的量时,要抓住基准,比基准量多多少记为“+”的多少,少多少记为“-”的多少.另外通常把“零上、上升、前进、收入、运进、增产”等规定为正,与它们意义相反的量表示为负.【类型二】 用正、负数表示误差的范围某饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL ,511mL ,489mL ,473mL ,527mL ,问抽查产品的容量是否合格?解析:+30mL 表示比标准容量多30mL ,-30mL 表示比标准容量少30mL.则合格范围是指容量在470~530(mL)之间.解:“500±30(mL)”是500mL 为标准容量,470~530(mL)为合格范围.503mL ,511mL ,489mL ,473mL ,527mL 在合格范围内,抽查产品的容量是合格的.方法总结:解决此类问题的关键是理解“500±30(mL)”的含义,即500是标准,“+”表示比标准多,“-”表示比标准少.探究点三:有理数的概念及分类把下列各数填入相应的括号内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1 正数{ };负数{ }; 整数{ };分数{ }.解析:要将各数填入相应的括号里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的括号时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数⎩⎨⎧⎭⎬⎫8,334,3101,2,3.14,37,0.618,…; 负数⎩⎨⎧⎭⎬⎫-10,-712,-10%,-67,-1; 整数{-10,8,2,0,-67,-1};分数⎩⎨⎧⎭⎬⎫-712,334,-10%,3101,3.14,37,0.618. 方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一类数;(2)逐个填写相应括号,从给出的数中找出属于这个类型的数,避免出现漏数的现象.三、板书设计1.正数和负数⎩⎪⎨⎪⎧正、负数的定义具有相反意义的量0的含义2.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.3.有理数的分类 ①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数 有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分.使学生经历讨论、探索、交流、合作等过程获得新知.在有理数分类的教学中,要给学生较大的思维空间,促进学生积极主动地参加学习活动,亲自体验知识的形成过程,避免教师直接分类带来学习的枯燥性.要有意识地突出“分类讨论”数学思想的渗透,明确分类标准不同,分类的结果也不相同,且分类结果应是无遗漏、无重复的.。
人教版数学七年级上册1.2.1《相反意义的量》教学设计一. 教材分析《相反意义的量》是人教版数学七年级上册第一章第二节的第一课时,本节课主要让学生理解相反意义的量的概念,学会用正负数来表示相反意义的量,并能够进行简单的运算。
教材通过引入生活中的实例,让学生感受相反意义的量,从而引出相反意义的量的定义及表示方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,他们对数学概念的理解和运用有一定的基础。
但同时,七年级的学生刚接触初中数学,对于一些抽象的数学概念可能还有一定的困难,因此,在教学过程中,教师需要注重引导学生从实际生活出发,理解相反意义的量的概念。
三. 教学目标1.理解相反意义的量的概念,能够用正负数来表示相反意义的量。
2.能够进行简单的正负数运算。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.相反意义的量的概念的理解。
2.正负数的表示方法。
3.正负数的运算。
五. 教学方法1.实例引入:通过生活中的实例,引导学生感受相反意义的量,从而引出相反意义的量的概念。
2.小组讨论:让学生分组讨论,共同探讨相反意义的量的表示方法,培养学生的合作意识。
3.练习巩固:通过大量的练习题,让学生巩固相反意义的量的概念和正负数的表示方法及运算。
4.启发引导:教师引导学生从实际生活出发,思考相反意义的量的概念,培养学生的逻辑思维能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实例和相关的练习题。
2.练习题:准备适量的练习题,用于巩固学生的学习。
3.教学黑板:准备教学黑板,用于板书。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,如温度、高度等,引导学生感受相反意义的量,并提问:“什么是相反意义的量?如何用数学符号来表示相反意义的量?”2.呈现(10分钟)教师通过讲解,呈现相反意义的量的定义及表示方法,让学生理解并掌握。
3.操练(15分钟)教师让学生进行一些简单的练习题,让学生运用所学知识,巩固相反意义的量的概念和正负数的表示方法及运算。
具有相反意义的量数学教案一、教学目标1. 让学生理解相反意义的量的概念,能够识别和表示实际问题中的相反意义量。
2. 培养学生运用正负数解决实际问题的能力,提高学生的数学思维能力。
3. 通过对相反意义量的学习,培养学生积极探索、合作交流的学习态度。
二、教学内容1. 相反意义的量的定义及表示方法。
2. 相反意义量在实际问题中的应用。
三、教学重点与难点1. 重点:相反意义量的概念及其表示方法。
2. 难点:相反意义量在实际问题中的应用。
四、教学方法1. 采用情境教学法,引导学生从实际问题中发现相反意义量。
2. 运用合作学习法,鼓励学生分组讨论,共同解决问题。
3. 利用多媒体辅助教学,直观展示相反意义量的应用。
五、教学准备1. 准备相关实际问题,用于引导学生探究相反意义量。
2. 准备多媒体课件,展示相反意义量的概念及应用。
3. 准备练习题,巩固学生对相反意义量的掌握。
【教学过程】1. 导入:利用多媒体展示一组相反意义的量,如上升和下降,加热和冷却,收入和支出等,引导学生思考这些量的特点。
2. 新课讲解:介绍相反意义量的定义,讲解如何用正负数表示相反意义量,并通过示例进行演示。
3. 实例分析:给出一些实际问题,让学生运用相反意义量进行解答,如温度变化、海拔高度等。
4. 练习巩固:布置一些练习题,让学生独立完成,检验对相反意义量的掌握程度。
5. 总结拓展:对本节课的内容进行总结,引导学生思考相反意义量在实际生活中的应用,布置课后作业。
【课后作业】1. 总结相反意义量的定义及其表示方法。
2. 举例说明相反意义量在实际问题中的应用。
3. 完成练习题,巩固所学知识。
六、教学活动1. 小组讨论:让学生分组讨论生活中遇到的相反意义量,如借贷、盈利亏损等,分享彼此的想法和理解。
2. 游戏互动:设计一个简单的数学游戏,如正负数卡片游戏,让学生在游戏中进一步理解和掌握相反意义量的概念。
3. 情境模拟:创设一个具体的情境,如购物时找零,让学生运用相反意义量进行计算,增强实际应用能力。
2023年《正数和负数教案》2023年《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。
-9、-4.5等都叫负数; +7、+988等都叫正数。
你会读吗?请你读给大家听。
注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。
(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。
(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。
0是正负数的分界。
2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
11具有相反意义的量
教材分析:
1.本章主要内容是有理数的有关概念及有理数的运算.有理数是在小学学习了数的初步知识和数的加减乘除计算的基础上进行学习的,是中学数学学习的基础,也是研究其他学科的工具.通过学习本章有理数的有关概念(包括有理数的定义、分类、相反数、绝对值、倒数等)及有理数的运算,从而掌握有理数的加减乘除混合运算.正确理解有理数的有关概念,熟练掌握有理数的运算法则,将有利于本章的学习与深化,对今后的学习也具有重要的战略意义.
2.本章的设计思路是:
(1)引导学生观察现实生活中的有关现象,自然地引入负数,让学生感受到负数的引入的确源自生活的需要,借助数轴理解相反数、绝对值等概念.
(2)创设丰富的问题情境,引入有理数的运算.通过归纳,学生总结运算法则和运算律.教材还设计了许多利用有理数运算解决实际问题的内容,使学生进一步体会数学知识与现实世界的联系.
教学重点:教学难点:
教学目标
教学目标分析
知识与技能
1.在具体的情境中,理解有理数及其运算的意义.
2.能用数轴上的点表示有理数,会表示有理数的大小.
3.借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.
4.经历探索有理数运算法则和运算律的过程,掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能运用运算律简化运算.
过程与方法
1.在具体情境中认识有理数的有关概念;
2.理解有理数及其运算对于现实生活的作用;
3.联系生活实际,培养学生的探索精神;
4.发展观察、猜想、验证等能力,初步形成数形结合的思想.
情感态度与价值观
通过情境引导学生投入学习活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与解决问题的能力.
教学重点:有理数的概念和有理数的运算.
教学难点:对数轴与绝对值定义及有理数的运算法则和运算律的理解.
教学方法与策略的选择
基础教育课程改革的目标之一是改变课程实施中过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、自主学习、合作探究,培养学生分析问题和解决问题的能力,获取新知识的能力.
第1课时具有相反意义的量
教学目标:
1.理解正数与负数的意义.
2.在现实的情景中了解有理数的意义,体会其应用的广泛性.
3.应用正、负数表示现实生活中具有相反意义的量,会对有理数进行正确分类.教学重点:理解正负数的意义。
教学难点:应用正负数表示现实生活中具有相反意义的量。
情感态度与价值观:通过有关正负数实例应用,让学生理解数学来源于生活,提高学生学习数学的兴趣.
教学过程:
一、快乐启航
1.下列各数中,负数有( )
A.2
B.0.9
C.-2012
D.
5 3 7
2.存入银行2000元,记做+2000元,那么支出1500元记做__________.
3.最小的自然数是_______.
二、我会自主学习:
自学P2—3动脑筋
举例具有相反意义的量的例子:_______________________.
正数:______________________________________________.
负数:______________________________________________.
非负数:____________________________________________.
特别强调:0既不是正数,也不是负数.
活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
4.如果80m表示“向东走80m”,那么“向西走60m”可以表示为()
A .-80 m
B .-60m C.80m D . 60m
5.下列各数:-3,0,+5,
2
3
11
-,+3.1,
2
1
-,π,-2013,负数的有()
A.2个B.3个C.4个D.5个
6. 下列结论中正确的是()
A.0既是正数,又是负数B.O是最小的正数
C.0是最大的负数D.0既不是正数,也不是负数
教师指出:用正负数表示具相反意义的量时,谁用正数表示,谁用负数表示,是人为的,习惯上把零上温度、上升、向东、向右、收入等规定为正,而把与它相反的量记为负.
三、我会合作交流探究
学生讨论:从小学到现在,我们学过哪些数?并进行归类.
P4 议一议
7.整数:_________________;分数:________________;有理数:____________________.
8. 把下列各数分别填在相应的括号里.
+9.2,-
1
2
9
,5.12
g
,0,-4.19,8,-15,
1
17
,-1001
(1)正数集合:(…);(2)整数集合:(…);
(3)负分数集合:( … );
(4)非负数集合:( … ).
四、我会实践应用
9. 下列各对量不具有相反意义的是 ( )
A.存入1000元和取出900元
B.上升1400米和下降900米
C.运进粮食500吨和运出粮食200吨
D.生产成本增加10万元和盈利5万元
10. 下列说法正确的是 ( )
A.正整数、负整数统称为整数;
B.正分数、负分数统称为分数
C.正有理数、负有理数统称为有理数;D 以上答案都正确
11. 如图所示表示整数集合与负数集合,则图中重合部分A 处可以填入的数是 .(只
需填入一个满足条件的数即可)
12范围.
五、我会归纳总结
1.正数:__________________________;负数:____________________________; 非负数:____________________________________________.
2. 整数:_________________;分数:________________;有理数:____________________.
3. 有理数的分类:
A
分数集 负数集
六、快乐摘星台
1.选择题(每小题3个*)
①如果向东为正,那么 -50m表示的意义是()A.向东行进50m C.向北行进50m
B.向南行进50m D.向西行进50m
②下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数
C.0是最大的负数D.0既不是正数,也不是负数
2.填空题(每小题3个*)
①.在数
13
2013
,-11,π, 0,
1
2
7
-,3.1415中,有理数的个数有()
A.3个
B.4个
C.5个
D.6个
②小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记
①有一座3层楼房失火了,一位消防队员搭上梯子要爬到3层上去抢救重要东西。
当他爬到梯子正中一级时,二楼的窗户喷出火来,他往下退了3级,等火过去了,他又爬上7级,这时屋顶有一块砖掉下来,他又往后退了2级,幸亏砖没打着他,他又爬上了6级。
这时他距离最高一层还有3级。
请问,这个梯子一共几级?课外作业:课本习题P5 习题 1.1第1、2、3题
板书设计:见归纳总结.。