初中数学《具有相反意义的量》教案
- 格式:docx
- 大小:20.27 KB
- 文档页数:6
1.1具有相反意义的量教学设计(含5篇)第一篇:1.1 具有相反意义的量教学设计1.1具有相反意义的量教学目标:1.通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量;2.理解有理数的意义,体会有理数应用的广泛性.重点、难点:1.重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类.2.难点:对负数的理解以及正确地对有理数进行分类.教学过程:一、创设情景,导入新课大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,…… 为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示.二、合作交流,解读探究1.某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多……例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.存折上,银行是怎么区分存款和取款的?同学们能举例子吗?2.给出新的整数、分数概念引进负数后,数的范围扩大了.把正整数、负整数和零统称为整数,正分数、负分数统称为分数.3.给出有理数概念整数和分数统称为有理数.4.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零.在有理数范围内,正数和零统称为非负数.向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.⎧1、2、3......⎧正整数如:⎪⎪整数⎪零⎨⎪⎪负整数如:-1、-2、-3......⎪⎩⎪有理数⎨⎪12⎧⎪正分数:如:,,5.2,......⎪⎪23⎪分数,⎨⎪13⎪负分数,如:-,-3.5,-,......⎪⎪57⎩⎩⎧正有理数⎪有理数⎨零⎪负有理数⎩三、应用迁移,巩固提高例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+173,0.33,0,-,-956课堂练习:课本P5练习四、总结反思引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数,负数小于0.0既不是 2 正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.五、课后作业课本P5习题1.1 A第1、2、3、4、5题.教学后记第二篇:具有相反意义的量数学教案具有相反意义的量数学教案教学内容:§1.1 具有相反意义的量教学目标:1、知识与技能(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
具有相反意义的量教案教学主题:相反意义的量教学目标:1.让学生了解相对数量的概念并且能够辨别相反意义的量。
2.帮助学生掌握常见相反意义的量词和表达方式。
3.提高学生的思维逻辑和批判性思维能力。
教学准备:1. PowerPoint 简介。
2.相关的例子和练习题。
3.小组合作学习材料。
教学过程:一、导入(15分钟)1. 使用 PowerPoint 简介引起学生的兴趣。
2.分享一些常见的相反意义的量词,如大和小、重和轻等。
3.提出以下问题:你能够想到其他的相反意义的量词吗?二、概念解释和示例(30分钟)1.解释相对数量的概念,即两个或多个事物之间的比较。
2.列举一些常见的相对数量比较,如长和短、高和矮等,并给出示例。
3.让学生提供其他的相对数量比较,并讨论其意义和使用方式。
三、探索活动(30分钟)1.将学生分成小组,让他们合作完成一个相对数量的任务。
2.每组选择两个物体并且讨论它们之间的相反意义的量词。
3.让每个小组展示他们选择的相反意义的量词,并陈述其理由。
四、总结和反思(20分钟)1.在白板上总结和归纳学生们提到的相反意义的量词。
2.让学生回顾他们在小组活动中的思考和讨论,分享他们的观点和体会。
3.引导学生思考相反意义的量词如何运用在日常生活中。
五、拓展案例(25分钟)1.给学生出示一些拓展案例并让他们思考是否存在相反意义的量词。
2.鼓励学生运用已学概念来分辨相反意义的量词。
六、练习与巩固(20分钟)1.分发练习题给学生,让他们独立完成。
2.设计不同难度的题目,包括选择题、填空题和应用题。
3.检查并解答学生疑惑。
七、课堂延伸(15分钟)1.引导学生思考相反意义的量词对于我们理解和描述事物有何影响。
2.让学生用他们学到的知识描述自己的身高、年龄等。
3.鼓励学生进行更多的思考和讨论,并提出他们自己的问题。
教学反思:通过本节课的学习,学生能够了解相反意义的量的概念,并能够辨别和运用常见的量词。
通过小组合作学习和拓展案例的练习,学生的思维逻辑和批判性思维能力得到了提高。
《具有相反意义的量》精品教案古代猎人打了一只老鹰,用数如何表示一只老鹰——有了整数二人分一只西瓜,用数如何表示半只西瓜——有了分数货币购物,用数如何表示2元3角4分——有了小数。
师:在日常生产和生活实践中,由于记数,测量、分配等方面的需要产生了自然数、小数、分数,你还见过其他的数吗?讲授新课师:同学们都见过温度计吧,老师这有个温度计图片,大家观察一下,说一说温度计上是如何区分零上和零下度数的?(PPT展示)生:用不同的颜色来区分师:很好,用不同颜色区分固然可以,但是还有没有更好的方法呢?师:同学们再观察:(1)在预报北京市某天的天气时,播音员说:“北京,晴,局部多云,零下6摄氏度到5摄氏度”这时,屏幕上是如何显示这天的温度的?生:屏幕上显示“-6~5℃”师:对(2)如图,储蓄存折上是怎样表示“存入2500元”和“支出3000”的?学生观察温度计上的温度,回答问题学生观察天气预报图以及存折,试着回答问题用现实生活中的例子引出相反意义的量,自然而贴切。
生:存入2500元记做“+2500”,支出3000元记做“-3000”师:很好,这里出现了一种新数:-6表示零下6摄氏度,-3000表示支出3000元,而:5表示零上5摄氏度,2500表示存入2500元,师:温度的“零上5摄氏度”与“零下6摄氏度”、储蓄中的“存入2500元”与“支出3000元”分别是一对意义相反的量。
师:下面我们来把这些数总结一下:生:我们把以前学过的大于零的数叫做正数。
有时在正数前面也加上“+”(正)号。
如+3、+125、+10.5、+……“+”号可以省略。
生:我们把在以前学过的数(0除外)前面加上负号“-”的数叫做负数。
如-3、-1、-0.618、-……师:同学们总结的很好,但是要注意的是:一个数前面的“+”、“-”号叫做它的符号。
“-”号读着“负”,如:“-5”读着“负5”;“+”号读着“正”,如:“+3”读着“正3”。
“+”号可以省略。
第一章:引言1.1 教学目标让学生理解相反意义量的概念。
让学生掌握表示相反意义量的方法。
1.2 教学内容引入相反意义量的概念。
解释相反意义量的表示方法。
1.3 教学步骤引入相反意义量的概念,如温度上升和下降。
让学生思考日常生活中存在的相反意义量,如收入和支出。
解释相反意义量的表示方法,如正数和负数。
第二章:相反意义量的表示方法2.1 教学目标让学生掌握相反意义量的表示方法。
2.2 教学内容介绍相反意义量的表示方法。
2.3 教学步骤复习相反意义量的概念。
介绍相反意义量的表示方法,如用正数表示增加的量,用负数表示减少的量。
举例说明相反意义量的表示方法,如温度上升用+5°C表示,温度下降用-3°C表示。
3.1 教学目标让学生掌握相反意义量的加法运算。
3.2 教学内容介绍相反意义量的加法运算。
3.3 教学步骤复习相反意义量的概念和表示方法。
介绍相反意义量的加法运算,如+5°C + (-3°C) = +2°C。
举例说明相反意义量的加法运算,如温度上升5°C后下降3°C,最终温度为2°C。
第四章:相反意义量的减法4.1 教学目标让学生掌握相反意义量的减法运算。
4.2 教学内容介绍相反意义量的减法运算。
4.3 教学步骤复习相反意义量的概念和表示方法。
介绍相反意义量的减法运算,如5°C (-3°C) = 5°C + 3°C = 8°C。
举例说明相反意义量的减法运算,如温度下降5°C后上升3°C,最终温度为8°C。
第五章:应用题5.1 教学目标让学生能够应用相反意义量的知识解决实际问题。
5.2 教学内容应用相反意义量的知识解决实际问题。
5.3 教学步骤给学生呈现一些实际问题,如温度变化、金钱收支等。
引导学生运用相反意义量的概念和表示方法解决问题。
学生展示解题过程和答案,教师进行评价和指导。
具有相反意义的量数学教案一、教学目标1. 让学生理解相反意义的量的概念,能够识别和表示实际问题中的相反意义量。
2. 培养学生运用正负数解决实际问题的能力,提高学生的数学思维能力。
3. 通过对相反意义量的学习,培养学生积极探索、合作交流的学习态度。
二、教学内容1. 相反意义的量的定义及表示方法。
2. 相反意义量在实际问题中的应用。
三、教学重点与难点1. 重点:相反意义量的概念及其表示方法。
2. 难点:相反意义量在实际问题中的应用。
四、教学方法1. 采用情境教学法,引导学生从实际问题中发现相反意义量。
2. 运用合作学习法,鼓励学生分组讨论,共同解决问题。
3. 利用多媒体辅助教学,直观展示相反意义量的应用。
五、教学准备1. 准备相关实际问题,用于引导学生探究相反意义量。
2. 准备多媒体课件,展示相反意义量的概念及应用。
3. 准备练习题,巩固学生对相反意义量的掌握。
【教学过程】1. 导入:利用多媒体展示一组相反意义的量,如上升和下降,加热和冷却,收入和支出等,引导学生思考这些量的特点。
2. 新课讲解:介绍相反意义量的定义,讲解如何用正负数表示相反意义量,并通过示例进行演示。
3. 实例分析:给出一些实际问题,让学生运用相反意义量进行解答,如温度变化、海拔高度等。
4. 练习巩固:布置一些练习题,让学生独立完成,检验对相反意义量的掌握程度。
5. 总结拓展:对本节课的内容进行总结,引导学生思考相反意义量在实际生活中的应用,布置课后作业。
【课后作业】1. 总结相反意义量的定义及其表示方法。
2. 举例说明相反意义量在实际问题中的应用。
3. 完成练习题,巩固所学知识。
六、教学活动1. 小组讨论:让学生分组讨论生活中遇到的相反意义量,如借贷、盈利亏损等,分享彼此的想法和理解。
2. 游戏互动:设计一个简单的数学游戏,如正负数卡片游戏,让学生在游戏中进一步理解和掌握相反意义量的概念。
3. 情境模拟:创设一个具体的情境,如购物时找零,让学生运用相反意义量进行计算,增强实际应用能力。
课题:具有相反意义的量【教学目标】1.借助生活中的实例,认识正数和负数,体会引入负数的必要性,并能运用正、负数正确表示生活中具有相反意义的量.2.能对有理数进行分类.3.明白数学发展是生活实际的需要,培养数学应用意识.【教学重点】用正、负数正确表示具有相反意义的量.【教学难点】在正负数的规定中,对于基准的理解.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.提示:引导学生思考在现实生活中,0还可以有怎样的现实意义?(1)在计数时,0可以表示没有,如0个;(2)0还常用来表示某种量的基准,例如0℃不能理解成没有温度,它是实际温度为冰点时的计量结果,用来作为计量温度的基准;(3)0比任何正数小,比任何负数大,它是正数与负数的分界.情景导入生成问题在日常生产和生活实践中,由于记数、测量、分配等方面的需要产生了自然数、小数、分数.你还见过其他的数吗?自学互研生成能力知识模块一用正数和负数表示相反意义的量(一)自主学习阅读教材P2~P3的内容,完成下面的填空:1.零上20℃表示为+20℃,那么零下7℃表示为__-7℃__.2.巴黎与北京两地时差为-7(带正号的数表示同一时刻比北京早的时间数),如果北京时间是7:00,那么巴黎时间是__0:00__.3.海平面以上789米记为+789米,则-789米表示__海平面以下789米__.(二)合作探究归纳:1.在具有相反意义的一对量中,我们把其中一种量用__正数__表示,另一种量就用__负数__表示.2.大于0的__自然数__和__分数__(或__小数__)就是正数;在正数前面添上__负号__就是负数.3.__0__既不是正数,也不是负数;正数和0统称为__非负数__.练习:全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得90分应记作__+7__分,得80分应记作__-3__分,得83分记作__0__分.知识模块二有理数的概念与分类(一)自主学习阅读教材P 4的内容,完成下面的填空:下列各数:-10.3,+15,0.003,+8%,-80,-10%,1,-45,0,+3.5中,属于正分数的有:0.003,+8%,+3.5;属于负分数的有:-10.3,-10%,-45;属于整数的有:+15,-80,1,0.注意:有限小数、无限循环小数与分数之间的转化关系;正数常省略“+”号,而负数不能省略“-”号.0既不是正数,也不是负数.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学——帮扶学——组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.(二)合作探究归纳:练习:在29,-5.5,67,-1,9%,3.4,0,-213,-0.01,-2,1中,属于正整数的有:29,1;属于负整数的有:-1,-2; 属于正分数的有:67,9%,3.4,;)属于负分数的有:-5.5,-213,-0.01,.)交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 用正数和负数表示相反意义的量知识模块二 有理数的概念与分类课后反思 查漏补缺1.收获:___________________________________________________________2.存在困惑:___________________________________________________________。
1.1 具有相反意义的量
的合格率是多少?
活动四:课堂总结反思【当堂训练】
1.课本P5练习.
2.课本P5习题1.1T1、T2、T3、T4.
当堂检测,
及时反馈
学习效果.
【知识网络】
框架图式
总结,更容
易形成知
识网络.
活动四:课堂总结反思【教学反思】
①[授课流程反思]
举出大量的意义相反的实例,体现
数学来源于生活,通过讨论思考,
使学生体会引入负数的必要性.
②[讲授效果反思]
通过思考、讨论、归纳总结,让学
生切身感受到自己是学习的主人,
为学生今后获取知识、探索发现和
创造打下了良好的基础.
反思,更进一步提
升.。
具有相反意义的量教案教案标题:具有相反意义的量教案教案目标:1. 学生能够理解相反意义的量的概念。
2. 学生能够识别和比较具有相反意义的量。
3. 学生能够运用所学知识解决与相反意义的量相关的问题。
教学内容:1. 相反意义的量的定义和示例。
2. 相反意义的量的比较和运用。
教学步骤:引入活动:1. 创造一个情境,让学生思考相反意义的量的概念。
例如,使用一个温度计,向学生展示温度上升和下降的概念,引导他们思考相反意义的量。
2. 提出问题,让学生讨论具有相反意义的量的例子。
例如,温度和寒冷度、速度和减速度等。
概念讲解:1. 介绍相反意义的量的定义。
解释相反意义的量是指在某种情况下,两个量在变化过程中一个增加而另一个减少的情况。
2. 提供更多的示例,帮助学生理解相反意义的量。
例如,收入和支出、高度和深度等。
练习活动:1. 分发练习题,让学生识别和比较具有相反意义的量。
例如,让学生判断哪个量是增加而另一个是减少。
2. 进行小组讨论,让学生分享他们找到的具有相反意义的量的例子,并解释为什么它们具有相反意义。
应用活动:1. 提供一些与相反意义的量相关的问题,让学生运用所学知识解决问题。
例如,如果一辆车的速度从50公里/小时减少到30公里/小时,那么它的减速度是多少?2. 让学生在小组中互相出题,进行相反意义的量的问题解答比赛。
总结:1. 回顾相反意义的量的概念和例子。
2. 确保学生理解和掌握了相反意义的量的概念和运用。
教学资源:1. 温度计、示例物品(例如钱币、速度计等)。
2. 练习题和解答。
3. 小组讨论和出题比赛的活动指导。
评估方式:1. 观察学生在课堂上的参与和回答问题的能力。
2. 检查学生完成的练习题和问题解答的准确性。
3. 通过小组讨论和出题比赛评估学生对相反意义的量的理解和应用能力。
《具有相反意义的量》教案《具有相反意义的量》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,借助教案可以有效提升自己的教学能力。
快来参考教案是怎么写的吧!以下是小编帮大家整理的《具有相反意义的量》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
学习目标:1、能应用正负数表示生活中具有相反意义的量。
2、能说出有理数的意义,能正确对有理数进行分类。
重难点:1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
学习时数:1课时学习过程:一、快乐自学(8分钟)由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。
正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。
0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
二、合作探究1、某地2月18日凌晨1点的温度是0℃,凌晨4点的温度是-2℃,哪个时刻温度低?2、吐鲁番盆地艾丁湖湖面的海拔高度为-154m,海平面高度为0m,哪个地方低?3、通常把水结冰时的温度规定为0℃,那么比水结冰时的温度低5℃应记作什么?4、如果在东西向马路上,把向东走的路程记作正数,那么走-50m是什么意思?5、粮库把运进的粮食吨数记作正数,在某星期的5天中,进出粮食的`记录如下:星期一二三四五吨数 25 -10 -15 40 -30说出该粮库在这个星期中粮食进出记录的实际意义。
25表示:_________________________________________________________________ -10表示:_________________________________________________________________ -15表示:_________________________________________________________________ 40表示:_________________________________________________________________ -30表示:_________________________________________________________________6、有下列8个数:3.6 ,,-78 ,0 ,-0.37 ,9 , -5.14 ,-1 。
初中数学《具有相反意义的量》教案
1.1具有相反意义的量
教学目标:
1、知识与技能
(1)通过实例,感受引入负数的必要性和合理性,能应用正负数表示生活中具有相反意义的量。
(2)理解有理数的意义,体会有理数应用的广泛性。
2、过程与方法
通过实例的引入,认识到负数的产生是来源于生产和生活,会用正、负数表示具有相反意义的量,能按要求对有理数进行分类。
重点、难点:
1、重点:正数、负数有意义,有理数的意义,能正确对有理数进行分类。
2、难点:对负数的理解以及正确地对有理数进行分类。
教学过程:
一、创设情景,导入新课
大家知道,数学与数是分不开的,现在我们一起来回忆一下,小学里已经学过哪些类型的数?
学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生
的.
为了表示一个人、两只手、,我们用到整数1,2,
为了表示没有人、没有羊、,我们要用到0.
但在实际生活中,还有许多量不能用上述所说的自然数、零或分数、小数表示。
二、合作交流,解读探究
1、某市某一天的最高温度是零上5℃,最低温度是零下5℃。
要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。
它们是具有相反意义的两个量。
现实生活中,像这样的相反意义的量还有很多例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,高于和低于其意义是相反的。
运进和运出,其意义是相反的。
存折上,银行是怎么区分存款和取款的?
同学们能举例子吗?
学生回答后,教师提出:怎样区别相反意义的量才好呢?
待学生思考后,请学生回答、评议、补充。
教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,℃5℃表示零上5℃,5℃表示零下5℃.其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做正算黑,负算赤.如今这种方法在记账的时候还使用.所谓赤字,就是这样来的。
现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃)。
这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量简明地表示出来了。
让学生用同样的方法表示出前面例子中具有相反意义的量:
高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;
教师讲解:一对意义相反的量,一个用正数表示,另一个用负数表示。
强调,数0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量。
并指出,正数,负数的+-的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
把正数和零称为非负数
故事:虚伪的零下
在日常生活和生产中大量存在着具有相反意义的量,引入负数完全是实际的需要。
历史上,负数曾经到非议,直到16世纪,欧洲大多数的数学家都还不承认负数,他们觉得0就是什么也没有,还有什么东西能够比什么也没有还小呢?德国数学家史蒂芬说:负数是虚伪的零下,仅是些记号而已。
法国数学家帕斯卡则认为,从0减去4是胡说八道。
最早发现负数的是我们中国人,我国的孟子一书中就有邻国之民不加少,寡人之民不加多其中加少就是减少,即加上了负数的意思。
秦汉时的古代算经九章算术的方程里明确提出:以卖为正,则买为负;余钱为正,亏钱为负。
三国时魏国人刘徽在九章算术的注解中,则更进一步概括了正、负数的意义,他明确提出,两种得失相反的数,分别叫做正数和负数。
负数概念的产生,是世界科学史上的一项重大的发现,也是我国人民对数学发展作出的一项重大贡献,我们应该引以自豪!另外,印度数学家在公元625年(比我国迟几百年),婆罗摩捷多已经提出了负数的概念。
他用财产表示正数,用欠债表示负数,并用它们解释正负数的加减法运算。
0只表示没有吗?
1.空罐中的金币数量;
2.温度中的0℃;
3.海平面的高度;
4.标准水位;
5.身高比较的基准;
6.正数和负数的界点;
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、给出新的整数、分数概念
引进负数后,数的范围扩大了。
把正整数、负整数和零统称为整数,正分数、负分数统称为分数。
3、给出有理数概念
整数和分数统称为有理数。
4、有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数。
有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充。
教师小结:按有理数的符号分为三类:正有理数、负有理数和零。
在有理数范围内,正数和零统称为非负数。
向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类。
三、应用迁移,巩固提高
例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+ ,0.33,0,-,-9
练1 判断下列各题是否是相反意义的量,(1) 上升和下降(2)运进货物100吨和下降100米,(3)向东走10米与向西走1米
2 (1) 收入10万元,记作:+10万元,支出1000元记作______.
(2) 水位升高1.2米,记作+1.2米,那么-3.0米表示_________.
3 下列说法正确的是()
A 正数、零、负数统称为有理数。
B 分数、整数统称为有理数。
C 正有理数、负有理数统称为有理数。
D 以上都不对
4 已知:1,、、0,-37、0.2,%,-0.01,-20%,,,其中
整数有______________,
负分数有__________________.
5 北京与巴黎两地时差是-7(带正号的数表示同一时刻比北京早的时间数),如果现在北京时间是7:00,那么巴黎的时间是_________下午2:00
课堂练习:课本P5练习
四、总结反思
引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数。
正数是大于0的数,负数就是在正数前面加上-号的数,负数小于0。
0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃。
五、课后作业:课本P5习题1.1A第1、2、3、4、5题。