15届高三理科数学二诊考试试题
- 格式:pdf
- 大小:1.25 MB
- 文档页数:4
2015年高考模拟试题(一)理科数学一、选择题:本大题共10小题,每小题5分。
共50分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.设i 是虚数单位,若21mii-+为纯虚数,则实数m 的值为 A .2B .2-C .12D .12-2.设集合{}{}22430,log 1,M x x x N x x M N =-+≤=≤⋃=则A .[]1,2B .[)1,2C .[]0,3D .(]0,33.若0a b <<,则下列结论中正确的是 A .22a b <B .2ab b <C .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .2b aa b+> 4.已知()()F x f x x =-是偶函数,且()()212f f =-=,则 A .4B .2C .3-D .4-5.执行右面的程序框图,若输入7,6x y ==,则输出的有序数对为 A .(11,12)B .(12,13)C .(13,14)D .(13,12)6.已知()xf x e x =-,命题()(),0p x R f x ∀∈>:,则 A .p 是真命题,()00:,0p x R f x ⌝∃∈< B .p 是真命题,()00:,0p x R f x ⌝∃∈≤ C .p 是假命题,()00:,0p x R f x ⌝∃∈< D .p 是假命题,()00:,0p x R f x ⌝∃∈≤7.若()()sin 2f x x θ=+,则“()f x 的图象关于3x π=对称”是“6πθ=-”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件8.已知函数()()()()()()22,log ,ln xf x xg x x xh x x x f a g b h c =+=+=+==,若0=,则 A .c b a <<B .b c a <<C .a b c <<D .a c b <<9.设平面区域D 是由双曲线2214x y -=的两条渐近线和抛物线28y x =-的准线所围成的三角形区域(含边界),若点(),x y D ∈,则211y x x -++的取值范围是A .11,3⎡⎤-⎢⎥⎣⎦B .[]1,1-C .10,3⎡⎤⎢⎥⎣⎦D .40,3⎡⎤⎢⎥⎣⎦10.若对于定义在R 上的函数()f x ,其图象是连续不断的,且存在常数()R λλ∈使得()()0f x f x λλ++=对任意实数x 都成立,则称()f x 是一个“~λ特征函数”.下列结论中正确的个数为 ①()0f x =是常数函数中唯一的“~λ特征函数”;②()21f x x =+不是“~λ特征函数”; ③“13~λ特征函数”至少有一个零点;④()x f x e =是一个“~λ特征函数”. A .1 B .2 C .3 D .4二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上. 11.已知向量与满足()2,a b a b b ==-⊥,则a 与b 的夹角为_________.12.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有______种.13.直线1ax =与圆221x y +=相交于B A ,两点(其中a ,b 是实数),且AOB ∆是直角三角形(O 是坐标原点),则点(),P a b 与点(1,0)之间距离的最小值为_______. 14.已知()()0sin n f n nx dx π=⎰,若对于()()(),1231R f f f n x x ∀∈++⋅⋅⋅+<++-恒成立,则正整数n的最大值为___________.15.已知点D C B A ,,,均在球O的球面上,1,AB BC AC ==,若三棱锥D ABC -体积的最大值是14,则球O 的表面积为_________.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 已知函数()2cos sin 6f x x x π⎛⎫=+⎪⎝⎭. (1)求()f x 的最小正周期;(2)在ABC ∆中,角C B A ,,所对的边分别为(),,1,sin 2sin a b c f C B A ==,若,且ABC ∆的面积为求c 的值.17.(本小题满分12分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[]0,100,样本数据分组为[)[)0,20,20,40,[)[)[]40,60,60,80,80,100.(1)求直方图中x 的值;(2)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;(3)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率) 18.(本小题满分12分)一个楔子形状几何体的直观图如图所示,其底面ABCD 为一个矩形,其中4,6==AD AB ,顶部线段EF //平面ABCD ,棱FC FB ED EA ====二面角F BC A --.设N M ,分别是BC AD ,的中点.(1)证明:平面EFNM ⊥平面ABCD ;(2)求直线BF 与平面EFCD 所成角的正弦值. 19.(本小题满分12分)已知{}n a 满足()()121n n na n a n N *+=+∈,且13,1,4a a 成等差数列.(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足()sin n n n b a S π=,为数列{}n b 的前n 项和, 求证:对任意,2n n N S π*∈<+. 20.(本小题满分13分) 已知函数()()2ln 1f x ax x =++.(1)当14a =-时,求函数()f x 的极值; (2)当[)0,x ∈+∞时,函数()y f x =图象上的点都在0,x y x ≥⎧⎨-≤⎩所表示的平面区域内,求实数a 的取值范围. 21.(本小题满分14分)已知椭圆C 的中心在原点,焦点在x2x =的焦点. (1)求椭圆C 的方程;(2)直线2x =与椭圆交于Q P ,两点,P 点位于第一象限,B A ,是椭圆上位于直线2x =两侧的动点. (i )若直线AB 的斜率为12,求四边形APBQ 面积的最大值; (ii )当点B A ,运动时,满足APQ BPQ ∠=∠,问直线AB 的斜率是否为定值,请说明理由.。
2015级高三二诊模拟试题(三)数学(理工类)参考答案一、选择题:CBABA DDACA BC二、填空题:13.214.71015.60. 16.(){},12-∞⋃三、解答题:17.解:(1)由图象可知{A +B =1−A +B =⇒A =2,B =−1,又由于T2=7π12−π12⇒T =π,所以w =2πT=2,由图象及五点法作图可知:2×π12+φ=π2,所以φ=π3,所以f (x )=2sin(2x +π3)−1.(2)由(1)知,f (x )=2sin(2x +π3)−1, 令2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z , 得kπ−5π12≤x ≤kπ+π12,k ∈Z ,所以f (x )的单调递增区间为[kπ−5π12,kπ+π12],k ∈Z , 令2x +π3=kπ,k ∈Z ,得x =kπ2−π6,k ∈Z ,所以f (x )的对称中心的坐标为(kπ2−π6,−1),k ∈Z . (3)由已知的图象变换过程可得:g (x )=2sin(x +2π3),因为0≤x ≤7π6,所以2π3≤x +2π3≤11π6,所以当x +2π3=3π2,得x =5π6时,g (x )取得最小值g (5π6)=−2,当x +2π3=2π3时,即x =0g (x )取得最大值g (0)= 18.解:(1)∵2(1)n n S na n n =--①,∴11(1)2(1)n n S n a n n ++=+-+②; ②-①得,11(1)4n n n a n a na n ++=+--,∴14n n a a +-=, 3分又∵等比数列{}n b ,5352T T b =+, ∴535452T T b b b -=⇒=,1q =,∴11a =, ∴数列{}n a 是1为首项,4为公差的等差数列,∴14(1)43n a n n =+-=-; 6分(2)由(1)可得111111()(43)(41)44341n n a a n n n n +==--+-+, ∴11111111(1)(1)45594341441n M n n n =-+-+⋅⋅⋅+-=--++, 10分 n M 在*n N ∈时单调递增,∴111(1)454n M -≤<,即1154n M ≤<. 12分19.解析:(1)2袋食品都为废品的情况为①2袋食品的三道工序都不合格 .②有一袋食品三道工序都不合格,另一袋有两道工序不合格. ③两袋都有两道工序不合格 , 所以2袋食品都为废品的概率为 . (2),,..20. 【解析】(1)设点的坐标分别为,则故,可得,所以,故,所以椭圆的方程为.211111()4353600P =⨯⨯=12213111211141()60435435435200P C =⨯⨯⨯⨯+⨯⨯+⨯⨯=233111211149()435435435400P =⨯⨯+⨯⨯+⨯⨯=123136P P P P =++=ξ0,1,2,3=3241(0)(1)(1)(1)43560P ξ==-⨯-⨯-=3111211143(1)43543543520P ξ==⨯⨯+⨯⨯+⨯⨯=12431432113(2)43543543530P ξ==⨯⨯+⨯⨯+⨯⨯=3242(3)4355P ξ==⨯⨯=1232030560E ξ∴=⨯+⨯+⨯=(2)设的坐标分别为,则, 又,可得,即,又圆的圆心为半径为,故圆的方程为, 即,也就是, 令,可得或2,故圆必过定点和.21..【解析】(1)当1a =-时,()()222ln 2f x x x x x =--+,定义域()0,+∞,()()()22ln 22f x x x x x '=-+--,()13f '∴=-,又()11f =,()f x 在()()1,1f 处的切线方程340x y +-=;(2)(ⅰ)令()()20g x f x x =--=,则()222ln 22x x x ax x -⋅++=+,即()12ln x xa x--=,令()()12ln x x h x x--=, 则()2221122ln 12ln x x xh x x x x x ---'=--+=, 令()12ln t x x x =--,()221x t x x x+'=--=-,()0t x '< ,()t x 在()0,+∞上是减函数,又()()110t h '== ,所以当01x <<时,()0h x '>,当1x <时,()0h x '<, 所以()h x 在()0,1上单调递增,在()1,+∞上单调递减,()()max 11h x h ∴==, 所以当函数()g x 有且仅有一个零点时1a =;(ⅱ)当1a =,()()222ln g x x x x x x =-+-,若2e x e -<<,()g x m ≤,只需证明()max g x m ≤, ()()()132ln g x x x '=-⋅+,令()0g x '=,得1x =或32x e -=,又2e x e -<< ,∴函数()g x 在322,e e --⎛⎫ ⎪⎝⎭上单调递增,在32,1e -⎛⎫ ⎪⎝⎭上单调递减,在()1,e 上单调递增又33322122g e e e ---⎛⎫=-+ ⎪⎝⎭,()223g e e e =-,()333322213222222g e e e e e e e g e ----⎛⎫⎛⎫=-+<<<-= ⎪ ⎪⎝⎭⎝⎭, 即()32g e g e -⎛⎫< ⎪⎝⎭,()()2max 23g x g e e e ∴==-,223m e e ∴≥-.22.解析:(1)直线l 的极坐标方程为θ=α(ρ∈R ),圆C 的极坐标方程为ρ2−2ρcos θ−4ρsin θ+1=0;(2)θ=α,代入ρ2−2ρcos θ−4ρsin θ+1=0,得ρ2−2ρcos α−4ρsin α+1=0, 显然ρ1>0,ρ2>0,1|OA |+1|OB |=ρ1+ρ2ρ1ρ2=2cos α+4sin α=2 5cos(α−φ)≤2 5,所以1|OA |+1|OB |的最大值为2 5. .23.(I )当1a=时,()1f x >化为12110x x +--->,当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x ≤<。
高三自主诊断试题 数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -= A .3 B .2 C .5 D2. 已知集合2{|lg(2)}M x y x x ==-,22{|1}N x x y =+=,则M N = A .[1,2)- B .(0,1) C .(0,1] D .∅3. 高三(3)班共有学生56人,座号分别为1,2,3,,56 ,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、17号、45号同学在样本中,那么样本中还有一个同学的座号是A .30B .31C .32D .334. 已知函数22, 0,()|log |,0,x x f x x x ⎧≤=⎨>⎩,则使()2f x =的x 的集合是A .1{,4}4B .{1,4}C .1{1,}4D .1{1,,4}45. 已知MOD 函数是一个求余函数,其格式为其结果为n 除以m 的余数,例如(8,3)2MOD =. 右面是一个算法的程序框图, 当输入的值为25时, 则输出的结果为A .4B .5C .6D .76. 设,x y 满足约束条件2311x x y y x ≥⎧⎪-≥⎨⎪≥+⎩,则下列不等式恒成立的是A .3x ≥B .4y ≥C .280x y +-≥D .210x y -+≥7. “2-≤a ”是“函数a x x f -=)(在[1,)-+∞上单调递增”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件8. 将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有 A .18种 B .24种 C .36种 D .72种9. 定义在R 上的奇函数()f x 满足(1)()f x f x +=-,当1(0,]2x ∈时,)1(log )(2+=x x f ,则()f x 在区间3(1,)2内是 A .减函数且()0f x >B .减函数且()0f x <C .增函数且()0f x >D .增函数且()0f x <10. 已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过F 作斜率为1-的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若OFP ∆的面积为228a b +,则该双曲线的离心率为 A.3 B.3C.3 D.3 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 已知不共线的平面向量a ,b满足(2,2)a =- ,()()a b a b +⊥- ,那么||b = ;12. 某班有50名同学,一次数学考试的成绩X 服从正态分布2(110,10)N ,已知(100110)0.3P X ≤≤=,估计该班学生数学成绩在120分以上的有 人; 13. 某三棱锥的三视图如图所示,该三棱锥的体积是 ;第14题图正(主)视图侧(左)视图第13题图14. 若函数()sin()(0,0)6f x A x A πωω=->>的图象如图所示,则图中的阴影部分的面积为 ;15. 若不等式2222()y x c x xy -≥-对任意满足0x y >>的实数,x y 恒成立,则实数c 的最大值为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知向量2(s i n,c o s )33xx a k = ,(cos ,)3xb k =- ,实数k 为大于零的常数,函数()f x a b =⋅ ,R x ∈,且函数()f x 的最大值为12.(Ⅰ)求k 的值;(Ⅱ)在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,若2A ππ<<,()0f A =,且a =,求AB AC ⋅的最小值.17.(本小题满分12分)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:现有甲、乙两位乘客,他们乘坐的里程都不超过22公里.已知甲、乙乘车不超过6公里 的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13. (Ⅰ)求甲、乙两人所付乘车费用不相同的概率;(Ⅱ)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望. 18.(本小题满分12分)如图,在正四棱台1111ABCD A BC D -中,11A B a =,2AB a =,1AA ,E 、F 分别是AD 、AB 的中点. (Ⅰ)求证:平面11EFB D ∥平面1BDC ;(Ⅱ)求二面角1D BC C --的余弦值的大小.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心, 这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的 平面去截该棱锥,底面与截面之间的部分叫做正四棱台.19.(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正整数的等比数列,且111a b ==,13250a b =,82345a b a a +=++,*N n ∈.(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)若数列{}n d 满足218log 11()2n b n n d d +-++=(*N n ∈),且116d =,试求{}n d 的通项公式及其前n 项和n S .20.(本小题满分13分)已知抛物线1:C 22(0)y px p =>的焦点为F ,抛物线上存在一点G 到焦点的距离为3,且点G 在圆:C 229x y +=上.(Ⅰ)求抛物线1C 的方程;(Ⅱ)已知椭圆2:C 2222 1 (0)x y m n m n+=>>的一个焦点与抛物线1C 的焦点重合,若椭圆2C 上存在关于直线:l 1143y x =+对称的两个不同的点,求椭圆2C 的离心率e 的取值范围. 21.(本小题满分14分)已知函数1()1ln a f x x x=-+(a 为实数). (Ⅰ)当1a =时,求函数()f x 的图象在点11(,())22f 处的切线方程;(Ⅱ)设函数2()32h a a a λ=-(其中λ为常数),若函数()f x 在区间(0,2)上不存在极值,且存在a 满足()≥h a 18+λ,求λ的取值范围; C1BE D FAB1A1D 1C(Ⅲ)已知*N n ∈,求证:11111ln(1)12345n n+<++++++ . 高三自主诊断试题数学(理科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分.D C B A B C A C B C二、填空题:本大题共5小题,每小题5分,共25分. 11.12. 8 13.32 14.232- 15.4 三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)解:(Ⅰ)由已知2()(sin ,cos )(cos ,)333x x x f x a b k k =⋅=⋅-221cos12223sin cos cos sin (sin cos )3332322332x x x x x k x x k k k k k +=-=-=--……2分222)sin()3342x x k x k π=-=-- ……………………5分因为R x ∈,所以()f x 的最大值为1)122k=,则1k = …………………6分 (Ⅱ)由(Ⅰ)知,21()sin()2342xf x π=--,所以21()sin()02342A f A π=--= 化简得2sin()34A π-= 因为2A ππ<<,所以25123412Aπππ<-< 则2344A ππ-=,解得34A π=…………………………………………………8分因为2222240cos222b c a b c A bc bc+-+-=-==,所以2240b c ++= 则22402b c bc +=≥,所以20(2bc ≤= ……………10分则3cos 20(142AB AC AB AC π⋅==-≥所以AB AC ⋅的最小值为20(1 …………………………………………………12分17.(本小题满分12分)解:(Ⅰ)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13则甲、乙两人所付乘车费用相同的概率111111114323433P =⨯+⨯+⨯= ……………2分 所以甲、乙两人所付乘车费用不相同的概率1121133P P =-=-= …………………4分 (Ⅱ)由题意可知,6,7,8,9,10ξ= 则111(6)4312P ξ==⨯= 11111(7)43234P ξ==⨯+⨯=1111111(8)4343233P ξ==⨯+⨯+⨯=11111(9)23434P ξ==⨯+⨯=111(10)4312P ξ==⨯= ………………………………………………………………10分所以ξ的分布列为则11111()67891081243412E ξ=⨯+⨯+⨯+⨯+⨯= ……………………………………12分 18.(本小题满分12分)证明:(Ⅰ)连接11AC ,AC ,分别交11,,B D EF BD 于,,M N P ,连接1,MN C P 由题意,BD ∥11B D因为BD ⊄平面11EFB D ,11B D ⊂平面11EFB D ,所以BD ∥平面11EFB D …………2分又因为11,2A B a AB a ==,所以111122MC AC a == 又因为E 、F 分别是AD 、AB 的中点,所以14NP AC == 所以1MC NP =又因为AC ∥11AC ,所以1MC ∥NP 所以四边形1MC PN 为平行四边形 所以1PC ∥MN因为1PC ⊄平面11EFB D ,MN ⊂平面11EFB D ,所以1PC ∥平面11EFB D因为1PC BD P =I ,所以平面11EFB D ∥平面1BDC …………………………………5分 (Ⅱ)连接1A N ,因为11A M MC NP ==,又1A M ∥NP 所以四边形1A NPM 为平行四边形,所以PM ∥1A N由题意M P ⊥平面ABCD ,1A N ∴⊥平面ABCD ,1A N AN ∴⊥ 因为11A B a =,2AB a =,1AA =,所以12A N MP === 因为ABCD 为正方形,所以AC BD ⊥所以,以,,PA PB PM 分别为,,x y z 轴建立如图所示的坐标系则,0)B,(0,,0)D,(,0,0)C,1()2C a -所以(0,,0)BD =-u u u r,1(,)BC =uuu r,(,,0)BC =u u u r ………………………………………………………7分设1111(,,)n x y z =u u r 是平面1BDC 的法向量,则1110n BC n BD ⎧⋅=⎪⎨⋅=⎪⎩u u r uuu ru u r uu u r111100⎧-=⎪∴⎨⎪-=⎩,10y ∴=, 令11z =,则1x1n =u u r……………………………………………9分设2222(,,)n x y z =uu r 是平面1BCC 的法向量,则2120n BC n BC ⎧⋅=⎪⎨⋅=⎪⎩uu r uuu r uu r uu u r2222200⎧=⎪∴⎨⎪=⎩令21y =,则21x =-,23z =所以2(3n =-uu r ………………………………11分所以1212120cos ,3n n n n n n +⋅<>===u u r uu r u r u u r u u r uu r 所以二面角1D BC C --………………………………………12分 ,则依题意有0q >2分4分(Ⅱ) 12n n b -= 21log n b n +∴=811()2n n n d d -++∴= , 7121()2n n n d d -+++=两式相除:212n n d d +=, 由116d =,81121()1282d d -+==可得:28d =135,,,d d d ∴ 是以116d =为首项,以12为公比的等比数列;246,,,d d d 是以28d =为首项,以12为公比的等比数列 ……………………………………………………………6分 ∴当n 为偶数时,1218()16(22n n n d -=⨯= ……………………………………………………………7分13124()()n n n S d d d d d d -=+++++++22221116[1()]8[1()]112232[1()]16[1()]4811221122n nn n n ⨯-⨯-=+=-+-=--- …………9分∴当n 为奇数时,112116()2(22n n n d +-=⨯=…………………………………………………………10分13241()()n n n S d d d d d d -=+++++++112211221116[1()]8[1()]112232[1()]16[1()]4811221122n n n n n +-+-⨯-⨯-=+=-+-=---∴,,nn n d ⎧⎪⎪=⎨⎪⎪⎩,48,48,n n n S ⎧-⎪⎪=⎨⎪-⎪⎩ …………………12分20.(本小题满分13分)n 为奇数 n 为偶数n 为偶数 n 为奇数解:(Ⅰ)设点G 的坐标为00(,)x y ,由题意可知022002003292p x x y y px⎧+=⎪⎪+=⎨⎪=⎪⎩………………………2分解得:001,4,x y p ==±=所以抛物线1C 的方程为:28y x = ………………………………………………………4分 (Ⅱ)由(Ⅰ)得抛物线1C 的焦点(2,0)F椭圆2C 的一个焦点与抛物线1C 的焦点重合∴椭圆2C 半焦距2222, 4c m n c =-==……①…………………………………………5分设1122(,),(,)M x y N x y 是椭圆2C 上关于直线:l 1143y x =+对称的两点, :4MN y x λ=-+ 由2222 1 4x y m n y x λ⎧+=⎪⎨⎪=-+⎩22222222(16)80m n x m x m m n λλ⇒+-+-=……(*) 则42222222644(16)()0m m n m m n λλ∆=-+->,得:222160m n λ+->……②………………………………………………………………7分对于(*),由韦达定理得:21222816m x x m n λ+=+ 212122224()216n y y x x m n λλ∴+=-++=+ MN 中点Q 的坐标为2222224(,)1616m n m n m n λλ++将其代入直线:l 1143y x =+得:222222141164163n m m n m n λλ=⨯+++……③……9分 由①②③消去λ,可得:217m <<, 椭圆2C 的离心率2c e m m ==,∴137e << ………13分21.(本小题满分14分)解:(Ⅰ)当1a =时,11()1ln f x x x =-+,211()f x x x'=-, 则1()4222f '=-=,1()12ln 2ln 212f =-+=-∴函数()f x 的图象在点11(,())22f 的切线方程为:1(ln 21)2()2y x --=-, 即2ln 220x y -+-= …………………………………………………………………4分 (Ⅱ)221()a a x f x x x x-'=-=,由()0f x '=x a ⇒= 由于函数()f x 在区间(0,2)上不存在极值,所以0≤a 或2≥a ………………………5分由于存在a 满足()≥h a 18+λ,所以max ()≥h a 18+λ……………………………………6分 对于函数2()32h a a a λ=-,对称轴34a λ= ①当304λ≤或324λ≥,即0λ≤或83λ≥时,2max 39()()48h a h λλ==, 由max ()≥h a 18+λ29188⇒≥+λλ,结合0λ≤或83λ≥可得:19≤-λ或83λ≥ ②当3014λ<≤,即403λ<≤时,max ()(0)0h a h ==, 由max ()≥h a 18+λ108⇒≥+λ,结合403λ<≤可知:λ不存在; ③当3124λ<<,即4833λ<<时,max ()(2)68h a h λ==-; 由max ()≥h a 18+λ1688⇒-≥+λλ,结合4833λ<<可知:13883≤<λ 综上可知:19≤-λ 或138≥λ………………………………………………………………9分 (Ⅲ)当1a =时,21()x f x x-'=,当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)∈+∞时,()0f x '<,()f x 单调递减,∴11()1ln f x x x=-+在1x =处取得最大值(1)0f = 即11()1ln (1)0f x f x x =-+≤=,∴11ln x x x-≤,……………………………………11分 令 1n x n =+,则11ln n n n +<,即1ln(1)ln n n n +-<, ∴ln(1)ln(1)ln1[ln(1)ln ][ln ln(1)](ln 2ln1)n n n n n n +=+-=+-+--++-1111121n n n <++++-- . 故11111ln(1)12345n n +<++++++ . ………………………………………………14分。
2015 年 高 三 测 试 卷数学(理科)参考答案及评分标准一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分.13.214.13π 15.1316.2212x y -= 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)由点,C B 的坐标可以得到34AOC π∠=,23AOB π∠=,…………………2分 所以cos cos()COB AOC AOB ∠=∠+∠1()2222=-⨯--4=-;……6分 (Ⅱ)因为c =23AOB π∠=,所以3C π=,所以2sin sin a b A B ===,………8分所以22sin 2sin()3a b A A π+=+-2sin()6A π=+,2(0)3A π<<,……………………11分 所以当3A π=时,a b +最大,最大值是12分18.解:(Ⅰ)该校运动会开幕日共有13种选择,其中运动会期间至少两天空气质量优良的选择有:1日,2日,3日,5日,9日,10日,12日,所以运动会期间至少两天空气质量优良的概率是2713P =.…………………………………6分(Ⅱ)随机变量ξ所有可能取值有:0,1,2,3;………………………………………………7分(0)P ξ==113,(1)P ξ==613,(2)P ξ==613,(3)P ξ==113,……………………9分所以随机变量ξ的分布列是:随机变量ξ的数学期望是1661012313131313E ξ=⨯+⨯+⨯+⨯=2113.……………………12分 19.(Ⅰ)证明:在梯形ABCD 中,因为2AD DC CB ===,4AB =,4212cos 22CBA -∠==,所以60,ABC ∠=︒由余弦定理求得AC=90ACB ∠=︒即BC⊥又因为平面AEFC ⊥平面ABCD ,所以BC ⊥平面所以BC AG ⊥,………………………………………3分 在矩形AEFC 中,tan 1AE AGE EG ∠==,4AGE π∴∠=tan 1CF CGF GF ∠==,4CGF π∠=,所以2CGF AGE π∠+∠=,即AG CG ⊥,所以AG ⊥平面BCG ;……………………………………………………………………………6分(Ⅱ)FC AC ⊥,平面AEFC ⊥平面ABCD ,所以FC ⊥平面ABCD , 以点C 为原点,,,CA CB CF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则)(0,0,0),(0,2,0),1,0)C A B D-,G ,…………………………8分平面BCG 的法向量(3,0,GA =,设平面GCD 的法向量(,,)n x y z =,则0n CG n CD ⎧⋅=⎪⎨⋅=⎪⎩,从而00x z y +=⎧⎪-=,令1x =则(1,3,1)n =-,…………………………………………………………………………10分 所以cos ,n GA <>==,…………………………………………………11分 而二面角D —GCB 为钝角, 故所求二面角的余弦值为.………………………………………………………………12分 20.解:(Ⅰ)当l 垂直于OD 时||AB 最小,因为||OD =2r ==,…………………………………2分因为圆1C 222:(0)x y r r +=>的一条直径是椭圆2C 的长轴,所以2a =,又点D 在椭圆22222:1(0)x y C a b a b +=>>上,所以291414b b+=⇒=, 所以圆1C 的方程为224x y +=,椭圆2C 的方程为22143x y +=;………………………5分 (Ⅱ)椭圆2C 的右焦点F 的坐标是(1,0),当直线m 垂直于x 轴时,||PQ = ||4MN =,四边形PMQN 的面积S =当直线m 垂直于y 轴时,||4PQ =,||3MN =,四边形PMQN 的面积6S =,…………6分……………………10分当直线m 不垂直于坐标轴时,设n 的方程为(1)y k x =-(0)k ≠,此时直线m 的方程为1(1)y x k=--, 圆心O 到直线m的距离为:d =,所以||PQ ==,…………8分 将直线n 的方程代入椭圆2C 的方程得到:()22224384120k x k x k +-+-=,||MN =所以:四边形PMQN 的面积1||||2S PQ MN =⋅===∈,综上:四边形PMQN的面积的取值范围是.…………………………………………12分21.解:(Ⅰ)21221'()22x ax f x x a x x-+=+-=(0)x >,记2()221g x x ax =-+………1分 (一)当0a ≤时,因为0x >,所以()10g x >>,函数()f x 在(0,)+∞上单调递增;……2分(二)当0a <≤时,因为24(2)0a =-≤△,所以()0g x ≥,函数()f x 在(0,)+∞上单调递增;…………………………………………………………………………………………………3分(三)当a >0()0x g x >⎧⎨>,解得x∈,所以函数()f x 在区间上单调递减,在区间(0,),()2a a +∞上单调递增.…………………………5分(Ⅱ)由(1)知道当(1a ∈时,函数()f x 在区间(0,1]上单调递增, 所以(0,1]x ∈时,函数()f x的最大值是(1)22f a =-,对任意的a ∈,都存在0(0,1]x ∈使得不等式20()ln()f x a m a a +>-成立,等价于对任意的(1a ∈,不等式222ln ()a a m a a -+>-都成立,……………………………………6分即对任意的(1a ∈,不等式2ln (2)20a ma m a +-++>都成立, 记2()ln (2)2h a ama m a =+-++,则(1)0h =,1(21)(1)'()2(2)a ma h a ma m a a --=+-+=,因为(1a ∈,所以210a a->, 当1m ≥时,对任意(1a ∈,10ma ->,所以'()0h a >,即()h a 在区间上单调递增,()(1)0h a h >=成立;…………………………………………………………………………9分 当1m <时,存在0(1a ∈使得当0(1,)a a ∈时,10ma -<,'()0h a <,()h a 单调递减,从而()(1)0h a h <=,所以(1a ∈时,()0h a >不能恒成立.综上:实数m 的取值范围是[1,)+∞.……………………………………………………………12分 22.解:AF 是圆的切线,且18,15AF BC ==,∴由切割线定理得到2218(15)12AF FB FC FB FB FB =⋅⇒=⋅+⇒=,…………………3分 ,AB AD ABD ADB =∴∠=∠,则,//FAB ABD AF BD ∠=∠∴,…………………………………………………………………6分 又//AD FC ,∴四边形ADBF 为平行四边形.12,,18AD FB ACF ADB F ACAF ==∠=∠=∠∴==,//,18AE ADAD FC AE BC∴=-,解得8AE =。
深圳市2015届高三年级第二次调研考试数学(理科)参考答案一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答. 9.[]2,3- 10.0.211.12.66 13.(二)选做题:第14、15题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分. 14. 15.(几何证明选讲选做题)三、解答题:本大题6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)设函数()cos(2)f x A x =+ϕ(其中0A >,0π<<ϕ,R ∈x ).已知π6x =时,()f x 取得最小值2-.(1)求函数)(x f 的解析式; (2)若角θ满足π2sin()()3f +=θθ,且π0<≤θ,求πsin()3θ+的值. 解:(1)由()f x 最小值2-且0A >,所以2A =. …………………………………………1分因为π()26f =-,所以πcos()13ϕ+=-, ……………………………………………………2分 由0π<<ϕ可得ππ4π333ϕ<+<,所以ππ3ϕ+=, ………………………………………3分 所以2π3ϕ=. ……………………………………………………………………………………4分 充分非必要故)(x f 的解析式为2π()2cos(2)3f x x =+. …………………………………………………5分 (2)(法1)由(1),得)3π22cos()3πsin(+=+θθ, 即)3π(sin 21)3πsin(2+-=+θθ,01)3πsin()3π(sin 22=-+++θθ, ……………………8分所以1)3πsin(-=+θ或21)3πsin(=+θ. ………………………………………………10分又0πθ≤<,所以ππ4π333θ≤+<. …………………………………………………11分 所以21)3πsin(=+θ. ………………………………………………………………………12分 (法2)由(1),得)3π22cos()3πsin(+=+θθ,即)3π22cos()6πcos(+=-θθ. ………………………………………………………8分所以θθ-+=+6ππ23π22k 或θθ+-=+6ππ23π22k ,Z ∈k . …………………………10分即6π3π2-=k θ或65ππ2-=k θ,Z ∈k .又0πθ≤<,所以2π=θ. …………………………………………………………11分所以21)3πsin(=+θ. ………………………………………………………………………12分【说明】本题主要考查cos()y A x ωϕ=+的性质,倍角公式、解三角方程、特殊角的三角函数值,考查学生的运算能力. 17.(本小题满分12分)深圳市于2014年12月29日起实施汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,在全市有购车意向的市民中,某网站针对不同年龄段的申请意向进行了抽样调查,结果如下表所示:(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率; (3)用样本估计总体,在全体有购车意向的市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.解:(1)因为30至50岁的人中有意向参与摇号电动小汽车、非电动小汽车和竞价的人数占总体的比例分别为:50150010=、150350010= 、300650010=. ………………………………………2分 所以,抽取的人10人中摇号电动小汽车、非电动小汽车和竞价的人数分别为:110110⨯=人、310310⨯=人、610610⨯=人. ……………………………………4分 (2)由题意可知,在上述10人中有竞价申请意向的人数为650030010=⨯人, 所以,4人中恰有2人竞价申请意向的概率为734102426=C C C . …………………………………6分 (3)4=n ,ξ的可能取值为4,3,2,1,0. ………………………………………7分因为用样本估计总体,任取一人,其摇号电动小汽车意向的概率为511000200==p ,……………8分所以,随机变量ξ服从二项分布,即ξ~)51,4(B . …………………………………………9分62525651151)0(4004=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,62525651151)1(3114=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, 6259651151)2(2224=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ,6251651151)3(1334=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ, 625151151)4(0444=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==C P ξ. 即ξ的分布列为:……………………………………………………………………………11分 ξ的数学期望为:54514=⨯==np E ξ. …………………………………………12分 【说明】本题主要考查分层抽样、排列组合、古典概型、二项分布等知识,考查了考生读取图表、数据处理的能力. 18.(本小题满分14分)如图4,已知三棱锥O ABC -的三条侧棱OA ,OB ,OC 两两垂直,△ABC 为等边三角形,M 为△ABC 内部一点,点P 在OM 的延长线上,且PB PA =.(1)证明:OB OA =;(2)证明:平面⊥PAB 平面POC ;(3)若::AP PO OC =,求二面角B OA P --的余弦值. 证明:(1)因为OA ,OB ,OC 两两垂直, 所以222AC OC OA =+,222BC OC OB =+.又△ABC 为等边三角形,BC AC =, 所以=+22OC OA 22OC OB +,故OB OA =. …………………………………………………………………………3分 (2)因为OA ,OB ,OC 两两垂直,所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥OAB OB OA OOB OA OB OC OA OC 平面, ⊥⇒OC 平面OAB , 而⊂AB 平面OAB ,所以OC AB ⊥. …………………………………………………………5分取AB 中点D ,连结OD ,PD . 由(1)知,OB OA =,所以OD AB ⊥. 由已知PB PA =,所以PD AB ⊥.所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥POD PD OD DPD OD PD AB OD AB 平面, ⊥⇒AB 平面POD , 而⊂PO 平面POD ,所以PO AB ⊥. …………………………………………………7分所以,⎪⎪⎭⎪⎪⎬⎫⊂=⊥⊥POC PO OC OPO OC PO AB OC AB 平面, ⊥⇒AB 平面POC , 又PAB AB 平面⊂,所以,平面⊥PAB 平面POC . …………………………………………9分 解:(3)(法一)由(2)知AB ⊥平面POD , 所以平面OAB ⊥平面POD , 且平面OAB平面POD OD =,过点P 作PH ⊥平面OAB ,且交OD 的延长线于点H ,连接AH , 因为OC PA 5=,OC OP 6=,由(1)同理可证OC OB OA ==,OBCPM∙D在△POA 中,222OP PA OA =+, 所以OA PA ⊥,又因为PH ⊥OA , 所以OA ⊥平面PAH ,所以PAH ∠为二面角B OA P --的平面角, ………………………………………………11分 在直角△PHA 中,cos AHPAH PA∠=, ……………………………………………………12分 由(2)知45AOD ∠=︒,所以△OAH 为等腰直角三角形, 所以AH OA OC ==,所以cos 5AH PAH PA ∠==, 所以,二面角B OA P --的余弦值为5. …………………………………………………14分 (法2)如图6,以OA ,OB ,OC 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系. 由(1)同理可证OC OB OA ==, 设1===OC OB OA ,则)0,0,1(A ,)0,1,0(B ,)1,0,0(C ,(1,0,0)OA =,(1,1,0)AB =-.设),,(z y x P ,其中0>x ,0>y ,0>z . 由(,,)OP x y z =,(1,,)AP x y z =-.由(2)知OP AB ⊥,且5PA OC ==,6OP OC =得()222222(1)0615x y x y z x y z ⎧-⨯+=⎪⎪++=⎨⎪-++=⎪⎩.解之,得1x y ==,2z =. ……………………………11分 所以,(1,1,2)OP =设平面POA 的法向量为),,(1111z y x =n ,由1OA ⊥n ,1OP ⊥n ,得1111020x x y z =⎧⎨++=⎩.取11=z ,得12y =-,1(0,2,1)=-n .由(2)知,平面OAB 的法向量为2(0,0,1)OC ==n , …………………………………13分 记二面角P OA B --的平面角为θ,由图可得θ为锐角, 所以12cos |cos ,|θ=〈〉==n n . 图6Pz所以,二面角B PC A --……………………………………………………14分 【说明】本题主要考察空间点、线、面的位置关系,线面垂直、面面垂直的判定与性质,用空间向量求二面角,考查空间想象能力、运算能力和逻辑推理能力. 19.(本小题满分14分)设数列}{n a 的前n 项和为n S ,满足4231-⋅-=++n n n n a S ,*N ∈n ,且42,,321+a S a 成等比数列.(1)求1a ,2a ,3a 的值;(2)设2nn n a b =,*N ∈n ,求数列{}n b 的通项公式; (3)证明:对一切正整数n ,有++2143a a (12)<++na n . 解:(1)由已知,得⎪⎩⎪⎨⎧-=+-=+=+.68,20,)()42(3212122131a a a a a a a a a …………………………………………2分解之,得41=a ,242=a ,963=a . …………………………………………………4分 (2)(法1)因为4231-⋅-=++n n n n a S ,*N ∈n , ……① 所以42)1(21-⋅--=+-n n n n a S ,其中2≥n . ……②① ②,并整理得212)1(2++⋅++=n n n n a a ,2≥n , ……………………………6分即12(1)n n b b n +=++,2≥n .所以,3243123242n n b b b b b b n -=+⨯⎫⎪=+⨯⎪⎬⋅⋅⋅⋅⋅⋅⎪⎪=+⎭相加,得()()223n b b n n =+-+. ……………………………8分由(1)知242=a ,所以26b =,所以2≥n 时,()1n b n n =+, ……………………9分 又41=a ,12b =也符合上式,所以,数列{}n b 的通项公式为()1n b n n =+,*N ∈n . …………………………………10分 (法2)因为4231-⋅-=++n n n n a S ,*N ∈n , ……① 所以42)1(21-⋅--=+-n n n n a S ,其中2≥n . ……②① ②,并整理得212)1(2++⋅++=n n n n a a ,2≥n ,即12(1)n n b b n +=++,2≥n . ……………………………………………………………6分由(1)知22141⨯⨯==a ,2223224⨯⨯==a ,3324396⨯⨯==a .可得1212b ==⨯,2623b ==⨯,31234b ==⨯.猜想()1n b n n =+,*N ∈n . …………………………………………………………8分 以下用数学归纳法证明之:(i )当1=n 时或2=n 时,猜想显然正确.(ii )假设k n =(2≥k )时,猜想正确,即()1n b k k =+. 那么1+=k n 时,12(1)k k b b k +=++(1)2(1)k k k =+++ (1)(2)k k =+⋅+.[](1)(1)1k k =+++即1+=k n 时,猜想也正确.由(i )(ii ),根据数学归纳法原理,对任意的*N ∈n ,猜想正确.所以,数列{}n b 的通项公式为()1n b n n =+,*N ∈n . …………………………………10分(3)对一切正整数n ,因为nn n n n n n n n a n 2)1(1212)1(221⋅+-⋅=⋅++=+-, …………12分 所以,++2143a a …+⨯⨯+⨯⨯=++21232422132n a n …nn n n 2)1(2⋅++++⎪⎭⎫ ⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=2110231*********…⎥⎦⎤⎢⎣⎡⋅+-⋅+-n n n n 2)1(1211 12)1(11<⋅+-=n . ………………………………………14分 【说明】本题主要考查等比数列的定义,处理n S 与n a 的递推公式,用累加法求数列通项,数学归纳法,理解裂项求和,考查考生运算求解、推理论证、归纳猜想的能力. 20.(本小题满分14分)已知动点(,)M x y 和定点(0,1)N , MN 的中点为P .若直线MN ,OP 的斜率之积为常数λ (其中O 为原点,10λ-<<),动点M 的轨迹为C . (1)求曲线C 的方程;(2)曲线C 上是否存在两点A 、B ,使得△NAB 是以N 为顶点的等腰直角三角形?若存在,指出这样的三角形共有几个;若不存在,请说明理由. 解:(1)设直线MN ,OP 的斜率分别为1k ,2k ,因为1(,)22x y P +, ………………1分 所以11y k x-= (0x ≠),2122y k x += (0x ≠), ……………………………………3分由12k k λ=可得:()1122y y x x λ+⎛⎫-⋅⎪⎝⎭=⋅(0x ≠), ……………………………………4分 化简整理可得221x y λ-+=(0x ≠),所以,曲线C 的方程为221x y λ-+=(0x ≠). ………………………………………5分 (2)由题意()0,1N ,且NA NB ⊥,当直线NA 的斜率为0,则N 与A 重合,不符合题意, 所以直线NA 、NB 的斜率都存在且不为0,设直线NA 的斜率为k , 所以直线NB 的斜率为1k-,不妨设0k >, 所以直线NA 的方程为1y kx =+,直线NB 的方程为11y x k=-+,………………………6分 将直线NA 和曲线C 的方程联立,得2211y kx x y λ=+⎧⎨-+=⎩,消y 整理可得()2220k x kx λ-+=, 解得22A k x k λ=--,所以22k NA k λ=-, 以k 1-替换k,可得222211k NB kk λλ==--, …………………………8分由NA NB =22221k k k λλ=--, ………………………………9分所以320k k k λλ+--=,即()()2110k k k λλλ⎡⎤-+++=⎣⎦,……………………………10分(1)当 113λ-<<-时, 方程()210k k λλλ+++=有()()()22143110λλλλ∆=+-=-+-<,所以方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有唯一解1k =; ……………………………11分(2)当13λ=-时,()()211k k k λλλ⎡⎤-+++=⎣⎦()31103k --=,解得1k =; ………12分 (3)当103λ-<<时,方程()210k k λλλ+++=有()()()22143110λλλλ∆=+-=-+->,且()2111310λλλλ⨯++⨯+=+≠,所以方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有三个不等的根.综上,当 113λ-<≤-时,有一个圆符合题意;当103λ-<<时,有三个符合题意的圆. ……………………………………………………………………………………14分(注:(3)也可直接求解: 当103λ-<<时, 方程()210k k λλλ+++=,因为()()()22143110λλλλ∆=+-=-+->,所以1,2k =,又因为()2111310λλλλ⨯++⨯+=+≠,所以1,21k ≠,故方程()()2110k k k λλλ⎡⎤-+++=⎣⎦有三个不等的根.) 【说明】本题主要考查曲线与方程,直线与椭圆的位置关系,弦长问题,一元二次方程根的个数问题,考查考生数形结合、函数与方程的数学思想方法及运算求解能力. 21.(本小题满分14分)已知函数x b ax x x f +-=ln )(,对任意的),0(∞+∈x ,满足0)1()(=+xf x f , 其中b a ,为常数.(1)若)(x f 的图象在1=x 处的切线经过点)5,0(-,求a 的值;(2)已知10<<a ,求证:0)2(2>a f ; (3)当)(x f 存在三个不同的零点时,求a 的取值范围. 解:(1)在0)1()(=+xf x f 中,取1=x ,得0)1(=f , 又b a b a f +-=+-=1ln )1(,所以a b =. ……………………………………1分从而x a ax x x f +-=ln )(,)11(1)(2xa x x f +-=',a f 21)1(-='. 又510)1(5)1(=---='f f , 所以521=-a ,2-=a . ………………………………………………………………3分(2)2ln 22ln 2222ln)2(3322--+=+-=a a a a a a a f . 令2ln 22ln 2)(3--+=x x x x g ,则24222)1(432322)(x x x x x x x g -+-=--='.所以,)1,0(∈x 时,0)(<'x g ,)(x g 单调递减, …………………………………5分 故)1,0(∈x 时,1()(1)2ln 21ln e 02g x g >=-->-=.所以,10<<a 时,0)2(2>a f . ……………………………………………………7分(3)222)11(1)(x ax ax x a x x f -+-=+-='.①当0≤a 时,在),0(∞+上,0)(>'x f ,)(x f 递增,所以,)(x f 至多只有一个零点,不合题意; …………………………………………8分 ②当21≥a 时,在),1(∞+上,0)(≤'x f ,)(x f 递减, 所以,)(x f 也至多只有一个零点,不合题意; ……………………………………10分 ③当210<<a 时,令0)(='x f ,得124111<--=aa x ,124112>-+=a a x . 此时,)(x f 在),0(1x 上递减,),(21x x 上递增,),(2∞+x 上递减,所以,)(x f 至多有三个零点. …………………………………………………………12分 因为)(x f 在)1,(1x 上递增,所以0)1()(1=<f x f .又因为0)2(2>a f ,所以),2(120x a x ∈∃,使得0)(0=x f . ……………………………13分又0)()1(00=-=x f x f ,0)1(=f ,所以)(x f 恰有三个不同的零点:0x ,1,01x .综上所述,当)(x f 存在三个不同的零点时,a 的取值范围是)21,0(. ………………14分【说明】本小题主要考查函数、导数、不等式证明等知识,包括函数的极值、零点,二次方程根的分布等知识,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.。
高三阶段性诊断考试试题理 科 数 学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()11z i +=(其中i 为虚数单位),则z 的共轭复数是A. 12i +B. 12i -C. 12i -+D. 12i --2.设{}{}21,,2,xP y y x x R Q y y x R ==-+∈==∈,则A. P Q ⊆B. Q P ⊆C. R C P Q ⊆D. R Q C P ⊆3.设命题23:231,:12x p x q x --<≤-,则p 是q 的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知随机变量()()()2~0,.3=0.02333=N P P ξσξξ>-≤≤若,则A.0.477B.0.628C.0.954D.0.9775.已知不共线向量,,,a b a b a b a b a ---+r r r r r r r r r则与的夹角是A.12π B.6π C.4π D.3π 6.设函数()()()01xxf x a ka a a -=->≠-∞+∞且在,上既是奇函数又是减函数,则()()log a g x x k =+的图象是7.已知函数()sin cos f x a x b x =+(,a b 为常数,0a ≠)在4x π=处取得最小值,则函数()34g x f x π⎛⎫=-⎪⎝⎭是A.偶函数且它的图象关于点(),0π对称B.偶函数且它的图象关于点3,02π⎛⎫⎪⎝⎭对称 C.奇函数且它的图象关于点3,02π⎛⎫⎪⎝⎭对称 D. 奇函数且它的图象关于点(),0π8.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为A.4B.2C.D. 3π9.若(),0,2a b ∈,则函数()3212413f x ax x bx =+++存在极值的概率为 A. 12ln 24+ B. 32ln 24- C. 1ln 22+ D. 1ln 22-10.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 做与x 轴垂直的直线交两渐近线于A,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若()4,,25OP OA OB R λμλμλμ=+=∈uu u r uu r uu u r ,则双曲线的离心率e 是A.B.2C.52D.54二、填空题:本大题共5小题,每小题5分,共25分. 11.若x,y都是锐角,且1sin tan ,53x y x y ==+=则_________. 12.二项式5的展开式中常数项为___________.13.已知0,0a b >>,方程为22420x y x y +-+=的曲线关于直线10ax by --=对称,则2a bab+的最小值为________.14.已知抛物线24y x =上有一条长为6的动弦AB ,则AB 的中点到y 轴的最短距离是_____.15.已知数列{}n a 满足()()11,log 12,n n a a n n n N *==+≥∈.定义:使乘积12k a a a ⋅⋅⋅⋅为正整数的()k k N*∈叫做“易整数”.则在[]1,2015内所有“易整数”的和为________. 三、解答题:本大题共6小题,共75分.16. (本小题满分12分)已知向量()cos ,cos ,3sin cos ,2sin 6m x x n x xx π⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,且满足()f x m n =⋅u r r.(I )求函数()f x 的单调递增区间;(II )在ABC ∆,角A,B,C 的对边分别是a,b,c ,满足2,22A a f ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.17. (本小题满分12分)如图1,在直角梯形ABCD 中,90,2,3,//A B AD AB BC EF AB ∠=∠====,且AE=1,M,N 分别是FC,CD 的中点.将梯形ABCD 沿EF折起,使得BC =连接AD,BC,AC 得到(图2)所示几何体. (I )证明:AF//平面BMN ; (II )求二面角B AC D --的余弦值.18. (本小题满分12分)已知函数()()()log 01,,2m n f x x m m a n =>≠且点在函数()f x 的图象上. (I )若()3n n n b a f a m =⋅=,当时,求数列{}n b 的前n 项和n S ; (II )设lg n nn n na a c m m =⋅,若数列{}n c 是单调递增数列,求实数m 的取值范围.19. (本小题满分12分) 某商场组织购物抽奖活动,现场准备了两个装有6个球的箱子,小球除颜色外完全相同,A 箱中放有3个红球、2个白球、1个黄球,B 箱中放有红球、白球和黄球各2个,顾客购物一次可分别从A 、B 两箱中任取(有放回)一球,当两球同色即中奖,若取出两个黄球得3分,取出两个白球得2分,取出两个红球得1分,当两球异色时未中奖得0分,商场根据顾客所得分数多少给予不同奖励. (I )求某顾客购物一次中奖的概率;(II )某顾客先后2次参与购物抽奖,其得分之和为ξ,求ξ的分布列及期望E ξ.20. (本小题满分13分)如图,12,F F 分别为椭圆()2222:10x y C a b a b+=>>的左、右焦点,椭圆C 上的点到1F 点距离的最大值为5,离心率为23,A,B 是椭圆C 上位于x 轴上方的两点,且直线1AF 与直线2BF 平行. (I )求椭圆C 的方程;(II )若122AF BF =uuu r uuu r,求直线1AF 的方程;(III )设21AF BF 与的交点为P , 求证:12PF PF +是定值.21. (本小题满分14分) 已知函数()()2,xxf x ae bex a b R -=--∈的导函数()f x '为偶函数,且曲线()y f x =在点()()0,0f 处的切线斜率0(其中e=2.71828…) (1)求a ,b 的值;(2)设()()()()24g x f x mf x g x =-,若有极值. (i )求m 的取值范围; (ii )试比较11m e em --与的大小并证明你的结论.。
乌鲁木齐地区2015年高三年级第二次诊断性测验理科数学试卷第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A=,B=,则集合A B=A. (-2,2)B. (-3,2)C. (-2,1)D. (-3,1)2.复数的共轭复数是A. 1+iB. -1+iC. 1-iD. -1-i3.若角的终边过点P(-3,-4),则cos的值为A. B. C. D.4.设m,n是两条不同的直线,是两个不重合的平面,下列四个命题:①;②;③;④。
其中为真命题的是A. ①②B. ②③C. ③④D. ①④5.曲线在点(1,e)处的切线与直线垂直,则的值为A. B. C. D.6.设函数是区间上的减函数,则实数t的取值范围是A. B.C. D.7.一个几何体的三视图如图所示,则这个几何体的外接球的表面积为A. B. C. D.8.如图算法,若输入m=210,n=119,则输出的n为A. 2B. 3C. 7D. 119.一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号与盒子的编号相同时叫做放对了,否则叫做放错了。
设放对的个数记为,则的期望的值为A. B. C. 1 D. 210.已知函数为奇函数,,即,则数列的前15项和为A. 13B. 14C. 15D. 1611. 过双曲线的右焦点作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为A,B。
若,则双曲线的渐近线方程为A. B.C. D.12.已知△ABC中角A,B,C的对边分别是,满足,则的最大值为A. B. C. D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.二项式的展开式中的系数为10,则实数m等于_______.(用数字填写答案)14.△ABC中,,且CA=3,点M满足,则= _________.15.设函数,实数,且,则的取值范围是__________.16.设抛物线的焦点为F,其准线与x轴的交点为Q,过点F作直线与此抛物线交于A,B两点,若,则________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列的前n项和为,对任意的正整数n,都有成立.(Ⅰ)求证数列为等比数列;(Ⅱ)求数列的前n项和。
武汉市2015届高中毕业生二月调研测试理科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数ii1+-的共轭复数是 A .i 1- B .i 1+- C .i 1+ D .i 1--2.已知集合}1,log |{2>==x x y y A ,}1,)21(|{>==x y y B x,则=B AA .}210|{<<y yB .}10|{<<y yC .}121|{<<y y D .φ3.若函数2)(-=ax x f 在),2[+∞上有意义,则实数a 的取值范围为A .1=aB .1>aC .1≥aD .0≥a4.某几何体的三视图如图所示,则该几何体的体积为A .6π B .3πC .32πD .π5.10件产品中有3件次品,不放回地抽取2次.在第一次抽出的是次品的条件下,则第二次抽出正品的概率是A .307 B .97 C .103 D .1076.=+⎰x xx xd sin cos 2cos 4πA .)12(2-B .12+C .12-D .22-7.已知m ,n 是两条不同的直线,γβα,,是三个不同的平面,则下列命题中正确的是 A .若βαγα⊥⊥,,则βγ// B .若βα⊂⊂n m n m ,,//,则βα// C .若α//,//m n m ,则α//n D .若βα⊥⊥n m n m ,,//,则βα//8.已知点P 是双曲线1422=-y x 上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则=⋅A .2512-B .2512C .2524-D .54- 9.在ABC ∆中,角A ,B ,C 的对边分别为c b a ,,,且bc a b +=22,6π=A ,则内角C =A .6π B .4π C .43π D .4π或43π10.已知点P 为曲线03225=+--y x xy 上任意一点,O 为坐标原点,则||OP 的最小值为 A .25 B .26 C .2 D .332二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. (一)必考题(11—14题)11.执行如图所示的程序框图,如果输入2,1==b a , 则输出a 的值为 .12.10)1)(1(x x -+展开式中3x 的系数为 .13.已知向量 )7,2(-=,)4,2(--=,若存在实数λ,使得⊥-)(λ,则实数λ为 .14.已知实数y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-≤+,0,1,1y x y y x 若目标函数ay x a z +-=)1(在点)0,1(-处取到最大值,则实数a 的取值范围为 . (二)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑.如果全选,则按第15题作答结果计分.) 15.(选修4-1:几何证明选讲)已知AB 是⊙O 的弦,P 是AB 上一点,3,24,26===OP PA AB ,则⊙O的半径=R . 16.(选修4-4:坐标系与参数方程)在极坐标系中,点)3,2(π-P 到直线1)6sin(:=-πθρl的距离是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数a x a x x x f )(32sin()3cos(sin 2)(ππ++-⋅=为常数)的图象经过点)3,6(π.(Ⅰ)求a 的值及函数)(x f 的最小正周期; (Ⅱ)解不等式0)(≥x f . 18.(本小题满分12分)已知{a n }是由正数组成的数列,其前n 项和n S 与n a 之间满足:),1(41221*∈≥+=+N n n S a n n . (Ⅰ)求数列{a n }的通项n a ;(Ⅱ)设n nn a b )21(=,求数列}{n b 的前n 项和n T .19.(本小题满分12分)在三棱柱111C B A ABC -中,底面ABC ∆为正三角形且边长为a 3,侧棱a AA 21=,点A 在下底面的射影是111C B A ∆的中心O . (Ⅰ)求证:111C B AA ⊥;(Ⅱ)求二面角111C AA B --所成角的余弦值.20.(本小题满分12分)某工厂的一个车间有5台同一型号的机器均在独立运行,一天中每台机器发生故障的概率为1.0,若每一天该车间获取利润y (万元)与“不发生故障”的机器台数)5,(≤∈n n n N 之间满足关系式:⎩⎨⎧≥-≤-=).3(33),2(6n n n y (Ⅰ)求某一天中有两台机器发生故障的概率;(Ⅱ)求这个车间一天内可能获取利润的均值(精确到0。
甘肃省2015届高三第二次高考诊断试卷数学(理)试题注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、 准考证号填写在答题卡上。
2.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑。
如 需改动,用橡皮擦干净后,再选涂其它答案标号框。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()z =1 +i ,则|z|等于A B C D .22.设全集U=N ,集合12{|11}A x N og x =∈≤-,则U A ð等于 A .{1,2} B .{1} C .{0,1,2} D .{0,l} 3.在△ABC 中,∠A =120°,.2AB AC =- ,则BC 的最小值是A .2B .4C .D .124.某几何体的三视图如右图所示,正视图是面积为92π的半圆,俯视图是正三角形,此几何体的体积为B.C. 4D. 5.若111(,1),1,()2nx x e a nx b -∈==,则a ,b ,c 的大小关系是 A .c>b>aB .b >c>aC .a>b>cD .b >a>c6.如图所示的计算机程序的输出结果为A.2113 B.1321 C.2134 D.3421 7.某公司为了对一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y ∧= -4x +a .若在这些样本点中任取一点,则它在回归直线右上方的概率为A .16B . 13 C.12 D.238.已知,(0,)2παβ∈,满足tan (αβ+) =4 tan β卢,则tan α的最大值是 A .14 B .34 C. 34 D.329.设等差数列{n a }的前n 项和为Sn,且满足.S 17 >0,S 18 <0,则15121215,,,S S S a a a 中最大的项为 A.77S a B.88S a C.99S a D.1010S a 10.设定义域为R 的函数f (x )满足以下条件:①对任意x ∈R,f (x )+f (-x )=0;②对任意12,[1,]x x a ∈,当12x x >时,21()()f x f x >.则下列不等式一定成立的是 ①()(0)f a f >②1()2a f f +>③13()(3)1a f f a ->-+④13()()1a f f a a->-+ A .①③B .②④C .①④D .②③ 11.双曲线22122:1(0,0)x y C a b a b-=>>与抛物线22:2(0)C y px p =>相交于A ,B 两点,公共弦 AB 恰过它们的公共焦点F .则双曲线的一条渐近线的倾斜角所在区间可能是A .(,32ππ)B .(,43ππ) C .(,64ππ) D .(0,6π) 12.已知函数21()2nx k f x x e x x =--+有且只有一个零点,则k 的值为A .21e e +B .21e e +C .221e e +D . 1e e+第Ⅱ卷 (非选择题,共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第 22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设二项式21()x x +,的展开式中常数项是k ,则直线y=kx 与曲线y= 2x 围成图形的面积为 14.关于函数以()cos(2)4f x x π=-有以下命题:①若12()()f x f x =,则12()x x k k Z π-=∈;②函数()f x 在区间[5,88ππ]上是减函数;③将函数()f x 的图象向左平移8π个单位,得到的图象关于原点对称; ④函数()f x 的图象与函数()sin(2)4g x x π=+的图象相同. 其中正确命题为____(填上所有正确命题的序号).15.用0,1,2,3,4五个数组成无重复数字的五位数,其中1与3不相邻,2与4也不相邻,则这样的五位整数共有 个.16. 已知函数231(1)1,1,32,og x x kx x k x a -+-≤<⎧⎨-+≤≤⎩ 若存在k 使函数()f x 的值域是[0,2],则实a 的取值范围是____.三、解答题:本大题共6小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(本小题满分12分)已知数列{a n }中,a 1 =2,且*122(2,)n n a a n n n N -=-+≥∈.(I )求23,a a ,并证明{ n a n -}是等比数列;(II )设12n n n a b -=,求数列{b n }的前n 项和S n . 18.(本小题满分12分) Ⅳ如图,正方形ADMN 与矩形ABCD 所在平面互相垂直,AB =2AD =6.(I )若点E 是AB 的中点,求证:BM ∥平面NDE ;(Ⅱ)在线段AB 上找一点E ,使二面角D- CE -M 的大小为6π时,求出AE 的长.19.(本小题满分12分)某工厂生产A ,B 两种产品,其质量按测试指标划分,指标大于或等于88为合格品,小于88为次品.现随机抽取这两种产品各100件进行检测,检测结果统计如下:(I )试分别估计产品A ,B 为合格品的概率;(Ⅱ)生产l 件产品A ,若是合格品则盈利45元,若是次品则亏损10元;生产1件产品B ,若是合格品则盈利60元,若是次品则亏损15元.在(I )的前提下,(i )X 为生产l 件产品A 和1件产品B 所得的总利润,求随机变量X 的分布列和数学期望;(ii )求生产5件产品B 所得利润不少于150元的概率.20.(本小题满分12分)椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,过椭圆右焦点F 且斜率为1的直线l 截椭圆所得弦长为247. (I )求椭圆C 的方程;(n )已知A 、B 为椭圆长轴的两个端点,作不平行于坐标轴且不经过右焦点F 的割线PQ ,若满足∠AFP=∠BFQ ,求证:割线PQ 恒经过一定点.21.(本小题满分12分)已知函数()13()f x a nx ax a R =--∈(I )若a= -1,求函数()f x 的单调区间;(Ⅱ)若函数y=()f x 的图象在点(2(2)f )处的切线的倾斜角为45°,对于任意的[1,2]t ∈,函数32()['()]2m g x x x f x =++在区间(t ,3)上总不是单调函数,求m 的取值范围; (Ⅲ)求证:*12131411(2,)234n n n nn n n N n n ⨯⨯⨯⨯<≥∈请从下面所给的22、23、24三题中选定一题作笞,并用2B 铅笔在答题卡上将所选题目对应的 题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答题第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4-1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且AC ∥BD .过A 作圆的切线与DB 的延长线交于点F ,AD 与BC 交于点E .(I )求证:四边形ACBF 为平行四边形;(Ⅱ)若BD =3求线段BE 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系取相同的长度单位.已知圆C 的参数方程是2cos ,(12sin ,x y ϕϕϕ=⎧⎨=+⎩为参数),直线l 的极坐标方程是2cos sin 6ρδρδ+=.(I )求圆C 的极坐标方程;(n )过圆C 上任意一点P 作与l 夹角为45°的直线,交l 于点Q ,求|PQ |的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲已知函数()|2|3,0f x x m x m =--≠.(I )当m=3时,求不等式()f x ≤1-2x 的解集;(Ⅱ)若不等式f (x )≤0的解集包含{x|x≥1},求m 的取值范围.-END-。