RFID简介

  • 格式:doc
  • 大小:124.50 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RFID简介2012年06月

目录

1RFID背景概述 (1)

2RFID电子标签分类 (1)

3RFID电子标签的安全设置 (2)

4RFID电子标签在应用中的安全机制 (3)

5RFID应用系统的安全设计 (4)

1 RFID背景概述

RFID电子标签在国内的应用越来越多,其安全性也开始受到重视。RFID电子标签自身都是有安全设计的,但是RFID电子标签具备足够的安全吗?个人信息存储在电子标签中会泄露吗?RFID电子标签的安全机制到底是怎样设计的?本文围绕目前应用广泛的几类电子标签探讨RFID电子标签的安全属性,并对RFID电子标签在应用中涉及的信息安全方面提出了建议。

RFID技术最初源于雷达技术,借助于集成电路、微处理器、通讯网络等的技术进步逐渐成熟起来。RFID技术经美国军方在海湾战争中军用物资管理方面的成功应用,使其在交通管理、人员监控、动物管理、铁路和集装箱等方面得到推广。

随着全球几家大型零售商WalMart、Metro、Tesco等出于对提高供应链透明度的要求,相继宣布了各自的RFID计划,并得到供应商的支持,取得了很好的成效。从此,RFID技术打开了一个巨大的市场。随着成本的不断降低和标准的统一,RFID技术还将在无线传输网络、实时定位、安全防伪、个人健康、产品全生命周期管理等领域进行广泛的应用。

可以预见,随着数字化时代的发展,以网络信息化管理、移动计算、信息服务等为迫切需求和发展动力,RFID这项革命性的技术将对人类的生产和生活方式产生深远的影响。

2 RFID电子标签分类

谈及RFID电子标签的安全性,需要先了解RFID电子标签的种类及特性。随着RFID技术概念的深化,很多人把非接触智能卡也归入RFID的范畴。

RFID电子标签按供电方式分为无源标签和有源标签二种;按工作方式分为被动,半主动,主动三种;按工作频率分为低频30kHz ~300kHz、高频

3MHz ~30MHz、超高频433MHz,902~928MHz、微波2.45GHz,5.8GHz;根据芯片的类型还可分为存储型、逻辑加密型和CPU型。

3 RFID电子标签的安全设置

RFID电子标签的安全属性与标签分类直接相关。一般来说安全性等级中存储型最低,CPU型最高,逻辑加密型居中,目前广泛使用的RFID电子标签中也以逻辑加密型居多。存储型RFID电子标签没有做特殊的安全设置,标签内有一个厂商固化的不重复不可更改的惟一序列号,内部存储区可存储一定容量的数据信息,不需要进行安全认证即可读出或改写。虽然所有的RFID电子标签在通信链路层都没有采用加密机制,并且芯片(除CPU型外)本身的安全设计也不是非常强大,但在应用方面因为采取了很多加密手段使其可以保证足够的安全性。

CPU型的RFID电子标签在安全方面做的最多,因此在安全方面有着很大的优势。但从严格意义上来说,此种电子标签不应归属为RFID电子标签范畴,而应属非接触智能卡类。可由于使用ISO 14443 Type A/B协议的CPU非接触智能卡与应用广泛的RFID高频电子标签通讯协议相同,所以通常也被归为RFID 电子标签类。

逻辑加密型的RFID电子标签具备一定强度的安全设置,内部采用了逻辑加密电路及密钥算法。可设置启用或关闭安全设置,如果关闭安全设置则等同存储卡。如OTP(一次性编程)功能,只要启用了这种安全功能,就可以实现一次写入不可更改的效果,可以确保数据不被篡改。另外,还有一些逻辑加密型电子标签具备密码保护功能,这种方式是逻辑加密型的RFID电子标签采取的主流安全模式,设置后可通过验证密钥实现对存储区内数据信息的读取或改写等。采用这种方式的RFID电子标签使用密钥一般不会很长,四字节或六位字节数字密码。有了安全设置功能,逻辑加密型的RFID电子标签还可以具备一些身份认证及小额消费的功能。如第二代公民身份证、Mifare(菲利普技术)公交卡等。

CPU类型的广义RFID电子标签具备极高的安全性,芯片内部的COS本身

采用了安全的体系设计,并且在应用方面设计有密钥文件,认证机制等,比前几种RFID电子标签的安全模式有了极大的提高;也保持着目前唯一没有被人破解的记录。这种RFID电子标签将会更多地被应用于带有金融交易功能的系统中。

4 RFID电子标签在应用中的安全机制

首先,探讨存储型RFID电子标签在应用中的安全设计。存储型RFID电子标签的应用主要是通过快速读取ID号来达到识别的目的,主要应用于动物识别、跟踪追溯等方面。这种应用要求的是应用系统的完整性,而对于标签存储数据要求不高,多是应用惟一序列号的自动识别功能。

如果部分容量稍大的存储型RFID电子标签想在芯片内存储数据,对数据做加密后写入芯片即可,这样信息的安全性主要由应用系统密钥体系安全性的强弱来决定,与存储型RFID本身就没有太大关系。

逻辑加密型的RFID电子标签应用极其广泛,并且其中还有可能涉及小额消费功能,因此它的安全设计是极其重要的。逻辑加密型的RFID电子标签内部存储区一般按块分布,并有密钥控制位设置每数据块的安全属性。先来解释一下逻辑加密型的RFID电子标签的密钥认证功能流程,以Mifare one (菲利普技术)为例,参见图1。

由图1可知,认证的流程可以分成以下几个步骤:

1、应用程序通过RFID读写器向RFID电子标签发送认证请求;

2、RFID电子标签收到请求后向读写器发送一个随机数B;

3、读写器收到随机数B后向RFID电子标签发送使用要验证的密钥加密B 的数据包,其中包含了读写器生成的另一个随机数A;

4、RFID电子标签收到数据包后,使用芯片内部存储的密钥进行解密,解出随机数B并校验与之发出的随机数B是否一致;

5、如果是一致的,则RFID使用芯片内部存储的密钥对A进行加密并发送给读写器;

6、读写器收到此数据包后,进行解密,解出A并与前述的A比较是否一致;

如果上述的每一个环节都成功,则验证成功;否则验证失败。这种验证方式可以说是非常安全的,破解的强度也是非常大的,比如Mifare的密钥为6字节,也就是48位;Mifare一次典型验证需要6ms,如果在外部使用暴力破解的话,所需时间为248×6ms/3.6×106小时,结果是一个非常大的数字,常规破解手段将无能为力。

CPU型RFID电子标签的安全设计与逻辑加密型相类似,但安全级别与强度要高得多,CPU型RFID电子标签芯片内部采用了核心处理器,而不是如逻辑加密型芯片那样在内部使用逻辑电路;并且芯片安装有专用操作系统,可以根据需求将存储区设计成不同大小的二进制文件、记录文件、密钥文件等。使用FAC 设计每一个文件的访问权限,密钥验证的过程与上述相类似,也是采用随机数+密文传送+芯片内部验证方式,但密钥长度为16字节。并且还可以根据芯片与读写器之间采用的通讯协议使用加密传送通信指令。

5 RFID应用系统的安全设计

以上几种RFID电子标签芯片的安全设计我们已经初步了解了,那么它的安全模式真的就很安全么?

2008年2月荷兰政府发布了一项警告,指出目前广泛应用的MifareRFID产

相关主题