深基坑围护结构变形控制[详细]
- 格式:ppt
- 大小:13.06 MB
- 文档页数:57
深基坑施工监理控制的主要内容及方法及重点监控措施一、深基坑概述:开挖深度超过5m(含5m)的基坑(槽)开挖深度虽未超过5m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基坑(槽)的土方开挖。
二、深基坑施工监理控制的主要内容及方法施工准备阶段一)周边环境调查、充分掌握风险控制重点根据住建部《地铁与地下工程风险管理指南》要求,项目开工前各方必须对周边环境进行调查。
1、地下管线情况2、地下建(构)筑物情况3、周围建筑(构)物情况4、地下水位及地质情况5、其它注意事项:1、对照设计图及现场情况逐一核查,并留下完整的核查记录及影像资料。
2、核查必须会同相关参加方一同进行,不能遗留。
3、对存在问题的建(构)筑物,必须进行相关证据保存和鉴定资料。
4、通过风险核查,为制定相应的监理措施打下基础,且融入安全风险监理细则中去。
二)审查深基坑相关施工方案(一)需要专家论证的方案·超过一定规模条件的基坑工程专项施工方案应按规定组织专家论证1、开挖深度超过5m(含5m)的基坑(槽)的土方开挖、支护、降水工程。
2、开挖深度虽未超过5m,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基坑(槽)的土方开挖、支护、降水工程。
土方开挖、支护、降水工程。
★基坑周边环境或施工条件发生变化,专项施工方案应重新进行审核、审批3、混凝土模板支撑工程:搭设高度8m及以上;搭设跨度18m及以上,施工总荷载15kN/m2及以上;集中线荷载20kN/m2及以上。
承重支撑体系:用于钢结构安装等满堂支撑体系,承受单点集中荷载700Kg 以上。
4、起重吊装及安装拆卸工程(1)采用非常规起重设备、方法,且单件起吊重量在100kN及以上的起重吊装工程。
(2)起重量300kN及以上的起重设备安装工程;高度200m及以上内爬起重设备的拆除工程。
5、其它需要专家论证的方案(监测、降水等)。
注意事项:1、基坑工程施工前应根据《危险性较大的分部分项工程安全管理办法>(建质(2009) 87号)13号)文件规定,由施工企业技术部门组织本单位施工技术、安全、质量等部门的专业技术人员进行审核,经审核通过的,由施工企业技术负责人签字,加盖单位法人公章后报监理企业,由项目总监理工程师审核签字并加盖执业资格注册章。
浅谈深基坑支护结构与变形控制方法摘要:在设计过程中,根据提供的资料进行基坑工程支护的设计,由于环境的多样性和复杂性,在实际中需要多加预防与指定响应的预防措施,此外,基坑开挖时由于坑内开挖卸荷造成围护结构在内外压力差作用下产生水平向位移,进而引起围护结构外侧土体的变形,造成基坑外土体或建构筑物沉降;同时,开挖卸荷还会引起坑底土体隆起,从而产生安全事故。
本文主要对深基坑支护结构与变形控制进行了着重阐述,最后对其施工中主要质量控制方法进行了探讨。
关键词:深基坑支护机构变形控制方法中图分类号:tv551.4 文献标识码:a 文章编号:一、深基坑围护结构1、基坑围护结构体系结构体系包括板桩墙、围檩及其他附属构件。
板桩墙主要承受基坑开挖卸荷所产生的土压力和水压力,并将此压力传递到支撑,是稳定基坑的一种临时挡墙结构。
2、深基坑围护结构类型在我国应用较多的有板柱式、柱列式、重力式挡墙、smw、组合式及土层锚杆、逆筑法、沉井等。
3、支撑结构体系(1)内支撑一般由各种型钢撑、钢管撑、钢筋混凝土撑等构成支撑系统,外拉锚有拉锚和土锚两种形式。
(2)在软弱地层的基坑工程中,支撑结构当土的应力传递路径是围护墙—围檩—支撑,在地质条件较好的有锚固力的地层中,基坑支撑可采用土锚和拉锚等外拉锚形式。
(3)在深基坑的施工支护结构中,常用的支撑系统按其材料可分为现浇钢筋混凝土支撑体系和钢支撑体系两类。
二、深基坑变形控制基坑周围地层移动主要是由于围护结构的水平位移和坑底土体隆起造成的。
1、围护墙体水平位移:当基坑开挖较浅,还未设支撑时,墙顶位移最大,向基坑方向水平位移,呈三角形分布;随着基坑开挖深度的增加,刚性墙体继续表现为向基坑内的三角形水平位移,而一般柔性墙如果设支撑,则表现为墙顶位移不变或逐渐向基坑外移动,墙体腹部向基坑内凸出。
2、围护墙体竖向变位:墙体的竖向变位给基坑的稳定、地表沉降以及墙体自身的稳定性均带来极大的危害,特别是对于饱和的极为软弱的地层中的基坑工程,当围护墙底下因清孔不净有沉渣时,围护墙在开挖中会下沉,地面也随之下沉。
2020环球网校二级建造师《市政公用工程管理与实务》考点精讲【考点】围护结构(板桩、钢管桩、灌注桩、SMW、重力式水泥土挡墙)1.基坑围护结构体系,经围护结构体系2.预制混凝土板桩①施工较为困难,对机械要求高,挤土现象很严重。
②需辅以止水措施。
③自重大,受起吊设备限制,不适合大深度基坑。
3.钢板桩①成品制作,可反复使用。
②施工简便,但施工有噪声。
③刚度小,变形大,与多道支撑结合,在软弱土层中也可采用。
④新的时候止水性尚好,如有漏水现象,需增加防水措施。
⑤最大开挖深度7~8m。
4.钢管桩①截面刚度大于钢板桩,在软弱土层中开挖深度较大。
②需有防水措施相配合。
5.灌注桩①刚度大,可用在深大基坑。
②施工对周边地层、环境影响小,噪声低、适于城区施工。
③需降水或与能止水的搅拌桩、旋喷桩等配合使用。
6.SMW工法桩(一)结构特点①强度大,止水性好。
②内插的型钢可拔出反复使用,经济性好。
③用于软土地层时,一般变形较大。
(二)技术要点① 28d无侧限抗压强度不应小于设计要求,且不宜小于0.5MPa。
②水泥:不低于P·O 42.5级普通硅酸盐水泥。
③特别软弱或较硬地层,钻进速度较慢时水泥用量宜适当提高。
砂性土宜外加膨润土。
④单根型钢接头不宜超过2个,相邻型钢接头宜错开,距离不宜小于1m,接头距基坑底面2m。
7. / 水泥土搅拌桩挡墙①无支撑,墙体止水性好,造价低。
②③0.6;淤泥质土——0.7;淤泥——0.8。
④⑤,0.7h;淤泥——1.3h,0.8h。
⑥ 28d无侧限抗压强度不宜小于⑦板厚不宜小于150mm、C15。
【考点】围护结构(地下连续墙)(一)结构特点①刚度大,开挖深度大,可适用于多种土层(除夹有孤石、大颗粒卵砾石等局部障碍物地层)。
强度大,变位小,隔水性好,可兼作主体结构一部分。
③振动小、噪声低,可临近建、构筑物使用,环境影响小。
④槽段长度宜取4~6m;造价高。
(二)槽段接头(1(2一字形或十字形穿孔钢板、钢筋承插式等。
地铁吊脚桩深基坑围护结构及土体变形规律吴晓刚【摘要】通过分析典型“土岩二元结构地层”深基坑的特点,选取青岛地铁李村站的吊脚桩深基坑作为研究对象,采用ABAQUS有限元仿真计算,并结合大量现场监测数据分析的方法,对吊脚桩深基坑围护结构及土体的变形规律展开了研究。
研究结果表明:“土岩二元结构”地层深基坑具有和土质基坑或岩质基坑显著不同的特点;随着基坑开挖深度的增加,围护结构的侧移逐渐增大,最终的侧移形态为上部小、中下部大的“花瓶形”;地表沉降随基坑开挖深度的增加而增加,在开挖深度小于2 m时,地表沉降表现为“三角形”模式;随着开挖深度增加至6 m,沉降模式由“三角形”转变为“凹槽型”,此后沉降形态保持为“凹槽型”不变。
基坑深层土体沉降曲线性状与地面沉降相似,但沉降的影响范围随着深度的增大有所减小,土岩界面以下地层受上覆土层开挖卸荷而产生的回弹影响非常小。
%The characteristics of the deep foundation pit in soil rock dual structure strata firstly was analyzed. The deep foundation pit by suspending pile in Qingdao subway Lijiacun station is selected to as the research object. Using ABAQUS finite element simulation analysis method combined with a large number of field monitoring data, to study the deformation law of retaining structure and soil of deep foundation pit by suspending pile. The results prove that , the characteristics of the deep foundation pit in soil rock dual structure strata is significantly different from soil foundation pitor rock foundation pit. With the increase of excavation depth, palisade structure lateral increase gradually, finally forms of lateral upper for small, big part of the“vase”. Surface subsidence increases with the in-crease ofexcavation depth, when the excavation depth is less than 2 m, the surface subsidence is shown as“trian-gle” mode. With the increase of excavation depth to 6 m, settlement pattern by “triangle” into “groove” type,then settlement form for “groove”. Deep foundation pit soil settlement curve characters and ground subsidence are similar, but the influence ofthe subsidence range reduced with the increase of depth. The soil rock interface under formation by overlaying soil excavation unloading rebound effect is very small.【期刊名称】《科学技术与工程》【年(卷),期】2016(016)014【总页数】8页(P280-287)【关键词】深基坑;吊脚桩;变形规律;有限元计算;现场监测【作者】吴晓刚【作者单位】湖南省隧道工程总公司,益阳413000【正文语种】中文【中图分类】TU473.12地下空间的开发利用,对于解决城市建设用地紧张、生存空间狭小、交通拥挤等问题具有十分重要的作用。
软土地区深基坑变形控制技术应用
1、基坑变形机理分析
基坑开挖的过程,实质是载荷释放的过程,受载荷释放影响,导致坑底土体向上发生位移,与此同时导致围护墙受两边压力差影响,出现水平向位移及墙外侧位移。
导致周边地层发生位移的主要诱因是坑底的隆起和围护墙的位移。
另外,地层损失、漏水、漏砂等事故也会引发基坑变形。
影响开挖变形的主要因素:(1)围护结构:围护墙体厚度、插入深度、支撑体系的刚度等。
(2)地基加固:通过对基坑内侧、外侧施行地基加固。
实际工程中,往往进行坑内被动区的加固。
(3)施工措施:围护结构施工对地层的挠动;开挖土方的空间效应;施工期的长短的影响。
2、软土深基坑变形控制技术
2.1勘察设计过程控制
基坑事故的最大影响因素就是设计不完善。
体现在设计准备质量不充分,信息量不足、经验欠缺、解决问题措施不当等造成。
控制点主要包含以下几方面:
①实地勘察、岩土参数的准确性;
②基坑周围环境,如地下管网、建筑、保护对象(古建筑)。
③对变形控制计算,结构选型、变形计算等;
④对变形影响大的因素设计处理不当,如:集中应力,必须进行对基坑阳角进行加固、支撑系统强度需适当增加、桩间加固等。
2.2施工工艺与质量控制。
基坑变形控制1概况1.1、下穿道概况连云新城滨海大道(新城闸〜西墅闸)新建工程,设计起点位于新城闸,桩号K0+000,终点位于西墅闸,桩号K2+886.911,长2.887km。
下穿道工程为连云新城滨海大道中下穿纵五路隧道部分,下穿道采用箱形框架与U 型槽相结合的结构形式,中间箱型框架结构段120m,两端的U型槽结构段分别180m、170m。
隧道施工采用直壁式支护大开挖方法,基坑开挖宽度29m,基坑最深处距现状地表7.5m。
基坑两侧为①800mm灌注桩,桩长20m,桩间距1m。
灌注桩外侧施工双排①650mm 水泥搅拌桩做止水用,坑底采用水泥搅拌桩加固,加固深度4m。
坑内支撑采用①609mm钢管,支撑钢管水平间距4.5m,上下设置两层支撑,层间距3.3m。
本工程基坑变形控制保护等级为二级,基坑外地面最大沉降量W100mm,围护结构最大水平位移W100mm。
1.2、工程地质情况根据勘察过程中钻探揭露、取样分析、结合静力触探资料,参照区域性地层资料,将场地内上部地基土分为9个工程地质层。
①-1层砂性填土:回填时间不超过3个月,不均匀混有少量碎石、角砾及少量砂性土。
厚度:0.60〜3.30m,平均2.24m;层底标高:0.02〜2.04m,平均0.99m。
②-1层冲填土:灰色〜青灰色,流塑,光滑〜稍有光滑,具腥味。
场地普遍分布,厚度:2.00〜4.10m,平均2.64m;层底标高:-2.10〜-1.12m,平均-1.71m。
②-2层淤泥:青灰色,流塑,光滑,具腥味,局部相变为淤泥质粘土。
场地普遍分布,厚度:11.90〜13.80m,平均12.84m;层底标高:-15.90〜-13.28m,平均-14.55m。
③层粘土夹粉质粘土:褐黄色,坚硬〜硬塑,少量可塑,上部含少量粒径1〜2cm直径不等的钙质结核。
场地普遍分布,厚度:3.90〜6.80m,平均5.63m;层底标高:-21.12〜-18.82m,平均-20.18m。
福 建 建 筑Fuioan Aechotectuee& Consteuctoon 2020年第12期总第270期No 12 - 2020Voi - 270紧邻既有建筑物的异形深基坑支护设计与施工变形控制技术游易楚(福州新榕城市建设发展有限公司福建福州350005)摘要:针对某深基坑异形且紧邻既有建筑物的特点,根据增大基坑阳角处侧向支撑的刚度和承载力及提高异形部位和紧邻既有建筑物部位设计安全冗余度的原则,优化了基坑支护体系,增设了多项施工变形控制措施,加密了基坑局部监测点布置。
通过对基坑施工监测数据的分析证实该方案实施效果良好,并基此,总结了基坑设计与施工变形控制 的技术措施。
关键词:异形深基坑;支护体系;施工变形控制;基坑监测中图分类号:TU318 文献标识码:A 文章编号:1004 -6135(2020)12 -0141 -06Design of sspporting system and const^uction deformation control technology ofspecial shapee deep foundation pit adjacent to existing buildingsYOU Yichu(Fuzhou xinrong citu construction development limited company , Fuzhou 350005)Abstract :In view of the characteristics of a deep foundation pit with abnormai shape and adjacent te the existing buildings, the foundation potsuppoetsystemosoptomozed byonceeasongthesto t ne s and beaeongcapacotyottheeateeaesuppoetattheexteenaecoeneeotthetoundatoonpit and improving the design safetu redundancy of the abnormai shape and adjacent te the existing buildings. A number of construction de formation controi measures are added , and the layout of locai monitoring points of the foundation pit is densified. Through the analysis ofthe monitoring data of foundation pit construction , it is proved that the implementa/on effect of the scheme is good. Based on this, thetechnicai measures of foundation pit design and construction deformation controi are summarized.Keywods : Speciai shaped deep foundation pit ; Support system ; Construction deformation control ; Foundation pit monitoring随着我国城市化进程和社会经济水平的不断提高,各大城市中心城区可开发的土地资源越来越短缺,与城市公共建筑需求急剧增长的矛盾日益凸显,导致紧邻既有建筑的异形深基坑工程项目建设日益 增多[1-4]&然而,深基坑施工极易引发周边既有建筑 产生不均匀沉降、建筑整体倾斜、周边管网破裂等危 害[5-8],尤其是紧邻公共建筑的深基坑,但目前其相关设计与施工技术的研究成果较少⑼,远不能满足现阶段紧邻既有建筑异形深基坑工程项目实践的要求&因此,紧邻公共建筑的异形深基坑设计、施工与作者简介:游易楚(1971.11-),男,高级工程师。
临近地铁深基坑主动变形控制技术案例分析—新生闻涛大厦基坑围护项目发布时间:2022-10-28T08:56:19.875Z 来源:《城镇建设》2022年12期作者:胡焕[导读] 地铁保护区范围内的基坑工程项目对于基坑及周边环境变形有着非常严格的控制要求胡焕东通岩土科技股份有限公司浙江杭州 310000摘要:地铁保护区范围内的基坑工程项目对于基坑及周边环境变形有着非常严格的控制要求。
轴力伺服型钢组合支撑相比传统的支撑具有更好的抵抗基坑变形的能力,其特点在于24小时实时监控,根据基坑变形监测情况实时调整支撑轴力,低压自动补偿、高压自动报警,全方位多重安全保障,更适用于对基坑变形控制严格的工程项目。
通过新生闻涛大厦基坑项目,系统介绍了轴力伺服型钢组合支撑基坑项目的设计和施工方案,结合该工程的成功实践,系统体现了轴力伺服技术在地铁周边地下空间开发项目中安全高效和绿色环保的优势。
一、工程概况新生闻涛大厦项目位于杭州滨江区滨文支路以北、西浦路以西。
本工程南侧靠近地铁6号线西浦路站B号出入口及盾构区间,最近处围护结构外边线距离地铁出站口附属结构约6.700m,距离南侧盾构区间约29.90m,基坑开挖前6号线已在试运行阶段,但尚未运营。
基坑西侧为滨浦路,基坑边距离道路边约6.408m;基坑东侧为西浦路,基坑边距离征地红线约30.898m。
基坑北侧为新建道路,基坑边距离征地红线最近约3.0m。
本工程基坑东西向长约260.9,南北向宽约111.0m,呈"矩形",基坑周长约743.8m,基坑面积约8.8万平方米。
整体下设3层地下室,基坑底板垫层底大面积挖深12.600m,考虑到承台垫层挖深为13.100m。
图1项目平面位置及周边环境二、项目围护设计方案本工程基坑开挖深度为13.000m,主要根据基坑周边环境影响及地层情况确定设计方案: 1、南侧靠近杭州地铁六号线处,采用分坑形式,共分为K1、K2、K3、K4四个小坑,采用地下连续墙+三道内支撑(第一道砼支撑,下二道带伺服系统的预应力型钢支撑)的支护形式。
浅谈深基坑支护结构类型与变形控制摘要:基坑工程是由地面向地下开挖一个地下空间,挖深超过5m的称为深基坑,深基坑四周一般设置垂直的挡土围护结构,围护结构一般是在开挖面基底下有一定插入深度的板(桩)墙结构;板(桩)墙有悬臂式、单撑式、多撑式。
支撑结构是为了减小围护结构的变形,控制墙体的弯矩;分为内撑和外锚两种。
本文主要探讨深基坑支护结构类型与变形控制。
关键词:深基坑支护结构变形控制中图分类号:tv551.4 文献标识码:a 文章编号:一、围护结构深基坑围护结构类型1.在我国应用较多的有板柱式、柱列式、重力式挡墙、组合式以及土层锚杆、逆筑法、沉井等。
2.不同类型的围护结构(1)钢板桩围护结构钢板桩常用断面形式多为u形或z形。
我国地下铁道施工中多用u形钢板桩,其沉放和拔除方法、使用的机械均与工字钢桩相同,但其构成方法则可分为单层钢板桩围堰、双层钢板桩围堰及屏幕等。
钢板桩强度高,桩与桩之间的连接紧密,隔水效果好,成品制作,可重复使用;施工简便,但施工有噪声;刚度小,变形大,与多道支撑结合,在软弱土层中也可采用;新的时候止水性尚好,如有漏水现象,需增加防水措施。
(2)工字钢桩围护结构工字钢在基坑开挖前,在地面用冲击式打桩机沿基坑设计边线打人地下,若地层为饱和淤泥等松软地层也可采用静力压桩机和振动打桩机进行沉桩。
工字钢桩围护结构适用于黏性土、砂性土和粒径不大于loomm的砂卵石地层;当地下水位较高时,必须配合人工降水措施。
打桩时,施工噪声大大超过环境保护法规定的限值,所以宜用于郊区距居民点较远的基坑施工中。
(3) 深层搅拌桩挡土结构深层搅拌桩是用搅拌机械将水泥、石灰等材料作为固化剂的主剂,和地基土相拌合,从而达到加固地基的目的。
用于深层搅拌的施工工艺目前有两种,一种是用水泥浆和地基土搅拌的水泥浆搅拌(简称旋喷桩),另一种是用水泥粉或石灰粉和地基土搅拌的粉体喷射搅拌(简称粉喷桩)。
作为挡土结构的搅拌桩一般布置成格栅形,深层搅拌桩也可连续搭接布置形成止水帷幕。
深基坑工程基坑变形超预警研究分析与处置措施摘要:由于支护结构失稳、变形引起的地表沉陷,严重地影响着周围环境和邻近建筑物、地下管线以及地面道路的安全,通过大量的理论分析、试验研究和实地测试,从这些研究中可以归纳为两个主要问题;一是支护结构的位移;二是支护结构的稳定,本文通过实际案例,对基坑变形超预警研究分析及处置措施进行总结。
关键词:深基坑工程、基坑变形、变形超预警在深基坑施工过程中,基坑变形量为基坑工程安全风险分析与评估的关键指标,影响变形的因素比较复杂,基坑变形超预警值基坑的失稳形态归纳为两类:一、因基坑土体强度不足、地下水渗流作用而造成基坑失稳,包括基坑内外侧土体整体滑动失稳;基坑底土隆起;地层因承压水作用,管涌、渗漏等等。
二、因支护结构(包括桩、墙、支撑系统等)的强度、刚度或稳定性不足引起支护系统破坏而造成基坑倒塌、破坏。
基坑开挖时,由于坑内开挖卸荷,造成围护结构在内外压力差作用下产生位移,进而引起围护外侧土体的变形,造成基坑外土体或建(构)筑物沉降与移动。
变形表现主要体现为:围护墙体水平变形、围护墙体竖向变位、基坑底部隆起、地表沉降等。
变形控制的措施主要为:增加围护结构和支撑的刚度、增加围护结构的入土深度、加固基坑内被动区土体(加固方法有抽条加固、裙边加固及二者相结合的形式)、减小每次开挖围护结构处土体的尺寸和开挖支撑时间、通过调整围护结构深度和降水井布置来控制降水对环境变形的影响、基坑稳定控制、保证深基坑坑底稳定的方法有加深维护结构入土深度、坑底土体加固、坑内井点降水等措施、适时施作底板结构。
一、周边环境及变形情况1、基坑情况介绍拟建项目基坑面积约14230㎡,基坑总延长约507m。
围护结构北侧在铁路保护区范围采用800厚地下连续墙,其余区域采用钻孔灌注桩(桩径采用Ф850和Ф950)+三轴水泥土搅拌桩止水帷幕/双轴裙边加固、深坑加固+二道水平内支撑的围护体系。
基坑一般位置开挖深度为10.20m。
浅谈基坑工程变形控制措施1.工程概况本工程位于龙湾中心区,已建龙海路与龙祥路交叉口西侧,周边道路交通量较大,且多为工程车。
工程设一层地下室,地下室底板面标高-5.25m,底板底标高为-5.90m。
围护设计的基坑开挖深度为 4.70m、5.70m,围护结构均采用双轴水泥搅拌桩,接头采用焊接或机械式接头。
基坑采用钢支撑和混凝土支撑,挖土次序严格遵循“分层开挖,严禁超挖”及“大基坑,小开挖”的原则,根据后浇带位置分区及基坑挖深分层分区分段开挖。
图1为监测布点图。
图1 监测布点图本基坑的土层分布情况及物理力学参数如表1所示。
土层分布的主要特点为:(1)①-0层素填土主要以碎石、块石、粘性土等组成;土性湿~饱和,松散~稍密状;为新近人工填土,未完成自重固结;局部分布。
层厚0.00~2.30米。
(2)①层粘土以软塑~可塑状为主,个别可达硬塑状,含少量铁锰质结核;切面光滑,干强度高,韧性高,无摇振反应;中~高压缩性。
全区分布。
层厚0.20~1.60米,层顶埋深0.00~2.30米。
(3)②-1层淤泥含少量腐植质及贝壳碎片,局部含少量粉砂团块;高压缩性。
全区分布。
层厚12.10~15.80米,层顶埋深1.00~3.50米。
本工程基坑基底均设置于此层。
该基坑施工规范,基坑变形总体可控。
工况一至工况三分别对应开挖第一层土层至第三层土层,每层开挖深度约1m。
工况四对应垫层浇筑,工况五对应底板施工。
表1 土层分布及物理力学参数表2.基坑变形及原因分析基坑在开挖过程中按照一定的工序和工艺开展工作,随着工况的转变,基坑的状态发生动态变化,监测数据也发生相应变化。
因此基坑的变形可通过测斜监测数据直观反映,下面将通过几个有代表性的测斜监测点的监测数据,对基坑深层土体累计位移变化隨时间的发展进行分析,说明基坑的变形情况,并分析相应的原因。
图2 基坑深层土体累计位移变化随时间的发展图2所示为CX03-CX05、CX07-CX09等6个测斜孔的水平累计位移变形曲线及相应的最大水平位移累计值发生位置随时间的变化情况。