路由器重分发
- 格式:doc
- 大小:671.50 KB
- 文档页数:10
RIP与OSPF的路由重分发实验目的:1、掌握RIP与OSPF的重发布配置。
2、理解OSPF的E1与E2类型的路由。
实验拓扑图实验步骤及要求:1、配置各台路由器的IP地址,并且使用Ping命令确认各路由器的直连口的互通性。
2、配置R1与R2的OSPF路由协议和R2与R3的RIP路由协议。
R1(config)#router ospf 1R1(config-router)#network 172.16.255.0 0.0.0.3 area 0R1(config-router)#network 172.16.1.0 0.0.0.255 area 0R1(config-router)#network 172.16.2.0 0.0.0.255 area 0R2(config)#router ospf 1R2(config-router)#network 172.16.255.0 0.0.0.3 area 0R2(config-router)#exitR2(config)#router ripR2(config-router)#network 192.168.255.0R3(config)#router ripR3(config-router)#network 192.168.255.0R3(config-router)#network 192.168.1.0R3(config-router)#network 192.168.2.03、查看R1、R2和R3的路由表R1#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set172.16.0.0/16 is variably subnetted, 3 subnets, 2 masksC 172.16.255.0/30 is directly connected, FastEthernet0/0C 172.16.1.0/24 is directly connected, Loopback0C 172.16.2.0/24 is directly connected, Loopback1R2#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set172.16.0.0/16 is variably subnetted, 3 subnets, 2 masksC 172.16.255.0/30 is directly connected, FastEthernet0/1O 172.16.1.1/32 [110/2] via 172.16.255.1, 00:03:33, FastEthernet0/1O 172.16.2.1/32 [110/2] via 172.16.255.1, 00:03:33, FastEthernet0/1从R1学习到的OSPF网络路由C 192.168.255.0/24 is directly connected, FastEthernet0/0R 192.168.1.0/24 [120/1] via 192.168.255.1, 00:00:25, FastEthernet0/0R 192.168.2.0/24 [120/1] via 192.168.255.1, 00:00:25, FastEthernet0/0从R3学习到的RIP网络路由R3#show ip routeCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area* - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not setC 192.168.255.0/24 is directly connected, FastEthernet0/1C 192.168.1.0/24 is directly connected, Loopback0C 192.168.2.0/24 is directly connected, Loopback14、根据show ip route命令可以看出,只有R2路由才可以学习到整个网络的完整路由。
路由重分发工作原理路由重分发工作原理网络协议有很多种,例如isis、rip、ospf、bgp等,在大型公司中经常会出现网络设备之间运行多种网络协议的情况,各种网络协议之间如果不进行一定的配置那么设备之间是不能进行互通信息的,在这种情况下就出现了路由重分发技术,路由重分发的作用就是为了实现多种路由协议之间的协同工作。
路由重分发的工作原理:通过在各种路由协议的配置中添加一定的配置使将路由协议广播到另外的路由协议中,让各个路由协议都能检测到运行其他的路由协议的网段,从而实现数据的传输。
路由重分发技术需要用到redistribute命令rip协议的redistribute命令redistribute protocol 【metric metric-value】【match internal | external nssa-external type】【route-map map-tag】protocol:路由重分发的源路由协议 metric metric-value:设置路由重分发的度量值(1···6),没有将使用default-metric命令设置的metric值 match internal | external nssa-external type:设置重分发路由的条件,只适合重分发的源路由协议是ospf route-map map-tag应用路由图进行重分发ospf协议的redistribute命令 redistribute protocol 【subnets】【metric metric-value】【metric-type{1 | 2}】【tag tag-value】【route-map map-tag】protocol:路由重分发的源路由协议subnets:设置是否重分发子网metric metric-value:设置路由重分发的度量值(1···16777214),没有将使用default-metric命令设置的metric值metric metric-type:设置重分发的路由度量类型,默认值为2 tag tag-value:设置重分发的路由的tag(0···2147483647)默认为0 route-map map-tag应用路由图进行重分发重分发到ospf中的时候,除了直连路由和默认路由外,其他重分发的路由的默认的度量值是20,默认度量值类型是2,且默认不重分发子网。
本课程大纲:1.为什么要重分发?2.如何重分发?3.几个重要的命令:passive-interface,distribute-list,route-map,distance,D HCP路由重分布:将一种路由选择协议获悉的网络告知另一种路由选择协议,以便网络中每台工作站能到达其他的任何一台工作站,这一过程被称为重分布。
重分布原则:路由必须位于路由选择表中才能被重分发在重分发时设定种子metric协议 Seed MetricRIP 无限大必须手工指定EIGRP 无限大也必须手工指定OSPF 20 如果重分布进来的是BGP的话,Metric是1,这是个特例IS-IS 0BGP 携带原来的Metric值R1(config-router)#default-metric 1 使用此命令来设定种子metric值从无类别路由器向有类别路由器重分发协议的时候,仅在掩码相同的接口通告。
为什么要重分发?1.重分发进RIP命令:redistribute 【其他路由协议】 metric 1 R1(config-router)#redistribute static (可不加Metric,默认=1)重分布进RIP时注意,必须指定度量值,或者用default-metric命令设置种子度量值(RIP默认种子度量值无限大),只有重分布静态时不用制定metric 值。
如果同时用metric和default-metric命令指定度量值,则metric优先。
2.重分发进OSPF默认Metric值为20,默认类型是O E2,默认情况下子网不通告命令:redistribute 【其他路由协议】 subnets 3.重分发进EIGRP重分发以后的管理距离是170命令:redistribute 【其他路由协议】 metric 1000 100 255 1 1500R1(config-router)#redistribute connected (不加Metric也可)(根据直连接口的不同计算Metric)R1(config-router)#redistribute static (不加Metric也可)(根据下一跳接口计算Metric)4.重分发进IS-IS默认属于Level 2,默认Metric值为0命令:redistribute 【其他路由协议】注意:BGP重分布进IGP时会造成些问题,原则上不推荐这样做。
路由重分发-redistribute路由重分发 redistribute什么叫路由重分发?属于路由策略,主要⽤于不同的路由协议之间,使它们相互融合进⾏导⼊导出路由条⽬。
具体⽤在哪⾥呢?边界⽹关设备上,那企业内部会⽤到路由重分发吗?通常情况下是不可能⽤到的,因为⼀个企业内部通常是这样⼉的防⽕墙充当⽹关/双线接⼊/双⽹关———核⼼交换机———汇聚交换机,HSRP/VRRP(双GW),SLA上⾏监测,流量分摊MST,也就没啥了,然后只运⾏⼀种路由协议,这样能够保证安全的同时,还可以保证稳定。
这是⼀个企业内部⽹络的需求,⽽路由协议的重分布,多⽤于外部,/IDC/ISP像BGP的重分布学到⽬前为⽌,我们见到的协议有Rip eigrp ospf static connected 默认⽆论是哪种协议之间的重分发,都要遵循⼀个原则,就是“嫁鸡随鸡,嫁狗随狗”要遵循本地协议的“标准”如rip 参考的是跳数,Eigrp 参考的是复合度量值,带宽延迟可靠性负载 MTUOSPF 参考的是带宽 cost如果是宣告到他们的协议中,⼀定要遵循他们的标准实例Rip------eigrpR1-----R2运⾏ripR2-----R3运⾏eigrp最终由R2进⾏双向的重分发配置rip 和eigrp就不多说了R2(config-router)#router eigrp 1R2(config-router)#redistribute rip metric 10000 100 255 1 1500这就是前⾯所提到的,分布到什么协议,就要遵循什么协议的标准,Eigrp采⽤复全度量值做为参考,那么就要在重分布的时候设置这些参数顺序是带宽延迟(微秒)换算后=1ms 可靠性负载 MTUR2(config-router)#router ripR2(config-router)#redistribute eigrp 1 metric 1⽽RIP使⽤的是跳数,那么eigrp进rip后,也要遵循跳数的原则,这⾥需要注意的是如果将Metric设置为15的话,将会发⽣⼀个现象,所有的重分布进rip的条⽬都将不可达,因为原始就是1 ,再加上15=16,,还有,就是如果不设置metric值的话,系统也会默认将这个跳数置为⽆穷⼤,也就是不可达。
路由重分发的基本概念在计算机网络中,路由器是用于转发网络数据包的设备。
路由器根据目的地地址将数据包从一个网络接口转发到另一个网络接口,以便将数据从源主机传输到目标主机。
如果网络结构发生改变或者某个路径出现故障,路由器就需要重新分发路由信息,以便确保数据能够正确地到达目标主机。
下面是路由重分发的基本概念。
路由重分发是指将新的路由信息通知给其它路由器,以便它们能够将数据包转发到正确的目标。
当网络拓扑发生改变时,例如有一条链路故障或者新增了一条链路,路由重分发就需要被执行。
在路由重分发的过程中,路由器会发送路由更新消息给其它路由器,以便让它们更新它们的路由表。
这样,当一个数据包到达网络时,路由器就可以根据最新的路由表将其正确地转发到目标主机。
路由器可以采用不同的路由协议来执行路由重分发。
常用的路由协议包括距离向量路由协议和链路状态路由协议。
距离向量路由协议根据最短距离确定最佳路径,并向其它路由器发送这些路径的距离信息。
当一条路径不可用时,路由器会从其它可能的路径中选择一个最佳路径,然后向其它路由器发送更新消息。
链路状态路由协议则根据网络中各链路的状态动态计算出路由信息。
当网络结构发生改变时,路由器会重新计算路由信息并通知其它路由器。
在执行路由重分发之前,路由器通常会先删除旧的路由信息。
这样可以避免新的路由信息和旧的路由信息冲突,导致数据包被错误地转发。
当路由重分发完成后,路由器会重新建立路由信息表。
新的路由表将包含最新的路由信息,以便将数据包正确地转发到目标主机。
总之,路由重分发是计算机网络中维护路由信息的重要过程。
它可以确保数据包能够正确地到达目标主机,同时避免了路由信息的冲突。
在实际应用中,路由重分发的频率对网络的性能有重要影响。
如果路由重分发太频繁,会导致网络负载过大,从而降低网络的吞吐量。
因此,在设计网络拓扑时,需要仔细考虑路由重分发的频率,并采取相应的措施来保证网络的高效稳定运行。
路由重分布概念
路由重分布是指在不同路由协议之间共享路由信息的过程。
为了在同一个网络中有效地支持多种路由协议,需要在不同的路由协议之间进行路由信息的交换。
这个过程将一种路由协议获悉的路由信息告知给另一种路由协议,从而实现在不同的路由协议之间路由信息的共享。
在执行路由重分布时,需要注意一些关键问题。
首先,应避免在同一个网络中同时使用两个不同的路由协议,除非在网络之间有明显的界限。
其次,如果有多台路由器作为重分布点,应使用单项重分布以避免回环和收敛问题,并在不需要接收外部路由的路由器上使用默认路由。
此外,在单边界的情况下,可以使用双向重分布,但如果没有任何机制来防止路由回环,则不要在一个多边界的网络中使用双向重分布。
在进行路由重分布时,还需要考虑度量标准和管理距离。
种子度量值是在路由生分布时定义的,它是一条通过外部重分布进来的路由的初始度量值。
同时,由于不同路由协议的度量标准不同,需要进行协议标准的转换以实现兼容性。
总之,路由重分布是实现多个路由协议在同一个网络中协同工作的关键技术之一。
通过在不同路由协议之间进行路由信息的共享和转换,可以实现更加高效和可靠的路由选择和网络通信。
教案实验目的掌握路由协议间的重分发。
实验要求理解路由重分发的作用理解路由重分发的原则掌握配置路由重分发重难点路由重分发的作用路由重分发的原则配置路由重分发教学方法教师讲解、演示,学生思考、记忆、实例操作、任务驱动讲授新课路由重分发【课题导入】在前面的课程中,我们讨论了如何使用路由协RIP与OSPF配置路由,但是发现了一个问题,那就是两种不同路由协议间的路由不能相互通信,那么如何做才能让不同路由协议间的路由可以通信呢?这就是我们这节课要学习的内容。
【本课内容】路由重分发的作用路由重分发的原则配置路由重分发【路由重分发的作用】路由重分发是指连接到不同路由选择域的边界路由器,在不同路由选择域(自主系统)之间交换和通告路由选择信息的能力。
【路由重分发的原则】度量——种子度量值管理距离从无类别协议向有类别协议重新分配1)、度量——种子度量值路由重分发时,必须给重分发而来的路由指定的度量值被称为默认度量值或种子度量值,它是在重分发配置期间定义的。
2)、管理距离确定首选路径首选路由源管理距离越小,协议的可信度越高表:各种路由协议的默认距离值3)、从无类别协议向有类别协议重新分配有类别路由选择协议不能通告携带子网掩码的路由。
对于有类别路由器所收到的每一条路由,存在2种情况:路由器将有一个或多个接口连接到主网上为了正确的确定数据包目的地址的子网,路由器必须使用自己的掩码路由器没有接口连接到主网上公告信息中仅包含主网地址,路由器不知道使用哪一个子网掩码【配置路由重分发】实现重分发之前,需要考虑以下几点:只能在支持相同协议栈的路由协议之间进行重分发。
配置重分发的方法随路由选择协议组合而异。
重分发分为两种:双向重分发:在两个路由选择进程之间重分发所有路由。
单向重分发:将一条路由传递给一种路由选择协议,同时只将通过该路由选择协议获得的网络传递给其他路由选择协议。
最安全的的重分发是只在网络中一台边界路由器上进行单向重分发,但这将可能导致网络的单点故障。
实训:路由重分配要求:三台PC机可以相互通信。
Ra:Router>enRouter#conf tRouter(config)#hostname RaRa(config)#int s0/0/0Ra(config-if)#ip add 192.168.10.1 255.255.255.0 Ra(config-if)#no shutRa(config-if)#clock rate 64000Ra(config-if)#exRa(config)#int s0/0/1Ra(config-if)#ip add 192.168.20.1 255.255.255.0 Ra(config-if)#no shutRa(config-if)#clock rate 64000Ra(config-if)#exRa(config)#int s0/1/0Ra(config-if)#ip add 192.168.30.1 255.255.255.0 Ra(config-if)#no shutRa(config-if)#clock rate 64000Ra(config-if)#exRa(config-router)#network 192.168.10.0Ra(config-router)#redistribute ospf 20 metric 1Ra(config-router)#redistribute eigrp 10 metric 1Ra(config-router)#exRa(config)#router eigrp 10Ra(config-router)#network 192.168.20.0Ra(config-router)#redistribute rip metric 1000 100 255 1 1500Ra(config-router)#redistribute ospf 20 metric 1000 100 255 1 1500 Ra(config-router)#exRa(config)#router ospf 20Ra(config-router)#network 192.168.30.0 0.0.0.255 area 0Ra(config-router)#redistribute rip subnetsRa(config-router)#redistribute eigrp 10 subnetsRa(config-router)#exRa(config)#endRa#wrRb:Router>enRouter#conf tRouter(config)#hostname RbRb(config)#int s0/0/0Rb(config-if)#ip add 192.168.10.2 255.255.255.0Rb(config-if)#no shutRb(config)#int f0/0Rb(config-if)#ip add 192.168.40.1Rb(config-if)#ip add 192.168.40.1 255.255.255.0Rb(config-if)#no shutRb(config-if)#exRb(config)#route ripRb(config-router)#network 192.168.40.0Rb(config-router)#network 192.168.10.0Rb(config-router)#endRb#wrRc:Router>enRouter#conf tRouter(config)#hostname RcRc(config)#int f0/0Rc(config-if)#ip add 192.168.50.1 255.255.255.0Rc(config-if)#exRc(config)#int s0/0/0Rc(config-if)#ip add 192.168.20.2 255.255.255.0Rc(config-if)#no shutRc(config)#router eigrp 10Rc(config-router)#network 192.168.50.0Rc(config-router)#network 192.168.20.0Rc(config-router)#endRc#wrRd:Router>enRouter#conf tRouter(config)#hostname RdRd(config)#int f0/0Rd(config-if)#ip add 192.168.60.1 255.255.255.0Rd(config-if)#no shutRd(config-if)#exRd(config)#int s0/0/0Rd(config-if)#ip add 192.168.30.2 255.255.255.0Rd(config-if)#no shutRd(config)#router ospf 20Rd(config-router)#network 192.168.60.0 0.0.0.255 area 0 Rd(config-router)#network 192.168.30.0 0.0.0.255 area 0 Rd(config-router)#endRd#wr。
配置路由重分发拓扑图实际需求Ø 为了便于网络维护,总公司到各分公司之间使用OSPF协议,上海分公司内部使用RIP 协议,而杭州分公司内部使用静态路由。
Ø 所有分公司访问公网都需要通过总公司R1路由器实现(R1路由器配置为默认路由,ISP 路由器也配置为默认路由)。
Ø 各路由器互联地址如拓扑图所示,路由器的Loopback0地址为R1:1.1.1.1/32 ,R2:2.2.2.2/32,R3:3.3.3.3/32 ,R4:4.4.4.4/32实现步骤1.配置各路由器接口地址,配置路由(OSPF协议、RIP协议、静态路由、默认路由)。
①配置R11)配置接口IP地址R1(config)#interface e0/0R1(config-if)#ip address 10.0.0.1 255.255.255.252R1(config-if)#no shutdownR1(config-if)#exitR1(config)#interface e0/1R1(config-if)#ip address 10.0.0.5 255.255.255.252R1(config-if)#no shutdownR1(config-if)#exitR1(config)#interface e0/2R1(config-if)#ip address 201.204.6.1 255.255.255.0R1(config-if)#no shutdownR1(config-if)#exitR1(config)#interface e0/3R1(config-if)#ip address 192.168.1.1 255.255.255.0 R1(config-if)#no shutdownR1(config-if)#exitR1(config)#interface loopback 0R1(config-if)#ip address 1.1.1.1 255.255.255.255R1(config-if)#no shutdownR1(config-if)#exit2)配置路由R1(config)#router ospf 1R1(config-router)#router-id 1.1.1.1R1(config-router)#network 10.0.0.1 0.0.0.0 area 0R1(config-router)#network 10.0.0.5 0.0.0.0 area 1R1(config-router)#network 192.168.1.1 0.0.0.0 area 0 R1(config-router)#network 1.1.1.1 0.0.0.0 area 0R1(config)#ip route 0.0.0.0 0.0.0.0 201.204.6.2②配置R21)配置接口IP地址R2(config)#interface e0/0R2(config-if)#ip address 10.0.0.2 255.255.255.252R2(config-if)#no shutdownR2(config-if)#exitR2(config)#interface e0/1R2(config-if)#ip address 192.168.100.1 255.255.255.0 R2(config-if)#no shutdownR2(config-if)#exitR2(config)#interface loopback 0R2(config-if)#ip address 2.2.2.2 255.255.255.255R2(config-if)#no shutdownR2(config-if)#exit2)配置路由R2(config)#router ospf 1R2(config-router)#router-id 2.2.2.2R2(config-router)#network 10.0.0.2 0.0.0.0 area 0R2(config-router)#network 2.2.2.2 0.0.0.0 area 0R2(config)#router ripR2(config-router)#version 2R2(config-router)#no auto-summaryR2(config-router)#network 192.168.100.0③配置R31)配置接口IP地址R3(config)#interface e0/0R3(config-if)#ip address 10.0.0.9 255.255.255.252R3(config-if)#no shutdownR3(config-if)#exitR3(config)#interface e0/1R3(config-if)#ip address 10.0.0.6 255.255.255.252R3(config-if)#no shutdownR3(config-if)#exitR3(config-if)#ip address 3.3.3.3 255.255.255.255R3(config-if)#no shutdownR3(config-if)#exit2)配置路由R3(config)#router ospf 1R3(config-router)#router-id 3.3.3.3R3(config-router)#network 10.0.0.6 0.0.0.0 area 1R3(config-router)#network 3.3.3.3 0.0.0.0 area 1R3(config)#ip route 192.168.3.0 255.255.255.0 10.0.0.10 ④配置R41)配置接口IP地址R4(config)#interface e0/0R4(config-if)#ip address 10.0.0.10 255.255.255.252R4(config-if)#no shutdownR4(config-if)#exitR4(config)#interface e0/1R4(config-if)#ip address 192.168.3.1 255.255.255.0R4(config-if)#no shutdownR4(config-if)#exitR4(config)#interface loopback 0R4(config-if)#ip address 4.4.4.4 255.255.255.255R4(config-if)#no shutdownR4(config-if)#exit2)配置路由R4(config)#ip route 0.0.0.0 0.0.0.0 10.0.0.9⑤配置R51)配置接口IP地址R5(config)#interface e0/0R5(config-if)#ip address 192.168.100.2 255.255.255.0R5(config-if)#no shutdownR5(config-if)#exitR5(config)#interface e0/1R5(config-if)#ip address 192.168.2.1 255.255.255.0R5(config-if)#no shutdownR5(config-if)#exit2)配置路由R5(config)#router ripR5(config-router)#version 2R5(config-router)#no auto-summaryR5(config-router)#network 192.168.100.0R5(config-router)#network 192.168.2.0⑥配置ISP路由器1)配置接口地址ISP(config)#interface e0/0ISP(config-if)#ip address201.204.6.2 255.255.255.0 ISP(config-if)#no shutdownISP(config-if)#exitISP(config)#interface e0/1ISP(config-if)#ip address200.1.1.1 255.255.255.0 ISP(config-if)#no shutdownISP(config-if)#exit2)配置路由ISP(config)#ip route 0.0.0.0 0.0.0.0 201.204.6.1 2.查看各路由器路由表R1R2R3R4R5R6从上面各路由器的路由表中可以看出,只能在各自的自治系统内学习路由,因此要实现全网互通,需要配置路由重分发,让多个自治系统之间能够学习路由。
3..配置路由重分发(只能在ASBR上配置重分发)①R1路由器重分发默认路由R1(config)#router ospf 1R1(config-router)#default-information originate②R2路由器重分发RIP和OSPFR2(config)#router ospf 1R2(config-router)#redistribute rip subnetsR2(config-router)#exitR2(config)#router ripR2(config-router)#redistribute ospf 1 metric 3R2(config-router)#exit③R3路由器重分发静态路由和直连路由R3(config)#router ospf 1R3(config-router)#redistribute static subnetsR3(config-router)#redistribute connected subnets4.验证全网是否能够互通①查看各路由器路由表,看是否学习到所有路由R1R2R3R4R5R6②测试全网互通1)在路由器R4上测试2)在路由器R5上测试3)在路由器ISP上测试。