电磁感应单双棒问题-教师版
- 格式:doc
- 大小:316.50 KB
- 文档页数:7
名师课堂——关键教方法 名师堂 校区地址: 咨询电话:名师堂学校武老师方法讲义之——第1讲 年级: 时间:电磁感应中“单、双棒”问题归类例析一、单棒问题:1.单棒与电阻连接构成回路:例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置,求:(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。
同类追踪: 如图所示,MN 为金属杆,在竖直平面内贴着光滑金属导轨下滑,导轨的间距l=10cm ,导轨上端接有电阻R=0.5Ω,导轨与金属杆电阻不计,整个装置处于B=0.5T 的水平匀强磁场中.若杆稳定下落时,每秒钟有0.02J 的重力势能转化为电能,则求MN 杆的下落速度 二、双杆问题:例2如图所示,平行且足够长的两条光滑金属导轨,相距0.5m ,与水平面夹角为30°,不计电阻,匀强磁场垂直穿过导轨平面,磁感应强度B =0.4T ,垂直导轨放置两金属棒ab 和cd ,长度均为0.5m ,电阻均为0.1Ω,质量分别为0.1 kg 和0.2 kg ,两金属棒与金属导轨接触良好且可沿导轨自由滑动.现ab 棒在外力作用下,以恒定速度v =1.5m /s 沿着导轨向上滑动,cd 棒则由静止释放,试求:(1)金属棒ab 产生的感应电动势; (2)闭合回路中的最小电流和最大电流; (3)金属棒cd 的最终速度.同类追踪、如图所示,ab 和cd 是固定在同一水平面内的足够长平行金属导轨,ae 和cf 是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。
在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。
电磁感应中的单杆双杆问题(附答案)一、单选题1.如图1,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中点,O为圆心.轨道的电阻忽略不计.OM是有一定电阻、可绕O转动的金属杆,M端位于PQS上,QM与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B.现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则B'B等于()图1A. 54B. 32C. 74D. 22.如图所示,两根光滑的平行金属导轨位于水平面内,匀强磁场与导轨所在平面垂直,两根金属杆甲和乙可在导轨上无摩擦地滑动,滑动过程中与导轨接触良好且保持垂直.起初两根杆都静止.现突然给甲一个冲量使其获得速度v而开始运动,回路中的电阻不可忽略,那么在以后的运动中,下列说法正确的是()A.甲克服安培力做的功等于系统产生的焦耳热B.甲动能的减少量等于系统产生的焦耳热C.甲机械能的减少量等于乙获得的动能与系统产生的焦耳热之和D.最终两根金属杆都会停止运动3.如图所示,π形光滑金属导轨与水平地面倾斜固定,空间有垂直于导轨平面的磁场,将一根质量为m的金属杆ab垂直于导轨放置.金属杆ab从高度h2处静止释放后,到达高度为h1的位置(图中虚线所示)时,其速度为v,在此过程中,设重力G和磁场力F对杆ab做的功分别为W G和WF,那么()A.=mgh1-mgh2B.=W G+WFC.>W G+WFD.<W G+WF4.如图所示,足够长的光滑U型导轨宽度为L,其所在平面与水平面的夹角为α,上端连接一个阻值为R的电阻,置于磁感应强度大小为B,方向垂直于导轨平面向上的匀强磁场中,今有一质量为m、有效电阻为r的金属杆沿框架由静止下滑,设磁场区域无限大,当金属杆下滑达到最大速度时,运动的位移为x,则()A.金属杆下滑的最大速度v m=B.在此过程中电阻R产生的焦耳热为(mgx sinα-mv m2)C.在此过程中电阻R产生的焦耳热为mgx sinα-mv m2D.在此过程中流过电阻R的电量为5.如图甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L,一端通过导线与阻值为R的电阻连接.导轨上放一质量为m的金属杆,金属杆、导轨的电阻均忽略不计,匀强磁场垂直导轨平面向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v也会变化,v和F的关系如图乙所示.下列说法正确的是()A.金属杆在匀速运动之前做匀加速直线运动B.a点电势高于b点电势C.由图象可以得出B、L、R三者的关系式为=D.当恒力F=4 N时,电阻R上消耗的最大电功率为24 W6.如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,轨道足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B.一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A.如果B增大,v m将变小B.如果α变大,v m将变小C.如果R变大,v m将变小D.如果m变大,v m将变小7.如图所示,磁感应强度的方向垂直于轨道平面斜向下,当磁场从零均匀增大时,金属杆ab始终处于静止状态,则金属杆受到的静摩擦力将()A.逐渐增大B.逐渐减小C.先逐渐增大,后逐渐减小D.先逐渐减小,后逐渐增大8.如图所示,光滑金属导轨由倾斜和水平两部分组成,水平部分足够长且处在竖直向下的匀强磁场中,右端接一电源(电动势为E,内阻为r). 一电阻为R的金属杆PQ水平横跨在导轨的倾斜部分,从某一高度由静止释放,金属杆PQ进入磁场后的运动过程中,速度—时间图象不可能是下图中的哪一个(导轨电阻不计)()A.B.C.D.9.如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab 与导轨接触良好可沿导轨滑动,开始时开关S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象不可能是()A.B.C.D.10.如图所示,在匀强磁场中放一电阻不计的平行光滑金属导轨,导轨跟大线圈M相接,小闭合线圈N在大线圈M包围中,导轨上放一根光滑的金属杆ab,磁感线垂直于导轨所在平面.小闭合线圈N通有顺时针方向的电流,该电流按下列图中哪一种图线方式变化时,最初一小段时间t0内,金属杆ab将向右做加速度减小的变加速直线运动()A.B.C.D.11.如图所示,金属杆ab静止放在水平固定的“U”形光滑金属框上,且整个装置处于竖直向上的匀强磁场中.现使ab获得一个向右的初速度v开始运动,下列表述正确的是()A.安培力对ab做正功B.杆中感应电流的方向由b→aC.杆中感应电流逐渐减小D.杆中感应电流保持不变12.如图所示,abcd为水平放置的平行“l”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的发热功率为13.如图所示,竖直平面内有足够长、不计电阻的两组平行光滑金属导轨,宽度均为L,上方连接一个阻值为R的定值电阻,虚线下方的区域内存在磁感应强度为B的匀强磁场.两根完全相同的金属杆1和2靠在导轨上,金属杆长度与导轨宽度相等且与导轨接触良好、电阻均为r、质量均为m;将金属杆l固定在磁场的上边缘,且仍在磁场内,金属杆2从磁场边界上方h0处由静止释放,进入磁场后恰好做匀速运动.现将金属杆2从离开磁场边界h(h<ho)处由静止释放,在金属杆2进入磁场的同时,由静止释放金属杆1,下列说法正确的是()A.两金属杆向下运动时,流过电阻R的电流方向为a→bB.回路中感应电动势的最大值为C.磁场中金属杆l与金属杆2所受的安培力大小、方向均不相同D.金属杆l与2的速度之差为214.MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,匀强磁场垂直穿过MN、GH所在的平面,如图所示,则()A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向由a到b到d到cB.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向由c到d到b到a C.若ab向左、cd向右同时运动,则abdc回路电流为0D.若ab、cd都向右运动,且两棒速度v cd>v ab,则abdc回路有电流,电流方向由c到d到b到a 15.如图所示,光滑的金属轨道分为水平段和圆弧段两部分,O点为圆弧的圆心,N为轨道交点.两轨道之间宽度为0.5 m,匀强磁场方向竖直向上,大小为0.5 T.质量为0.05 kg的金属细杆置于轨道上的M点.当在金属细杆内通以电流强度为2 A的恒定电流时,其可以沿轨道由静止开始向右运动.已知MN=OP=1.0 m,金属杆始终垂直轨道,OP沿水平方向,则( )A.金属细杆在水平段运动的加速度大小为5 m/s2B.金属细杆运动至P点时的向心加速度大小为10 m/s2C.金属细杆运动至P点时的速度大小为0D.金属细杆运动至P点时对每条轨道的作用力大小为0.75 N二、多选题16.如图1所示,竖直放置的“”形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B.质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆()图1A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C.穿过两磁场产生的总热量为4mgdD.释放时距磁场Ⅰ上边界的高度h可能小于m2gR22B4L417.(多选)如图所示,ab、cd是固定在竖直平面内的足够长的金属框架,bc段接有一阻值为R的电阻,其余电阻不计,ef是一条不计电阻的金属杆,杆两端与ab和cd接触良好且能无摩擦下滑(不计空气阻力),下滑时ef始终处于水平位置,整个装置处于方向垂直框面向里的匀强磁场中,ef从静止下滑,经过一段时间后闭合开关S,则在闭合开关S后()A.ef的加速度大小不可能大于gB.无论何时闭合开关S,ef最终匀速运动时速度都相同C.无论何时闭合开关S,ef最终匀速运动时电流的功率都相同D.ef匀速下滑时,减少的机械能大于电路消耗的电能18.(多选)如图所示,一粗糙的平行金属轨道平面与水平面成θ角,两轨道上端用一电阻R相连,该装置处于匀强磁场中,磁场方向垂直于轨道平面向上.质量为m的金属杆ab以初速度v0从轨道底端向上滑行,滑行到某高度h后又返回到底端.若运动过程中金属杆始终保持与导轨垂直且接触良好,轨道与金属杆的电阻均忽略不计.则下列说法正确的是()A.金属杆ab上滑过程与下滑过程通过电阻R的电量一样多B.金属杆ab上滑过程中克服重力、安培力与摩擦力所做功之和大于mv02C.金属杆ab上滑过程与下滑过程因摩擦而产生的内能一定相等D.金属杆ab在整个过程中损失的机械能等于装置产生的焦耳热19.(多选) 如图所示平行的金属双轨与电路处在竖直向下的匀强磁场B中,一金属杆放在金属双轨上在恒定外力F作用下做匀速运动,则在开关S()A.闭合瞬间通过金属杆的电流增大B.闭合瞬间通过金属杆的电流减小C.闭合后金属杆先减速后匀速D.闭合后金属杆先加速后匀速20.(多选)如图所示,间距l=0.4 m的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd内匀强磁场的磁感应强度B=0.2 T,方向垂直于斜面.甲、乙两金属杆电阻R相同、质量均为m=0.02 kg,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab上,乙在甲上方距甲也为l 处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5 m/s2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g=10 m/s2,则()A.每根金属杆的电阻R=0.016 ΩB.甲金属杆在磁场中运动的时间是0.4 sC.甲金属杆在磁场中运动过程中F的功率逐渐增大D.乙金属杆在磁场中运动过程中安培力的功率是0.1 W21.(多选)某位移传感器的工作原理如图甲所示,物体M在导轨上平移时,带动滑动变阻器的金属杆P,通过理想电压表显示的数据来反映物体的位移x.设定电源电动势为E,内阻不计,滑动变阻器的长度为L,物体经过O点时P恰好位于滑动变阻器的中点,此时电压表示数显示为0,若电压表的示数UPQ随时间t的变化关系如图乙(余弦图象)所示,则下列说法正确的是()A.在t1时刻M恰好运动到O位置B.物体M以O点为中心做往复运动C.在t1到t2时间段内,M的速度先增大后减小D.在t2时刻物体M在最右端且速度为022.(多选)如图所示为不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H, P固定在框上.H、P的间距很小,质量为0.2 kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m的正方形,其有效电阻为0.1 Ω.此时在整个空间加与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t) T .图示磁场方向为正方向.框、挡板和杆不计形变,则()A.t=1 s时,金属杆中感应电流方向从C到DB.t=3 s时,金属杆中感应电流方向从D到CC.t=1 s时,金属杆对挡板P的压力大小为0.1 ND.t=3 s时,金属杆对挡板H的压力大小为0.2 N23.(多选)两金属杆ab和cd长度,电阻均相同,质量分别为M和m,已知M>m.两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧.两金属杆都处在水平位置,如图所示.从t=0时刻起,ab和cd开始运动,当运动到t1时刻,在与回路平面相垂直的方向加上一匀强磁场,磁场区域足够大,若以竖直向下为速度的正方向,则ab运动的速度随时间变化的图象可能是下图中的()A.B.C.D.24.(多选)如图所示,两根相距为L的平行直导轨水平放置,R为固定电阻,导轨电阻不计.电阻阻值也为R的金属杆MN垂直于导轨放置,杆与导轨之间有摩擦,整个装置处在竖直向下的匀强磁场中,磁感应强度大小为B.t=0时刻对金属杆施加一水平外力F作用,使金属杆从静止开始做匀加速直线运动.下列关于外力F、通过R的电流I、摩擦生热Q(图C为抛物线)、外力F的功率P随时间t变化的图象中正确的是()A.B.C.D.25.(多选)如图所示,以平面框架宽L=0.3 m,与水平面成37°角,上、下两端各有一个电阻R0=2 Ω,框架其他部分的电阻不计.垂直于框架平面的方向上存在向上的匀强磁场,磁感应强度B=1 T.金属杆ab长为0.3 m,质量为m=1 kg,电阻r=2 Ω,与框架的动摩擦因数为μ=0.5,以初速度v0=10 m/s向上滑行,直至上升到最高点的过程中,上端电阻R0产生的热量Q0=5 J.下列说法正确的是()A.上升过程中,金属杆两端点ab间最大电势差为3 VB.ab杆沿斜面上升的最大距离为2 mC.上升过程中,通过ab杆的总电荷量为0.2 CD.上升过程中,电路中产生的总热量为30 J26.(多选)如图所示,水平放置的平行金属导轨间距为l,左端与一电阻R相连.导轨间有竖直向下的匀强磁场,磁场的磁感应强度为B.金属杆ab垂直于两导轨放置,电阻为r,与导轨间无摩擦.现对杆ab施加向右的拉力,使杆ab向右以速度v匀速运动,则()A.金属杆中的电流由a到bB.金属杆a端的电势高于b端的电势C.拉力F=D.R上消耗的功率P=()2R27.(多选)在磁感应强度为B的匀强磁场中,有一与磁场方向垂直长度为L的金属杆aO,已知ab=bc=cO=,a、c与磁场中以O为圆心的同心圆(都为部分圆弧)金属轨道始终接触良好.一电容为C的电容器接在轨道上,如图所示,当金属杆在与磁场垂直的平面内以O为轴,以角速度ω顺时针匀速转动时()A.Uac=2UbOB.Uac=2UabC.电容器带电量Q=BL2ωCD.若在eO间连接一个电压表,则电压表示数为零28.(多选)如图所示,金属杆ab以恒定的速率v在光滑的平行导轨上向右滑行,设整个电路中总电阻为R(恒定不变),整个装置置于垂直于纸面向里的匀强磁场中,则下列说法正确的是()A.ab杆中的电流与速率v成正比B.电阻R上产生的电热功率与速率v成正比C.磁场作用于ab杆的安培力与速率v成正比D.外力对ab杆做功的功率与速率v成正比29.(多选)如图所示,两根光滑金属导轨平行放置,导轨所在平面与水平面间的夹角为θ.质量为m、长为L的金属杆ab垂直导轨放置,整个装置处于垂直ab方向的匀强磁场中.当金属杆ab中通有从a到b的恒定电流I时,金属杆ab保持静止.则磁感应强度方向和大小可能为()A.竖直向上,B.平行导轨向上,C.水平向右,D.水平向左,30.(多选)下图是小丽自制的电流表原理图,质量为m的均匀细金属杆MN与一竖直悬挂的绝缘轻弹簧相连,弹簧劲度系数为k,在边长为ab=L1,bc=L2的矩形区域abcd内均有匀强磁场,磁感应强度大小为B,方向垂直纸面向外.MN的右端连接一绝缘轻指针,可指示出标尺上的刻度,MN的长度大于ab,当MN中没有电流通过且处于静止时,MN与ab边重合,且指针指在标尺的零刻度;当MN中有电流时,指针示数可表示电流大小.MN始终在纸面内且保持水平,重力加速度为g,则()A.要使电流表正常工作,金属杆中电流方向应从M至NB.当该电流表的示数为零时,弹簧的伸长量为零C.该电流表的量程是I m=D.该电流表的刻度在0~I m范围内是不均匀的31.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=2.5 cos (kx+π)(m),式中k=1 m-1.将一质量为1 kg的光滑小环套在该金属杆上,在P(-m,0)点给小环以平行于杆、大小为10 m/s的初速度,让小环沿杆向x轴正方向运动,取g=10 m/s2,关于小环的运动,下列说法正确的是 ()A.金属杆对小环不做功B.小环沿x轴方向的分运动为匀速运动C.小环到达金属杆的最高点时的速度为5m/sD.小环到达Q(m,-2.5 m)点时的速度为10m/s分卷II四、计算题(共10小题,每小题18.0分,共180分)32.如图所示,电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l,轨道所在平面的正方形区域内存在一有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向上.电阻相同、质量均为m的两根相同金属杆甲和乙放置在导轨上,甲金属杆恰好处在磁场的上边界处,甲、乙相距也为l.在静止释放两金属杆的同时,对甲施加一沿导轨平面且垂直于甲金属杆的外力,使甲在沿导轨向下的运动过程中始终以加速度a=g sinθ做匀加速直线运动,金属杆乙进入磁场时即做匀速运动.(1)求金属杆的电阻R;(2)若从开始释放两金属杆到金属杆乙刚离开磁场的过程中,金属杆乙中所产生的焦耳热为Q,求外力F在此过程中所做的功.33.如图甲所示,平行金属导轨竖直放置,导轨间距为L=1 m,上端接有电阻R1=3 Ω,下端接有电阻R2=6 Ω,虚线OO′下方是垂直于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻不计的金属杆ab,从OO′上方某处垂直导轨由静止释放,杆下落0.2 m过程中始终与导轨保持良好接触,加速度a与下落距离h的关系图象如图乙所示. 求:(1)磁感应强度大小B;(2)杆下落0.2 m过程中通过金属杆的电荷量q.34.如图所示,两根竖直固定的足够长的金属导轨ab和cd相距L=0.2 m,另外两根水平金属杆MN 和PQ的质量均为m=10 g,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2 Ω(竖直金属导轨电阻不计),PQ杆放置在水平绝缘平台上,整个装置处于垂直导轨平面向里的磁场中,g取10 m/s2.(1)若将PQ杆固定,让MN杆在竖直向上的恒定拉力F=0.18 N的作用下由静止开始向上运动,磁感应强度B0=1.0 T,当杆MN的速度v1=0.4 m/s时的加速度a为多少?杆MN的最大速度v m为多少?(2)若将MN杆固定,MN和PQ的间距为d=0.4 m,现使磁感应强度从零开始以=0.5 T/s的变化率均匀地增大,经过多长时间,杆PQ对地面的压力为零?35.如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直,且接触良好,整套装置处于匀强磁场中.金属杆ab中通有大小为I的电流.已知重力加速度为g.(1)若匀强磁场方向垂直斜面向下,且不计金属杆ab和导轨之间的摩擦,金属杆ab静止在轨道上,求磁感应强度的大小;(2)若金属杆ab静止在轨道上面,且对轨道的压力恰好为零.试说明磁感应强度大小和方向应满足什么条件;(3)若匀强磁场方向垂直斜面向下,金属杆ab与导轨之间的动摩擦因数为μ,且最大静摩擦力等于滑动摩擦力.欲使金属杆ab静止,则磁感应强度的最大值是多大.36.如图甲所示,光滑且足够长的金属导轨MN、PQ平行地固定在同一水平面上,两导轨间距L=0.2 m,两导轨的左端之间所接的电阻R=0.40 Ω,导轨上静止放置一质量m=0.10 kg的金属杆ab,位于两导轨之间的金属杆的电阻r=0.10 Ω,导轨的电阻可忽略不计.整个装置处于磁感应强度B =0.50 T的匀强磁场中,磁场方向竖直向下.现用一水平外力F水平向右拉金属杆,使之由静止开始运动,在整个运动过程中金属杆始终与导轨垂直并接触良好,若理想电压表的示数U随时间t 变化的关系如图乙所示,求从金属杆开始运动经t=5.0 s时:(1)通过金属杆的感应电流的大小和方向;(2)金属杆的速度大小;(3)外力F的瞬时功率.37.图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40 m,电阻不计.导轨所在平面与磁感应强度B为0.50 T的匀强磁场垂直.质量m为6.0×10-3kg、电阻为1.0 Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0 Ω的电阻R1.当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27 W,重力加速度取10 m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2.38.如图所示,在xOy平面内有一扇形金属框abc,其半径为r,ac边与y轴重合,bc边与x轴重合,且c为坐标原点,ac边与bc边的电阻不计,圆弧ab上单位长度的电阻为R.金属杆MN长度为L,放在金属框abc上,MN与ac边紧邻,金属杆ac长度的电阻为R0.磁感应强度为B的匀强磁场与框架平面垂直并充满平面.现对MN杆施加一个外力(图中未画出),使之以C点为轴顺时针匀速转动,角速度为ω.求:(1)在MN杆运动过程中,通过杆的电流I与转过的角度θ间的关系;(2)整个电路消耗电功率的最小值是多少?39.如图所示,质量为1 kg的金属杆放在相距1 m的两水平轨道上,金属杆与轨道间的动摩擦因数为0.6,两轨道间存在着竖直方向的匀强磁场,当杆中通有方向如图所示大小为5 A的恒定电流时,可使金属杆向右匀速运动(g=10 m/s2).(1)判断两轨道间磁场方向;(2)求磁感应强度B的大小.40.如图所示,两根平行放置的导电轨道,间距为L,倾角为θ,轨道间接有电动势为E(内阻不计)的电源,现将一根质量为m、电阻为R的金属杆ab水平且与轨道垂直放置在轨道上,金属杆与轨道接触摩擦和电阻均不计,整个装置处在匀强磁场(磁场垂直于金属棒)中且ab杆静止在轨道上,求:(1)若磁场竖直向上,则磁感应强度B1是多少?(2)如果通电直导线对轨道无压力,则匀强磁场的磁感应强度B2是多少?方向如何?41.间距为l的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图19所示.倾角为θ的导轨处于大小为B1、方向垂直导轨平面向上的匀强磁场区间Ⅰ中.水平导轨上的无磁场区间静止放置一质量为3m的“联动双杆”(由两根长为l的金属杆cd和ef,用长度为L的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为B2、方向垂直导轨平面向上的匀强磁场区间Ⅱ,其长度大于L.质量为m、长为l的金属杆ab从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab与“联动双杆”发生碰撞,碰后杆ab和cd合在一起形成“联动三杆”.“联动三杆”继续沿水平导轨进入磁场区间Ⅱ并从中滑出.运动过程中,杆ab、cd和ef与导轨始终接触良好,且保持与导轨垂直.已知杆ab、cd和ef电阻均为R=0.02 Ω,m=0.1 kg,l=0.5 m,L=0.3 m,θ=30°,B1=0.1 T,B2=0.2 T.不计摩擦阻力和导轨电阻,忽略磁场边界效应.求:图19(1)杆ab在倾斜导轨上匀速运动时的速度大小v0;(2)“联动三杆”进入磁场区间Ⅱ前的速度大小v;(3)“联动三杆”滑过磁场区间Ⅱ产生的焦耳热Q.五、填空题(共1小题,每小题5.0分,共5分)42.在弹性限度内,弹簧弹力的大小与弹簧伸长(或缩短)的长度的比值,叫做弹簧的劲度系数.为了测量一轻弹簧的劲度系数,某同学进行了如下实验设计:如图所示,将两平行金属导轨水平固定在竖直向下的匀强磁场中,金属杆ab与导轨接触良好,水平放置的轻弹簧一端固定于O点,另一端与金属杆连接并保持绝缘.在金属杆滑动的过程中,弹簧与金属杆、金属杆与导轨均保持垂直,弹簧的形变始终在弹性限度内,通过减小金属杆与导轨之间的摩擦和在弹簧形变较大时读数等方。
开始时,,杆加速,杆运动,产生反电动势,杆运动,电容器充电,杆受安培力,速度减小,电能转化为热能和动做功带来的能量转化为杆杆的动能一部分转化为电势能,一部分转化为内能,一部分耗散.外力和安培力冲17/04/04
F B L =|BLv −E |BLv −Q C 能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本
开始时,两杆做变加速运
两杆做变加速运动,稳定后两杆做对于直线运动,教科书中讲解了由图像求位移的方法.请你借鉴此方法,根据图示的图像,若电容器电容为,两极板间电压为,求电容器所储存的电场能.
1v −t Q −U
C U 如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为的电容器.框架上一
质量为、长为的金属棒平行于地面放置,离地面的高度为.磁感应强度为的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.求:
.金属棒落地时的速度大小;
.金属棒从静止释放到落到地面的时间.
2C m L h B a b 如图,与水平地面成.和是置于导轨上
,其余电阻可忽略不计.整个装置处在CD EF
金属棒所能达到的最大速度;
1EF v m 在整个过程中,金属棒产生的热量.
2EF Q 光滑的平行金属导轨如图所示,轨道的水平部分位于竖直向上的匀强磁场中,部分的宽度为部分
宽度的倍,、部分轨道足够长,将质量都为的金属棒和分别置于轨道上的段和段,棒位于距水平轨道高为的地方,放开棒,使其自由下滑,求棒和棒的最终速度及回路中所产生的电能.4bcd bc cd 2bc cd m P Q ab cd P h P P Q。
R 1 R 2 v Aa Bb 【03】【培优】高二第03次培优材料电磁感应单双棒问题教师版doc 高中物理电磁感应 单棒咨询题 双棒咨询题1. 两个闭合铝环,挂在一根水平光滑的绝缘杆上,当条形磁铁N 极向左插向圆环时(如图),两圆环的运动是A.边向左移边分开B.边向左移边靠拢C.边向右移边分开D.边向右移边靠拢2. 如下图,导线ab 沿金属导轨运动,使电容器c 充电,设磁场是匀强磁场,且右边回路电阻不变,假设使电容器带电量恒定,且上板带正电,那么ab 的运动情形是( )A.匀速向右运动B.匀加速向左运动C.变加速向左运动D.匀加速向右运动3. 图中的匀强磁场磁感应强度B=0.5T ,让长为0.2m 的导体AB 在金属导轨上,以5m/s 的速度向左做匀速运动,设导轨两侧所接电阻R 1=4Ω,R 2=1Ω,本身电阻为1Ω,AB 与导轨接触良好。
求:〔1〕导体AB 中的电流大小 〔2〕全电路中消耗的电功率【Key 】〔1〕0.28A 〔2〕0.14w楞次定律你把握了吗?单棒咨询题abRF1. 如下图,匀强磁场磁感应强度为B=0.8T ,方向垂直轨道平面,导轨间距L=0.5m ,拉力F=0.2N ,电阻R=4Ω,一切摩擦不计,求ab 杆可能达到的最大速度【Key 】5m/s2. 如下图,MN 为金属杆,在竖直平面内贴着光滑金属导轨下滑,导轨的间距l=10cm ,导轨上端接有电阻R=0.5Ω,导轨与金属杆电阻不计,整个装置处于B=0.5T 的水平匀强磁场中.假设杆稳固下落时,每秒钟有0.02J 的重力势能转化为电能,那么求MN 杆的下落速度【Key 】RBLvR E I == .mg=I 2Rt v=2m/s3. 如图3所示,水平面上有两根相距0.5m 的足够长的平行金属导轨MN 和PQ ,它们的电阻可忽略不计,在M 和P 之间接有阻值为R 的定值电阻。
导体棒ab 长l =0.5m ,其电阻为r ,与导轨接触良好。
电磁感应之单杆与双杆难题之一
1、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。
导轨上端接有一平行板电容器,电容为C 。
导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面。
在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系。
2、如图所示,间距为l 、电阻不计的两根平行金属导轨MN 、PQ (足够长)被固定在同一水平面内,质量均为m 、电阻均为R 的两根相同导体棒a 、b 垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a 棒连接,其下端悬挂一个质量为M 的物体C ,整个装置放在方向竖直向上、磁感应强度大小为B 的匀强磁场中.开始时使a 、b 、C 都处于静止状态,现释放C ,经过时间t ,C 的速度为v1、b 的速度为v2,不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g ,求:
(1)t 时刻C 的加速度值;
(2)t 时刻a 、b 与导轨所组成的闭合回路消耗的热功率;
(3)t 时刻a 、b 与导轨所组成的闭合回路消耗的总电功率.。
R 2 b高二物理第★-03-★次培优材料电磁感应 单棒问题 双棒问题1. 两个闭合铝环,挂在一根水平光滑的绝缘杆上,当条形磁铁N 极向左插向圆环时(如图),两圆环的运动是 A.边向左移边分开 B.边向左移边靠拢 C.边向右移边分开D.边向右移边靠拢2. 如图所示,导线ab 沿金属导轨运动,使电容器c 充电,设磁场是匀强磁场,且右边回路电阻不变,若使电容器带电量恒定,且上板带正电,则ab 的运动情况是( )A.匀速向右运动B.匀加速向左运动C.变加速向左运动D.匀加速向右运动3. 图中的匀强磁场磁感应强度B=0.5T ,让长为0.2m 的导体AB 在金属导轨上,以5m/s 的速度向左做匀速运动,设导轨两侧所接电阻R1=4Ω,R 2=1Ω,本身电阻为1Ω,AB 与导轨接触良好。
求:(1)导体AB 中的电流大小 (2)全电路中消耗的电功率【Key 】(1)0.28A (2)0.14w楞次定律你掌握了吗?单棒问题1. 如图所示,匀强磁场磁感应强度为B=0.8T ,方向垂直轨道平面,导轨间距L=0.5m ,拉力F=0.2N ,电阻R=4Ω,一切摩擦不计,求ab 杆可能达到的最大速度【Key 】5m/s2. 如图所示,MN 为金属杆,在竖直平面内贴着光滑金属导轨下滑,导轨的间距l=10cm ,导轨上端接有电阻R=0.5Ω,导轨与金属杆电阻不计,整个装置处于B=0.5T 的水平匀强磁场中.若杆稳定下落时,每秒钟有0.02J 的重力势能转化为电能,则求MN 杆的下落速度【Key 】RBLvR E I == .mg=I 2Rt v=2m/s3. 如图3所示,水平面上有两根相距0.5m 的足够长的平行金属导轨MN 和PQ ,它们的电阻可忽略不计,在M 和P 之间接有阻值为R 的定值电阻。
导体棒ab 长l =0.5m ,其电阻为r ,与导轨接触良好。
整个装置处于方向竖直向上的匀强磁场中,磁感应强度B =0.4T 。
现在在导体棒ab 上施加一个水平向右的力F ,使ab 以v =10m/s 的速度向右做匀速运动时,求:⑴ab 中的感应电动势多大? ⑵ab 中电流的方向如何?⑶若定值电阻R =3.0Ω,导体棒的电阻r =1.0Ω,F 多大?【Key 】⑴==BLv E 2.0V ⑵b →a ⑶0.1N图34. 如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问:(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少? (3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((dB r R f F v f r R v d B f BId F m m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv Em ))((--==回路中产生的感应电流为:BdfF r R E I -=+=则R 中消耗的电功率为:2222)(dB Rf F R I R P -== (3)当CD 速度为最大速度的1/3即m v v 31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为:)(31''f F d BI F A -==CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=5. 如图5所示,有两根足够长、不计电阻,相距L 的平行光滑金属导轨cd 、ef 与水平面成θ角固定放置,底端接一阻值为R 的电阻,在轨道平面内有磁感应强度为B 的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce 、垂直于导轨、质量为m 、电阻不计的金属杆ab ,在沿轨道平面向上的恒定拉力F 作用下,从底端ce 由静止沿导轨向上运动,当ab 杆速度达到稳定后,撤去拉力F ,最后ab 杆又沿轨道匀速回到ce 端。
已知ab 杆向上和向下运动的最大速度相等。
求:(1)拉力F 大小;(2)杆ab 最后回到ce 端的速度v图5【Key 】(1)θsin 2mg F = (2)22sin L B mgR v θ=6. 如图6所示,宽度为L 的足够长的平行金属导轨MN 、PQ 的电阻不计,垂直导轨水平放置一质量为m 电阻为R 的金属杆CD ,整个装置处于垂直于导轨平面的匀强磁场中,导轨平面与水平面之间的夹角为θ,金属杆由静止开始下滑,动摩擦因数为μ,下滑过程中重力的最大功率为P ,求磁感应强度的大小。
【Key 】B = mg LRsinθ(sinθ-μcosθ)P7. 如图所示,足够长的金属导轨MN 和PQ 与R 相连,平行地放在水平桌面上,质量为m的金属杆可以无摩擦地沿导轨运动.导轨与ab 杆的电阻不计,导轨宽度为L ,磁感应强度为B 的匀强磁场垂直穿过整个导轨平面.现给金属杆ab 一个瞬时冲量I 0,使ab 杆向右滑行. (1)求回路的最大电流.(2)当滑行过程中电阻上产生的热量为Q 时,杆ab 的加速度多大?(3)杆ab 从开始运动到停下共滑行了多少距离? 解:(1)由动量定理I 0 = mv 0 – 0 得v 0 = I 0m(2分)金属杆在导轨上做减速运动,刚开始时速度最大,感应电动势也最大,有:E m = BLv (1分)所以回路的最大电流I m =BLv 0R = BLI 0mR.(1分) (2) 设此时杆的速度为v ,由能的转化和守恒有:图6Q =- 12 mv 2+ 12mv 20 (2分)解得:v = 1m(1分)由牛顿第二定律得:BIL = ma (1分) 由闭合电路欧姆定律得:I =BLvR(1分)解得:a = B 2L 2m 2R.(1分)(3)对全过程应用动量定理有:—BIL ·Δt = 0 – I 0 (2分) 而I =ΔφΔt ·R = BLxΔt ·R(2分) 解得:x = I 0RB 2L 2.(2分)8. 两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T ,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =0.25Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v =5.0m/s ,如图所示.不计导轨上的摩擦.(1)求作用于每条金属细杆的拉力的大小.(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量.解析:(1)当两金属杆都以速度v 匀速滑动时,每条金属杆中产生的感应电动势分别为: E 1=E 2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:rE E I 221+=因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F 2=IBd 。
由以上各式并代入数据得22221102.3-⨯===rvd B F F N (2)设两金属杆之间增加的距离为△L ,则两金属杆共产生的热量为vLr I Q 222∆⋅⋅=, 代入数据得 Q =1.28×10-2J.9. 如图所示,两根间距为l 的光滑金属导轨(不计电阻),由一段圆弧部分与一段无限长的水平段部分组成。
其水平段加有竖直向下方向的匀强磁场,其磁感应强度为B ,导轨水平段上静止放置一金属棒cd ,质量为2m 。
,电阻为2r 。
另一质量为m ,电阻为r 的金属棒ab ,从圆弧段M 处由静止释放下滑至N 处进入水平段,圆弧段MN 半径为R ,所对圆心角为60°,求:(1)ab 棒在N 处进入磁场区速度多大?此时棒中电流是多少?(2)ab 棒能达到的最大速度是多大?(3)ab 棒由静止到达最大速度过程中,系统所能释放的热量是多少?双棒问题解析:(1)ab 棒由静止从M 滑下到N 的过程中,只有重力做功,机械能守恒,所以到N 处速度可求,进而可求ab 棒切割磁感线时产生的感应电动势和回路中的感应电流。
ab 棒由M 下滑到N 过程中,机械能守恒,故有:221)60cos 1(mv mgR =︒- 解得gR v = 进入磁场区瞬间,回路中电流强度为 rgR Bl r r E I 32=+=(2)设ab 棒与cd 棒所受安培力的大小为F ,安培力作用时间为 t ,ab 棒在安培力作用下做减速运动,cd 棒在安培力作用下做加速运动,当两棒速度达到相同速度v ′时,电路中电流为零,安培力为零,cd 达到最大速度。
运用动量守恒定律得 v m m mv '+=)2(解得 gR v 31=' (3)系统释放热量应等于系统机械能减少量,故有2232121v m mv Q '⋅-=解得mgR Q 31=。