海城市第三中学2018-2019学年上学期高二数学12月月考试题含解析
- 格式:doc
- 大小:617.50 KB
- 文档页数:17
海城市高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60π D .72π2. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=3. 定义运算,例如.若已知,则=( )A .B .C .D .4. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .25. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.6. 已知复数z 满足:zi=1+i (i 是虚数单位),则z 的虚部为( ) A .﹣i B .i C .1D .﹣17. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a8. 利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论正确的是( )A .①②B .①C .③④D .①②③④ 9. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )A .30°B .45°C .60°D .120°10.若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x 11.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .12.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点二、填空题13.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)14.已知函数f (x )=,点O 为坐标原点,点An (n ,f (n ))(n ∈N +),向量=(0,1),θn 是向量与i 的夹角,则++…+= .15.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .16.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .17.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .18.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.三、解答题19.设集合{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=.(1)若{}2A B =,求实数的值;(2)A B A =,求实数的取值范围.1111]20.已知函数()()x f x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.21.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.22.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .23.函数f (x )是R 上的奇函数,且当x >0时,函数的解析式为f (x )=﹣1. (1)用定义证明f (x )在(0,+∞)上是减函数; (2)求函数f (x )的解析式.24.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.海城市高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 2. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2x y -=为非奇非偶函数。
海城区第三中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .152. 已知a=log 23,b=8﹣0.4,c=sinπ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a3. 若函数21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩则函数1()2y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .44. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38 D .34 第Ⅱ卷(非选择题,共100分)5. A 是圆上固定的一定点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度大于等于半径长度的概率为( )A.B.C.D.6. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)7. 设x ∈R ,则x >2的一个必要不充分条件是( )A .x >1B .x <1C .x >3D .x <38. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1) C. D.9. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( )A .16π B .12π C .8π D .4π10.把函数y=sin (2x ﹣)的图象向右平移个单位得到的函数解析式为( )A .y=sin (2x ﹣) B .y=sin (2x+)C .y=cos2xD .y=﹣sin2x11.高三年上学期期末考试中,某班级数学成绩的频率分布直方图如图所示,数据分组依次如下:[70,90),[90,110),[100,130),[130,150),估计该班级数学成绩的平均分等于( )A .112B .114C .116D .12012.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)二、填空题13.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .14.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .15.圆心在原点且与直线2x y +=相切的圆的方程为_____ .【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.16.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .17.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.18.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是.三、解答题19.已知f(x)=x3+3ax2+bx在x=﹣1时有极值为0.(1)求常数a,b的值;(2)求f(x)在[﹣2,﹣]的最值.20.甲、乙两位同学参加数学竞赛培训,在培训期间他们参加5次预赛,成绩如下:甲:78 76 74 90 82乙:90 70 75 85 80(Ⅰ)用茎叶图表示这两组数据;(Ⅱ)现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适?说明理由.21.已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0).(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.22.(本小题满分12分)如图长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.23.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.24.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .海城区第三中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C考点:线性规划问题.【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题的基础.(2)目标函数的意义,有的可以用直线在y轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.2.【答案】B【解析】解:1<log23<2,0<8﹣0.4=2﹣1.2,sinπ=sinπ,∴a>c>b,故选:B.【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.3.【答案】D【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.4. 【答案】A解析:抛物线C :y x 82=的焦点为F (0,2),准线为l :y=﹣2,设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .5. 【答案】B【解析】解:在圆上其他位置任取一点B ,设圆半径为R , 则B 点位置所有情况对应的弧长为圆的周长2πR ,其中满足条件AB 的长度大于等于半径长度的对应的弧长为2πR ,则AB 弦的长度大于等于半径长度的概率P==.故选B .【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键.6. 【答案】B【解析】解:∵集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则a >3, 故选:B .【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.7.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.8.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.9.【答案】D【解析】考点:几何概型.10.【答案】D【解析】解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.【点评】本题是基础题,考查三角函数的图象平移,注意平移的原则:左右平移x加与减,上下平移,y的另一侧加与减.11.【答案】B【解析】解:根据频率分布直方图,得;该班级数学成绩的平均分是=80×0.005×20+100×0.015×20+120×0.02×20+140×0.01×20=114.故选:B.【点评】本题考查了根据频率分布直方图,求数据的平均数的应用问题,是基础题目.12.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.二、填空题13.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是= [(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是= [(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些; 乙的5个数据分布在78~99之间,分布相对分散些,方差大些; 所以甲的成绩相对稳定些. 故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.14.【答案】.【解析】解:∵F 是抛物线y 2=4x 的焦点, ∴F (1,0),准线方程x=﹣1, 设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF 的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.15.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线2x y +=的距离,所以r d ===222x y +=.16.【答案】 2 .【解析】解:∵f (x )是定义在[﹣2a ,3a ﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a ﹣1=0,∴a=1,∵函数为奇函数,∴f (﹣x )==﹣,即b •2x ﹣1=﹣b+2x , ∴b=1.即a+b=2,故答案为:2.17.【答案】()2245f x x x =-+【解析】试题分析:由题意得,令1t x =-,则1x t =+,则()222(1)8(1)11245f t t t t t =+-++=-+,所以函数()f x 的解析式为()2245f x x x =-+. 考点:函数的解析式.18.【答案】 .【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.三、解答题19.【答案】【解析】解:(1)∵f (x )=x 3+3ax 2+bx ,∴f'(x )=3x 2+6ax+b ,又∵f (x )在x=﹣1时有极值0,∴f'(﹣1)=0且f (﹣1)=0,即3﹣6a+b=0且﹣1+3a﹣b=0,解得:a=,b=1 经检验,合题意.(2)由(1)得f'(x)=3x2+4x+1,令f'(x)=0得x=﹣或x=﹣1,又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.20.【答案】【解析】解:(Ⅰ)用茎叶图表示如下:(Ⅱ)=,==80,=[(74﹣80)2+(76﹣80)2+(78﹣80)2+(82﹣80)2+(90﹣80)2]=32,=[(70﹣80)2+(75﹣80)2+(80﹣80)2+(85﹣80)2+(90﹣80)2]=50,∵=,,∴在平均数一样的条件下,甲的水平更为稳定,应该派甲去.21.【答案】【解析】解:(1)由题意知椭圆的焦点在x轴上,设椭圆的标准方程是∵椭圆经过点D(2,0),左焦点为,∴a=2,,可得b==1因此,椭圆的标准方程为.(2)设点P的坐标是(x0,y0),线段PA的中点为M(x,y),由根据中点坐标公式,可得,整理得,∵点P(x0,y0)在椭圆上,∴可得,化简整理得,由此可得线段PA中点M的轨迹方程是.【点评】本题给出椭圆满足的条件,求椭圆方程并求与之有关的一个轨迹方程,着重考查了椭圆的标准方程、简单几何性质和轨迹方程的求法等知识点,属于中档题.22.【答案】【解析】解:(1)交线围成的四边形EFCG(如图所示).(2)∵平面A1B1C1D1∥平面ABCD,平面A1B1C1D1∩α=EF,平面ABCD∩α=GC,∴EF∥GC,同理EG∥FC.∴四边形EFCG为平行四边形,过E作EM⊥D1F,垂足为M,∴EM=BC=10,∵A1E=4,D1F=8,∴MF=4.∴GC=EF=EM2+MF2=102+42=116,∴GB=GC2-BC2=116-100=4(事实上Rt△EFM≌Rt△CGB).过C1作C1H∥FE交EB1于H,连接GH,则四边形EHC1F为平行四边形,由题意知,B1H=EB1-EH=12-8=4=GB.∴平面α将长方体分成的右边部分由三棱柱EHG-FC1C与三棱柱HB1C1GBC两部分组成.其体积为V2=V三棱柱EHG-FC1C+V三棱柱HB1C1GBC=S △FC 1C ·B 1C 1+S △GBC ·BB 1=12×8×8×10+12×4×10×8=480,∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800. ∴V 1V 2=800480=53,∴其体积比为53(35也可以).23.【答案】【解析】解:(1)∵y=+,∴,解得x ≥﹣2且x ≠﹣2且x ≠3,∴函数y 的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x ≤4且x ≠1且x ≠3,∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].24.【答案】(1)n a n 2=;(2)=n T )1(2+n n .考点:1.一元二次方程;2.裂项相消法求和.。
海城区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知△ABC是锐角三角形,则点P(cosC﹣sinA,sinA﹣cosB)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.函数f(x)=Asin(ωx+φ)(A>0,ω>0,)的部分图象如图所示,则函数y=f(x)对应的解析式为()A.B. C.D.3.“”是“A=30°”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件4.已知α,β为锐角△ABC的两个内角,x∈R,f(x)=()|x﹣2|+()|x﹣2|,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为()A.(﹣∞,)∪(2,+∞)B.(,2)C.(﹣∞,﹣)∪(2,+∞)D.(﹣,2)5.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)6.已知向量=(1,2),=(x,﹣4),若∥,则x=()A.4 B.﹣4 C.2 D.﹣27.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数C.中位数D.标准差8.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,其中正确命题是()A .(1)与(2)B .(1)与(3)C .(2)与(4)D .(3)与(4)9. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种 C .270种D .540种10.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞11.命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥112.已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .二、填空题13.i 是虚数单位,化简: = .14.在数列中,则实数a= ,b= .15.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .16.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.17.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .18.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________.三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.20.等差数列{a n}的前n项和为S n.a3=2,S8=22.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.21.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各10名学生在该次竞赛活动中的成绩(单位:分).已知男、女生成绩的平均值相同.(1)求的值;(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.22.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.23.设函数f(x)=|x﹣a|﹣2|x﹣1|.(Ⅰ)当a=3时,解不等式f(x)≥1;(Ⅱ)若f(x)﹣|2x﹣5|≤0对任意的x∈[1,2]恒成立,求实数a的取值范围.24.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.海城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B2.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.3.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.4.【答案】B【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.5.【答案】A【解析】解:令4a﹣2b=x(a﹣b)+y(a+b)即解得:x=3,y=1即4a﹣2b=3(a﹣b)+(a+b)∵1≤a﹣b≤2,2≤a+b≤4,∴3≤3(a﹣b)≤6∴5≤(a﹣b)+3(a+b)≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a﹣2b=x(a﹣b)+y(a+b),并求出满足条件的x,y,是解答的关键.6.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.7.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.8.【答案】B【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;∵直线l ⊥平面α,α⊥β,∴l ∥平面β,或l ⊂平面β,又∵直线m ⊂平面β,∴l 与m 可能平行也可能相交,还可以异面,故(2)错误;∵直线l ⊥平面α,l ∥m ,∴m ⊥α,∵直线m ⊂平面β,∴α⊥β,故(3)正确;∵直线l ⊥平面α,l ⊥m ,∴m ∥α或m ⊂α,又∵直线m ⊂平面β,则α与β可能平行也可能相交,故(4)错误; 故选B .【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.9. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种. 故选D .10.【答案】A 【解析】试题分析:根据()248f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8kx =,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:58k ≤或88k≥,所以40k ≤或64k ≥。
海城区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )2. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种3. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =4. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件5. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17 C .T 5=T 12 D .T 8=T 116. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%7. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( )A .1B .2C .3D .48. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π9. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 80010.若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )A .a >0B .﹣1<a <0C .a >1D .0<a <111.已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( ) A .﹣1 B .0C .1D .212.下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =二、填空题13.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号)14.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .15.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.16.台风“海马”以25km/h 的速度向正北方向移动,观测站位于海上的A 点,早上9点观测,台风中心位于其东南方向的B 点;早上10点观测,台风中心位于其南偏东75°方向上的C 点,这时观测站与台风中心的距离AC 等于 km .17.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 18.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .三、解答题19.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点. (1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.20.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).21.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.2220142015CBA5场比赛中的投篮次数及投中次数如下表所示:3分球的平均命中率;(2)视这5场比赛中2分球和3分球的平均命中率为相应的概率.假设运动员在第6场比赛前一分钟分别获得1次2分球和1次3分球的投篮机会,该运动员在最后一分钟内得分ξ分布列和数学期望.23.已知f()=﹣x﹣1.(1)求f(x);(2)求f(x)在区间[2,6]上的最大值和最小值.24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(1)当a=2时,求不等式f(x)<g(x)的解集;(2)设a>,且当x∈[,a]时,f(x)≤g(x),求a的取值范围.海城区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1, 则A=S n=,B=S 2n=,C=S 3n=,B (B ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.2. 【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题3. 【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a hS a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征. 4. 【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.5.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C6.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.7.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.8.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.9.【答案】A【解析】P(X≤90)=P(X≥110)=110,P(90≤X≤110)=1-15=45,P(100≤X≤110)=25,1000×25=400. 故选A.10.【答案】A【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)∴f′(x)≤0,x∈(,)恒成立即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立∵1﹣3x2≥0成立∴a>0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.11.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.12.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
海城市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .2. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=03. 已知f (x )=,则f (2016)等于( )A .﹣1B .0C .1D .24. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )5. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( )A .64πB .16πC .12πD .4π6. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位7. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x8. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .9. 设命题p :,则p 为( )A .B .C .D . 10.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >011.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,] C .(﹣∞,] D .(﹣∞,]12.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%二、填空题13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
海城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( ) A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=02. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位 B .向右平移个单位C .向左平移个单位D .向左平移个单位A .甲B .乙C .丙D .丁4. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.5. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣26. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.7. 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( ) A.61B.31C. 1D.349.已知复数z满足z•i=2﹣i,i为虚数单位,则z=()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i10.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.3511.设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q12.已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z <<二、填空题13.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)14.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .15.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)16.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .17.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论: ①在区间(﹣2,1)内f (x )是增函数; ②在区间(1,3)内f (x )是减函数; ③在x=2时,f (x )取得极大值; ④在x=3时,f (x )取得极小值. 其中正确的是 .18.在△ABC中,已知=2,b=2a,那么cosB的值是.三、解答题19.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.20.已知数列{a n }的前n 项和S n =2n 2﹣19n+1,记T n =|a 1|+|a 2|+…+|a n |.(1)求S n 的最小值及相应n 的值;(2)求T n .21. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述 发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++23.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?24.在极坐标系内,已知曲线C 1的方程为ρ2﹣2ρ(cos θ﹣2sin θ)+4=0,以极点为原点,极轴方向为x 正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C 2的参数方程为(t 为参数).(Ⅰ)求曲线C 1的直角坐标方程以及曲线C 2的普通方程;(Ⅱ)设点P 为曲线C 2上的动点,过点P 作曲线C 1的切线,求这条切线长的最小值.海城区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.2.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.3.【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙.故选:C.【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价.4.【答案】D【解析】{}{{}|5,||3,A y yB x y x x=≤===≥[]3,5A B∴=,故选D.5.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.6.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.7.【答案】D【解析】8.【答案】C【解析】考点:三视图.9.【答案】A【解析】解:由z•i=2﹣i得,,故选A10.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C11.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.12.【答案】A【解析】考点:对数函数,指数函数性质.二、填空题13.【答案】 3.3【解析】解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子.设BC=x,则根据题意=,AB=x,在AE=AB﹣BE=x﹣1.4,则=,即=,求得x=3.3(米)故树的高度为3.3米,故答案为:3.3.【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.14.【答案】.【解析】解:依题意,当0≤x≤时,f(x)=2x,当<x≤1时,f(x)=﹣2x+2∴f(x)=∴y=xf(x)=y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣+x2)=+=故答案为:15.【答案】①③⑤【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.16.【答案】[1,5)∪(5,+∞).【解析】解:整理直线方程得y﹣1=kx,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y轴上,而该椭圆关于原点对称,故只需要令x=0有5y2=5m得到y2=m要让点(0.1)在椭圆内或者椭圆上,则y≥1即是y2≥1得到m≥1∵椭圆方程中,m≠5m的范围是[1,5)∪(5,+∞)故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.17.【答案】③.【解析】解:由y=f'(x)的图象可知,x∈(﹣3,﹣),f'(x)<0,函数为减函数;所以,①在区间(﹣2,1)内f(x)是增函数;不正确;②在区间(1,3)内f(x)是减函数;不正确;x=2时,y=f'(x)=0,且在x=2的两侧导数值先正后负,③在x=2时,f(x)取得极大值;而,x=3附近,导函数值为正,所以,④在x=3时,f(x)取得极小值.不正确.故答案为③.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.18.【答案】.【解析】解:∵=2,由正弦定理可得:,即c=2a.b=2a,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)因为“数学与逻辑”科目中成绩等级为B的考生有10人,所以该考场有10÷0.25=40人,所以该考场考生中“阅读与表达”科目中成绩等级为A的人数为:40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;(Ⅱ)该考场考生“数学与逻辑”科目的平均分为:×=2.9;(Ⅲ)因为两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,所以还有2人只有一个科目得分为A,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为:Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件.设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则P (B )=.【点评】本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容.20.【答案】【解析】解:(1)S n =2n 2﹣19n+1=2﹣,∴n=5时,S n 取得最小值=﹣44.(2)由S n =2n 2﹣19n+1,∴n=1时,a 1=2﹣19+1=﹣16.n ≥2时,a n =S n ﹣S n ﹣1=2n 2﹣19n+1﹣[2(n ﹣1)2﹣19(n ﹣1)+1]=4n ﹣21.由a n ≤0,解得n ≤5.n ≥6时,a n >0. ∴n ≤5时,T n =|a 1|+|a 2|+…+|a n |=﹣(a 1+a 2+…+a n )=﹣S n =﹣2n 2+19n ﹣1.n ≥6时,T n =﹣(a 1+a 2+…+a 5)+a 6+…+a n=﹣2S 5+S n =2n 2﹣19n+89.∴T n =.【点评】本题考查了等差数列的通项公式及其前n 项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.21.【答案】【解析】(Ⅰ)(3,0)F 在圆22:(16M x y +=内,∴圆N 内切于圆.MNM NF +∴轨迹E 的方程为4(11OAOC =2(14)(14k k ++≤当且仅当182,5>∴∆22.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.X 的分布列为:X 的数学期望为()51515190123282856568E X =⨯+⨯+⨯+⨯= (12)分23.【答案】【解析】解:设至少需要同时开x个窗口,则根据题意有,.由①②得,c=2b,a=75b,代入③得,75b+10b≤20bx,∴x≥,即至少同时开5个窗口才能满足要求.24.【答案】【解析】【专题】计算题;直线与圆;坐标系和参数方程.【分析】(Ⅰ)运用x=ρcosθ,y=ρsinθ,x2+y2=ρ2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.再由点到直线的距离公式和勾股定理,即可得到最小值.【解答】解:(Ⅰ)对于曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,可化为直角坐标方程x2+y2﹣2x+4y+4=0,即圆(x﹣1)2+(y+2)2=1;曲线C2的参数方程为(t为参数),可化为普通方程为:3x+4y﹣15=0.(Ⅱ)可经过圆心(1,﹣2)作直线3x+4y﹣15=0的垂线,此时切线长最小.则由点到直线的距离公式可得d==4,则切线长为=.故这条切线长的最小值为.【点评】本题考查极坐标方程、参数方程和直角坐标方程、普通方程的互化,考查直线与圆相切的切线长问题,考查运算能力,属于中档题.。
海城市高中2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=;④对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小.其中正确的说法的个数是()A.1 B.2 C.3 D.42.已知复合命题p∧(¬q)是真命题,则下列命题中也是真命题的是()A.(¬p)∨q B.p∨q C.p∧q D.(¬p)∧(¬q)3.十进制数25对应的二进制数是()A.11001 B.10011 C.10101 D.100014.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.如果向量满足,且,则的夹角大小为()A.30°B.45°C.75°D.135°6.命题:“∀x>0,都有x2﹣x≥0”的否定是()A.∀x≤0,都有x2﹣x>0 B.∀x>0,都有x2﹣x≤0C.∃x>0,使得x2﹣x<0 D.∃x≤0,使得x2﹣x>07.实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是()A.(1,1) B.(0,3) C.(,2) D.(,0)8.为了得到函数y=sin3x的图象,可以将函数y=sin(3x+)的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1510.如果a>b,那么下列不等式中正确的是()A.B.|a|>|b| C.a2>b2D.a3>b311.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.19912.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.二、填空题13.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是.14.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.,对任意的m∈[﹣2,2],f(mx 15.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x﹣2)+f(x)<0恒成立,则x的取值范围为_____.16.对任意实数x,不等式ax2﹣2ax﹣4<0恒成立,则实数a的取值范围是.17.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=.18.若与共线,则y=.三、解答题19.△ABC中,角A,B,C所对的边之长依次为a,b,c,且cosA=,5(a2+b2﹣c2)=3ab.(Ⅰ)求cos2C和角B的值;(Ⅱ)若a﹣c=﹣1,求△ABC的面积.20.已知cos(+θ)=﹣,<θ<,求的值.21.已知函数f(x)=|x﹣2|.(1)解不等式f(x)+f(x+1)≤2(2)若a<0,求证:f(ax)﹣af(x)≥f(2a)22.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.23.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.24.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)海城市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.故选:B.【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.2.【答案】B【解析】解:命题p∧(¬q)是真命题,则p为真命题,¬q也为真命题,可推出¬p为假命题,q为假命题,故为真命题的是p∨q,故选:B.【点评】本题考查复合命题的真假判断,注意p∨q全假时假,p∧q全真时真.3.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.4.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.5.【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45°故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角.属于基础公式应用题.6.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.7.【答案】D【解析】解:由题意作出其平面区域,将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x上但不在阴影区域内,故不成立;故选D.【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.8.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.9.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B.10.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.11.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.12.【答案】C【解析】考点:几何体的结构特征.二、填空题13.【答案】64.【解析】解:由图可知甲的得分共有9个,中位数为28∴甲的中位数为28乙的得分共有9个,中位数为36∴乙的中位数为36则甲乙两人比赛得分的中位数之和是64故答案为:64.【点评】求中位数的关键是根据定义仔细分析.另外茎叶图的茎是高位,叶是低位,这一点一定要注意.14.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.15.【答案】2 2,3⎛⎫-⎪⎝⎭【解析】16.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.17.【答案】﹣1或0.【解析】解:满足约束条件的可行域如下图阴影部分所示:kx﹣y+1≥0表示地(0,1)点的直线kx﹣y+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kx﹣y+1=0与y轴垂直,此时k=0或直线kx﹣y+1=0与y=x垂直,此时k=﹣1综上k=﹣1或0故答案为:﹣1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kx﹣y+1=0与y 轴垂直或与y=x垂直,是解答的关键.18.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.三、解答题19.【答案】【解析】解:(I)由∵cosA=,0<A<π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.20.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,∴sinθ+cosθ=﹣,①cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,∴cosθ﹣sinθ=﹣,②联立①②,得cosθ=﹣,sinθ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.21.【答案】【解析】(1)解:不等式f(x)+f(x+1)≤2,即|x﹣1|+|x﹣2|≤2.|x﹣1|+|x﹣2|表示数轴上的点x到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a<0,f(ax)﹣af(x)=|ax﹣2|﹣a|x﹣2|=|ax﹣2|+|2﹣ax|≥|ax﹣2+2a﹣ax|=|2a﹣2|=f(2a﹣2),∴f(ax)﹣af(x)≥f(2a)成立.22.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M ﹣1=;(Ⅱ)设点A (x ,y )在矩阵M 对应的变换作用下所得的点为A ′(x ′,y ′),则=M ﹣1=,即,∴代入4x+y ﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.23.【答案】【解析】解:(I )证明:∵PD ⊥平面ABCD ,∴PD ⊥BC , 又∵ABCD 是正方形,∴BC ⊥CD ,∵PDICE=D , ∴BC ⊥平面PCD ,又∵PC ⊂面PBC ,∴PC ⊥BC . (II )解:∵BC ⊥平面PCD , ∴GC 是三棱锥G ﹣DEC 的高.∵E 是PC 的中点,∴.∴.(III )连接AC ,取AC 中点O ,连接EO 、GO ,延长GO 交AD 于点M ,则PA ∥平面MEG . 下面证明之:∵E 为PC 的中点,O 是AC 的中点,∴EO ∥平面PA , 又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG , 在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,∴,∴所求AM 的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.24.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.。
海城区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .42. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .4D .23. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( )A .[﹣,+∞)B .(﹣∞,﹣]C .[,+∞)D .(﹣∞,]4. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A .4 B .8 C .12 D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.5.已知,则f{f[f(﹣2)]}的值为()A.0 B.2 C.4 D.86.若复数z=2﹣i (i为虚数单位),则=()A.4+2i B.20+10i C.4﹣2i D.7.已知向量=(1,2),=(m,1),如果向量与平行,则m的值为()A.B. C.2 D.﹣28.如图,程序框图的运算结果为()A.6 B.24 C.20 D.1209.在△ABC中,角A,B,C所对的边分别是a,b,c,若﹣+1=0,则角B的度数是()A.60°B.120°C.150°D.60°或120°10.设实数,则a、b、c的大小关系为()A.a<c<b B.c<b<a C.b<a<c D.a<b<c11.已知点A(﹣2,0),点M(x,y)为平面区域上的一个动点,则|AM|的最小值是()A.5 B.3 C.2D.12.直线的倾斜角是( )A .B .C .D .二、填空题13.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .14.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .16.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .17.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S 的最小值是 .18.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 三、解答题19.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R ,求该圆面积的最小值时点S的坐标.20.已知函数f(x)=xlnx,求函数f(x)的最小值.21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出3人进行陈述发言,设发言的女士人数为X ,求X 的分布列和期望.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++22.如图,在平面直角坐标系xOy 中,以x 为始边作两个锐角α,β,它们的终边分别与单位圆交于A ,B 两点.已知A ,B 的横坐标分别为,.(1)求tan (α+β)的值; (2)求2α+β的值.4天的用电量与当天气温.(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.24.如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E.(Ⅰ)求证:AE=EB;(Ⅱ)若EF•FC=,求正方形ABCD的面积.海城区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.2.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.3. 【答案】B【解析】解:∵函数y=x 2+(2a ﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a ≤﹣ 故选B .4. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为1231231=⨯⨯,故选C. 5. 【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0∴f (f (﹣2))=f (0) ∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4故选C.6.【答案】A【解析】解:∵z=2﹣i,∴====,∴=10•=4+2i,故选:A.【点评】本题考查复数的运算,注意解题方法的积累,属于基础题.7.【答案】B【解析】解:向量,向量与平行,可得2m=﹣1.解得m=﹣.故选:B.8.【答案】B【解析】解:∵循环体中S=S×n可知程序的功能是:计算并输出循环变量n的累乘值,∵循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1×2×3×4=24,故选:B.【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.9.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.10.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a<c<b.故选:A.11.【答案】D【解析】解:不等式组表示的平面区域如图,结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,即|AM|min=.故选:D.【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.12.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.二、填空题13.【答案】1.【解析】解:∵x为实数,[x]表示不超过x的最大整数,∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.结合图象得到函数f(x)=x﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.14.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].15.【答案】(﹣1,1].【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)≥log2(x+1)的解集是:(﹣1,1],.故答案为:(﹣1,1]16.【答案】③④.【解析】解:函数f(x)=cosxsinx=sin2x,对于①,当f(x1)=﹣f(x2)时,sin2x1=﹣sin2x2=sin(﹣2x2)∴2x1=﹣2x2+2kπ,即x1+x2=kπ,k∈Z,故①错误;对于②,由函数f(x)=sin2x知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x≤+2kπ,k∈Z得﹣+kπ≤x≤+kπ,k∈Z当k=0时,x∈[﹣,],f(x)是增函数,故③正确;对于④,将x=代入函数f(x)得,f()=﹣为最小值,故f(x)的图象关于直线x=对称,④正确.综上,正确的命题是③④.故答案为:③④.17.【答案】.【解析】解:设剪成的小正三角形的边长为x,则:S==,(0<x<1)令3﹣x=t,t∈(2,3),∴S===,当且仅当t=即t=2时等号成立;故答案为:.18.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.三、解答题19.【答案】【解析】【命题意图】本题考查抛物线标准方程、抛物线定义、直线和抛物线位置关系等基础知识,意在考查转化与化归和综合分析问题、解决问题的能力.因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+ ⎪⎝⎭,所以221222256323264y y y =++≥=, 当且仅当2222256y y =即22y =16,24y =?时等号成立.圆的直径OS=因为21y≥64,所以当21y=64即1y=±8时,minOS=S的坐标为168±(,).20.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min ===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】【命题意图】本题考查统计案例、超几何分布、分层抽样等基础知识,意在考查统计思想和基本运算能力.X的分布列为:X的数学期望为()51515190123282856568E X=⨯+⨯+⨯+⨯= (12)分22.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴.23.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.24.【答案】【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,∴EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EF•EC,故AE=EB.(Ⅱ)设正方形的边长为a,连结BF,∵BC为圆O的直径,∴BF⊥EC,在Rt△BCE中,由射影定理得EF•FC=BF2=,∴BF==,解得a=2,∴正方形ABCD的面积为4.【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.。
城区三中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 2. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 3. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .04. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°5. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .6. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( ) ①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0; ③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤7. 已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是( )A .(0,)B .(0,]C .(,]D .[,1)8. 若椭圆+=1的离心率e=,则m 的值为( )A .1B .或C .D .3或9. 如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .B .4C .D .210.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .11.已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A B . C . D .12.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,则f(x)g(x)>0的解集为()A.(﹣,﹣a2)∪(a2,)B.(﹣,a2)∪(﹣a2,)C.(﹣,﹣a2)∪(a2,b)D.(﹣b,﹣a2)∪(a2,)二、填空题13.设双曲线﹣=1,F1,F2是其两个焦点,点M在双曲线上.若∠F1MF2=90°,则△F1MF2的面积是.14.已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为.15.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)=.16.已知双曲线的一条渐近线方程为y=x,则实数m等于.17.在区间[﹣2,3]上任取一个数a,则函数f(x)=x3﹣ax2+(a+2)x有极值的概率为.18.在(2x+)6的二项式中,常数项等于(结果用数值表示).三、解答题19.已知,数列{a n}的首项(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为S n,求使S n>2012的最小正整数n.20.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC 的面积为,求角C .21.(本小题满分12分)已知等差数列{n a }满足:n n a a >+1(*∈N n ),11=a ,该数列的 前三项分别加上1,1,3后成等比数列,且1log 22-=+n n b a . (1)求数列{n a },{n b }的通项公式; (2)求数列{n n b a ⋅}的前项和n T .22.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log ,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.23.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.24.对于任意的n∈N*,记集合E n={1,2,3,…,n},P n=.若集合A满足下列条件:①A⊆P n;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω.如当n=2时,E2={1,2},P2=.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,所以P2具有性质Ω.(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω.(Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.(Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使P n=A∪B,求n的最大值.城区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.2. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .3. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 4. 【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30° 故选D .【点评】本题主要考查正弦定理的应用.属基础题.5. 【答案】A【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.∵当x>0时,t==在x=e时,t有最小值为∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,因此,当x>0时,函数图象恒在x轴上方,排除D选项故选A6.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.7.【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故||=,||=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c 2=+﹣2×××cos ∠F 1PF 2,由cos ∠F 1PF 2∈(﹣1,1)可得4c 2=﹣cos ∠F 1PF 2∈(,),即<4c 2<,∴<<1,即<e 2<1,∴<e <1;当P 与两焦点F 1,F 2共线时,可得a+c=2(a ﹣c ),解得e==;综上可得此椭圆的离心率的取值范围为[,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题.8. 【答案】D【解析】解:当椭圆+=1的焦点在x 轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y 轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x 轴和y 轴进行分类讨论.9. 【答案】C【解析】解:由已知中该几何中的三视图中有两个三角形一个菱形可得 这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C10.【答案】D【解析】解:双曲线(a >0,b >0)的渐近线方程为y=±x联立方程组,解得A (,),B (,﹣),设直线x=与x 轴交于点D ∵F 为双曲线的右焦点,∴F (C ,0)∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA∴c ﹣<,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2<2,e <又∵e >1∴离心率的取值范围是1<e <故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.11.【答案】A 【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系. 12.【答案】A【解析】解:∵f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,∴f (x )<0的解集为(﹣b ,﹣a 2),g (x )<0的解集为(﹣,﹣),则不等式f (x )g (x )>0等价为或,即a 2<x <或﹣<x <﹣a 2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.二、填空题13.【答案】9.【解析】解:双曲线﹣=1的a=2,b=3,可得c2=a2+b2=13,又||MF|﹣|MF2||=2a=4,|F1F2|=2c=2,∠F1MF2=90°,1在△F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|﹣|MF2|)2+2|MF1||MF2|,即4c2=4a2+2|MF1||MF2|,可得|MF1||MF2|=2b2=18,即有△F1MF2的面积S=|MF1||MF2|sin∠F1MF2=×18×1=9.故答案为:9.【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题.14.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.15.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).16.【答案】4.【解析】解:∵双曲线的渐近线方程为y=x,又已知一条渐近线方程为y=x,∴=2,m=4,故答案为4.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为y=x,是解题的关键.17.【答案】.【解析】解:在区间[﹣2,3]上任取一个数a,则﹣2≤a≤3,对应的区间长度为3﹣(﹣2)=5,若f(x)=x3﹣ax2+(a+2)x有极值,则f'(x)=x2﹣2ax+(a+2)=0有两个不同的根,即判别式△=4a2﹣4(a+2)>0,解得a>2或a<﹣1,∴﹣2≤a<﹣1或2<a≤3,则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,∴由几何概型的概率公式可得对应的概率P=,故答案为:【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a的取值范围是解决本题的关键.18.【答案】240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.三、解答题19.【答案】【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n为n的增函数,S n>2012,即(4n﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.20.【答案】【解析】解:(Ⅰ)由题意知,tanA=,则=,即有sinA﹣sinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;…(Ⅱ)因为三角形△ABC 的面积为,a=b 、c=,所以S=absinC=a 2sinC=,则,①由余弦定理得, =,②由①②得,cosC+sinC=1,则2sin (C+)=1,sin (C+)=,又0<C <π,则C+<,即C+=,解得C= ….【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.21.【答案】(1)12-=n a n ,nn b 21=;(2)n nn T 2323+-=. 【解析】试题分析:(Ⅰ1)设d 为等差数列{}n a 的公差,且0>d ,利用数列的前三项分别加上3,1,1后成等比数列,求出d ,然后求解n b ;(2)写出n n n T 212...232321321-++++=利用错位相减法求和即可. 试题解析:解:(1)设d 为等差数列{}n a 的公差,0>d ,由11=a ,d a +=12,d a 213+=,分别加上3,1,1后成等比数列,] 所以)24(2)2(2d d +=+ 0>d ,∴2=d ∴122)1(1-=⨯-+=n n a n又1log 22--=n n b a ∴n b n -=2log ,即n n b 21=(6分)考点:数列的求和.22.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k 的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.23.【答案】【解析】解:(1)函数f (x )=cos (ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f (x )=cos (2x+).令2x+=k π,求得x=﹣,可得对称轴方程为 x=﹣,k ∈Z .令2k π﹣π≤2x+≤2k π,求得 k π﹣≤x ≤k π﹣,可得函数的增区间为,k ∈Z .(2)当2x+=2k π,即x=k π﹣,k ∈Z 时,f (x )取得最大值为1.当2x+=2k π+π,即x=k π+,k ∈Z 时,f (x )取得最小值为﹣1.∴f (x )取最大值时相应的x 集合为{x|x=k π﹣,k ∈Z};f (x )取最小值时相应的x 集合为{x|x=k π+,k ∈Z}.24.【答案】【解析】解:(Ⅰ)∵对于任意的n ∈N *,记集合E n ={1,2,3,…,n},P n =.∴集合P 3,P 5中的元素个数分别为9,23,∵集合A 满足下列条件:①A ⊆P n ;②∀x 1,x 2∈A ,且x 1≠x 2,不存在k ∈N *,使x 1+x 2=k 2,则称A 具有性质Ω,∴P 3不具有性质Ω.…..证明:(Ⅱ)假设存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .其中E 15={1,2,3,…,15}. 因为1∈E 15,所以1∈A ∪B ,不妨设1∈A .因为1+3=22,所以3∉A ,3∈B .同理6∈A ,10∈B ,15∈A .因为1+15=42,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A ∩B=∅,使E 15=A ∪B .…..解:(Ⅲ)因为当n ≥15时,E 15⊆P n ,由(Ⅱ)知,不存在A ,B 具有性质Ω,且A ∩B=∅,使P n =A ∪B . 若n=14,当b=1时,,取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1.当b=4时,集合中除整数外,其余的数组成集合为,令,,则A2,B2具有性质Ω,且A2∩B2=∅,使.当b=9时,集中除整数外,其余的数组成集合,令,.则A3,B3具有性质Ω,且A3∩B3=∅,使.集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B.综上,所求n的最大值为14.…..【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.。
海城市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .2. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=03. 已知f (x )=,则f (2016)等于()A .﹣1B .0C .1D .24. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()5. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为()A .64πB .16πC .12πD .4π6. (文科)要得到的图象,只需将函数的图象()()2log 2g x x =()2log f x x =A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位7. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是()A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x8. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是()A .B .πC .D .9. 设命题p :,则p 为( )A .B .C .D .10.命题:“∀x >0,都有x 2﹣x ≥0”的否定是( )A .∀x ≤0,都有x 2﹣x >0B .∀x >0,都有x 2﹣x ≤0C .∃x >0,使得x 2﹣x <0D .∃x ≤0,使得x 2﹣x >011.已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]12.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A .92%B .24%C .56%D .5.6%二、填空题13.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
海城市第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .22. 若命题p :∀x ∈R ,2x 2﹣1>0,则该命题的否定是( )A .∀x ∈R ,2x 2﹣1<0B .∀x ∈R ,2x 2﹣1≤0C .∃x ∈R ,2x 2﹣1≤0D .∃x ∈R ,2x 2﹣1>03. 已知函数f (x )=Asin (ωx+φ)(a >0,ω>0,|φ|<)的部分图象如图所示,则f (x )的解析式是( )A .f (x )=sin (3x+)B .f (x )=sin (2x+)C .f (x )=sin (x+)D .f (x )=sin (2x+)4. 设变量x ,y 满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .25. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或6. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .7. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .8.i是虚数单位,i2015等于()A.1 B.﹣1 C.i D.﹣i9.已知直线ax+by+c=0与圆O:x2+y2=1相交于A,B两点,且,则的值是()A.B.C. D.010.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M中的元素按从大到小排列,则第2013个数是()A.B.C.D.11.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数C.中位数D.标准差12.已知x,y满足约束条件,使z=ax+y取得最小值的最优解有无数个,则a的值为()A.﹣3 B.3 C.﹣1 D.1二、填空题13.已知函数f(x)=x2+x﹣b+(a,b为正实数)只有一个零点,则+的最小值为.14.设f(x)是(x2+)6展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则实数m的取值范围是.15.在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题:①若点P总保持PA⊥BD1,则动点P的轨迹所在曲线是直线;②若点P到点A的距离为,则动点P的轨迹所在曲线是圆;③若P满足∠MAP=∠MAC1,则动点P的轨迹所在曲线是椭圆;④若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝.其中真命题是(写出所有真命题的序号)16推销员编号 1 2 3 4工作年限x/(年) 3 5 10 14年推销金额y/(万元)2 3 7 12由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为万元.17.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.18.如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB的周长最小时,△ABC的面积为________.三、解答题19.设点P的坐标为(x﹣3,y﹣2).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率.20.求同时满足下列两个条件的所有复数z:①z+是实数,且1<z+≤6;②z的实部和虚部都是整数.21.已知数列{a n}满足a1=a,a n+1=(n∈N*).(1)求a2,a3,a4;(2)猜测数列{a n}的通项公式,并用数学归纳法证明.22.已知函数f(x)=2x﹣,且f(2)=.(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+∞)上的单调性,并证明.23.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.24.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.海城市第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.2.【答案】C【解析】解:命题p:∀x∈R,2x2﹣1>0,则其否命题为:∃x∈R,2x2﹣1≤0,故选C;【点评】此题主要考查命题否定的定义,是一道基础题;3.【答案】D【解析】解:由图象知函数的最大值为1,即A=1,函数的周期T=4(﹣)=4×=,解得ω=2,即f(x)=2sin(2x+φ),由五点对应法知2×+φ=,解得φ=,故f(x)=sin(2x+),故选:D4.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.5. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
故选B 。
考点:1.函数的奇偶性;2.函数的单调性。
6. 【答案】C【解析】解:∵M 、G 分别是BC 、CD 的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.7. 【答案】D【解析】解:抛物线y 2=4x 的焦点(1,0),直线y=ax+1经过抛物线y 2=4x 的焦点,可得0=a+1,解得a=﹣1, 直线的斜率为﹣1,该直线的倾斜角为:.故选:D .【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.8.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.9.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.10.【答案】A【解析】进行简单的合情推理.【专题】规律型;探究型.【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a1×103+a2×102+a3×10+a4),括号内表示的10进制数,其最大值为9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A.【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.11.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.12.【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax+y,得y=﹣ax+z,若a=0,此时y=z,此时函数y=z只在B处取得最小值,不满足条件.若a>0,则目标函数的斜率k=﹣a<0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z和直线x+y=1平行时,此时目标函数取得最小值时最优解有无数多个,此时﹣a=﹣1,即a=1.若a<0,则目标函数的斜率k=﹣a>0.平移直线y=﹣ax+z,由图象可知当直线y=﹣ax+z,此时目标函数只在C处取得最小值,不满足条件.综上a=1.故选:D.【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用z的几何意义是解决本题的关键.注意要对a进行分类讨论.二、填空题13.【答案】9+4.【解析】解:∵函数f(x)=x2+x﹣b+只有一个零点,∴△=a﹣4(﹣b+)=0,∴a+4b=1,∵a,b为正实数,∴+=(+)(a+4b)=9++≥9+2=9+4当且仅当=,即a=b时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.14.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.15.【答案】①②④【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.16.【答案】.【解析】解:由条件可知=(3+5+10+14)=8,=(2+3+7+12)=6,代入回归方程,可得a=﹣,所以=x﹣,当x=8时,y=,估计他的年推销金额为万元.故答案为:.【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.17.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].18.【答案】【解析】解析:圆x2+y2-2x+4y-4=0的标准方程为(x-1)2+(y+2)2=9.圆心C(1,-2),半径为3,连接PC,∴四边形P ACB的周长为2(P A+AC)=2PC 2-AC 2+2AC =2PC 2-9+6.当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1), 由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,∴S △ABC =12AC ·BC =12×3×3=92.即△ABC 的面积为92.答案:92三、解答题19.【答案】【解析】解:(1)由已知得,基本事件(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1)共9种…4(分)设“点P 在第二象限”为事件A ,事件A 有(﹣2,1),(﹣1,1)共2种则P (A )=…6(分)(2)设“点P 在第三象限”为事件B ,则事件B 满足…8(分)∴,作出不等式组对应的平面区域如图:则P (B )==…12(分)20.【答案】【解析】解:设z+=t,则z2﹣tz+10=0.∵1<t≤6,∴△=t2﹣40<0,解方程得z=±i.又∵z的实部和虚部都是整数,∴t=2或t=6,故满足条件的复数共4个:z=1±3i 或z=3±i.21.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.22.【答案】【解析】解:(1)∵f(x)=2x﹣,且f(2)=,∴4﹣=,∴a=﹣1;(2分)(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f(x)在(1,+∞)上是增函数,…(7分)任取x1,x2∈(1,+∞),不妨设x1<x2,则=…(10分)∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(1,+∞)上是增函数…(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.23.【答案】【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,∴sinα=,∵α∈(,π),∴cosα=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin(α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.24.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).f'x=0x=1f x f'x(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.。