广东省汕头市澄海区2017届中考数学5月模拟试题及答案
- 格式:doc
- 大小:281.97 KB
- 文档页数:10
2017年广东省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,绝对值最小的数是()A.2 B.﹣2 C.0 D.﹣2.下列运算正确的是()A.(a3)2=a5B.a3+a2=a5C.(a3﹣a)÷a=a2D.a3÷a3=13.使有意义的x的取值范围是()A.B.C.D.4.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.6.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40° B.50° C.60° D.140°7.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.8.正六边形的每个内角为()A.120°B.135°C.140°D.144°9.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm210.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二、填空题(本小题共6小题,每小题4分,共24分)11.据统计,今年广州白云区“古运河之光”旅游活动节期间,访问历史文街区的国内外游客约908万人次,908万人次用科学记数法可表示为人次.12.分解因式:2x2﹣4x+2= .13.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是cm,中位数是cm.14.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.15.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED= .16.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四=9,则k= .边形ABDC三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)计算:tan60°﹣()﹣1+(1﹣)0+|﹣2|.18.(6分)解方程:.19.(6分)如图,Rt△ABC中,∠C=90°,AC=8,BC=6.(1)尺规作图:作△BAC的平分线AD(保留作图痕迹,不写作法)(2)求AD的长,(结果保留根号)四、解答题(二)(本大题共有3小题,每小题7分,共21分)20.(7分)2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?21.(7分)在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:(1)填空:tan∠ABC= ;AB= (结果保留根号).(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.22.(7分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?五、解答题(三)(本大题共有3小题,每小题9分,共27分)23.已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.24.(9分)如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.(1)求证:△BDE∽∠ADB;(2)试判断直线DF与⊙O的位置关系,并说明理由;(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.25.(9分)如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.2017年广东省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,绝对值最小的数是()A.2 B.﹣2 C.0 D.﹣【考点】18:有理数大小比较;15:绝对值.【分析】首先求出每个数的绝对值各是多少,然后根据有理数大小比较的方法,判断出四个数中,绝对值最小的数是哪个即可.【解答】解:|2|=2,|﹣2|=2,|0|=0,|﹣|=,∵0<<2,∴四个数中,绝对值最小的数是0.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.下列运算正确的是()A.(a3)2=a5B.a3+a2=a5C.(a3﹣a)÷a=a2D.a3÷a3=1【考点】4I:整式的混合运算.【分析】A、利用幂的乘方法则即可判定;B、利用同类项的定义即可判定;C、利用多项式除以单项式的法则计算即可判定;D、利用同底数的幂的除法法则计算即可.【解答】解:A、(a3)2=a6,故错误;B、∵a3和a2不是同类项,∴a3+a2≠a5,故错误;C、(a3﹣a)÷a=a2﹣,故错误;D、a3÷a3=a0=1,正确.故选D.【点评】此题主要考查了整式的运算,对于相关的法则和定义一定要熟练.3.使有意义的x的取值范围是()A.B.C.D.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,解不等式即可.【解答】解:根据题意得:3x﹣1≥0,解得x≥.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.4.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选B.【点评】掌握好中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据俯视图有3列,2行,每行小正方形数目分别为3,2,从而画出图形.【解答】解:根据题意它的俯视图是:故选D.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的俯视图时应注意小正方形的数目及位置.6.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40° B.50° C.60° D.140°【考点】JA:平行线的性质;KN:直角三角形的性质.【分析】先根据平行线的性质求出∠3的度数,再根据直角三角形的性质即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故选B.【点评】本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同位角相等.7.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【解答】解:共8球在袋中,其中5个红球,故摸到红球的概率为,故选:C.【点评】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.8.正六边形的每个内角为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【分析】根据正多边形的外角和等于360度,即可得出每一个外角,再求内角即可.【解答】解:360°÷6=60°,180°﹣60°=120°,故选A.【点评】本题考查了多边形的内角和外角,掌握多边形的内角和与外角和是解题的关键.9.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【考点】L8:菱形的性质.【分析】设菱形的对角线分别为8x和6x,首先求出菱形的边长,然后根据勾股定理求出x 的值,最后根据菱形的面积公式求出面积的值.【解答】解:设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2,故选B.【点评】本题主要考查菱形的性质的知识点,解答本题的关键是掌握菱形的对角线互相垂直平分,此题比较简单.10.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【考点】HE:二次函数的应用;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】根据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,则AH=1﹣x,根据勾股定理EH2=AE2+AH2=x2+(1﹣x)2,进而可求出函数解析式,求出答案.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.【点评】本题需根据自变量的取值范围,并且可以考虑求出函数的解析式来解决.二、填空题(本小题共6小题,每小题4分,共24分)11.据统计,今年广州白云区“古运河之光”旅游活动节期间,访问历史文街区的国内外游客约908万人次,908万人次用科学记数法可表示为9.08×106人次.【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:908万=9.08×106.故答案为:9.08×106.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.12.分解因式:2x2﹣4x+2= 2(x﹣1)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:2x2﹣4x+2,=2(x2﹣2x+1),=2(x﹣1)2.【点评】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.13.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的众数是39 cm,中位数是40 cm.【考点】W5:众数;W4:中位数.【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.14.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是m≤且m≠1 .【考点】AA:根的判别式.【分析】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.【解答】解:由题意得:1﹣4(m﹣1)≥0;m﹣1≠0,解得:m≤且m≠1.【点评】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.15.如图,AD为⊙O的直径,∠ABC=75°,且AC=BC,则∠BED= 135°.【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】由AD为⊙O的直径,∠ABC=75°,且AC=BC,可求得∠ABD=90°,∠D=∠C=30°,继而可得∠CBD=15°,由三角形内角和定理,即可求得答案.【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵AC=BC,∠ABC=75°,∴∠BAC=∠ABC=75°,∴∠C=180°﹣∠ABC﹣∠BAC=30°,∠CBD=∠ABD﹣∠ABC=15°,∴∠D=∠C=30°,∴∠BED=180°﹣∠CBD﹣∠D=135°.故答案为:135°.【点评】此题考查了圆周角定理、等腰三角形的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.16.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四=9,则k= 10 .边形ABDC【考点】G5:反比例函数系数k的几何意义.【分析】如图,分别延长CA、DB交于点E,由于AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,设AC=t,则BD=t,OC=5t,即点A的坐标为(t,5t),而A、B是反比例函数y=上两点,则OD•t=t•5t,所以点B的坐标为(5t,t),根据S四边形ABDC=S△ECD﹣S△EAB,即5t•5t﹣4t•4t=9,解得t2=2,所以k=t•5t=10.【解答】解:如图,分别延长CA、DB交于点E,∵AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,∴点A的横坐标与点B的纵坐标相等,设AC=t,则BD=t,OC=5t,即点A的坐标为(t,5t),∴A、B是反比例函数y=上两点,∴OD•t=t•5t,∴点B的坐标为(5t,t),∴AE=5t﹣t=4t,BE=5t﹣t=4t,∴S四边形ABDC=S△ECD﹣S△EAB,∴5t•5t﹣4t•4t=9,∴t2=2,∴k=t•5t=10.故答案为10.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:tan60°﹣()﹣1+(1﹣)0+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简求出答案.【解答】解:原式=﹣2+1+2﹣=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.解方程:.【考点】B3:解分式方程.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.19.如图,Rt△ABC中,∠C=90°,AC=8,BC=6.(1)尺规作图:作△BAC的平分线AD(保留作图痕迹,不写作法)(2)求AD的长,(结果保留根号)【考点】N3:作图—复杂作图.【分析】(1)利用基本尺规作图的方法作出角平分线AD;(2)根据角平分线的性质得到DE=DC,根据勾股定理计算即可.【解答】解:(1)如图所示,AD即为所求.(2)过点D作DE⊥AB于点E,设CD=x,∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC=x,AE=AC=8,∵∠C=90°,AC=8,BC=6,∴AB==10,∴BE=AB﹣AE=2,则22+x2=(6﹣x)2,解得,x=,则AD==.【点评】本题考查的是几何作图、角平分线的性质,掌握角平分线的作法、熟记角平分线上的点到角的两边的距离相等是解题的关键.四、解答题(二)(本大题共有3小题,每小题7分,共21分)20.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A 脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了300 名同学;(2)条形统计图中,m= 60 ,n= 90 ;(3)扇形统计图中,热词B所在扇形的圆心角的度数是72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C 所对应的人数﹣D所对应的人数,即可解答;(3)根据B所占的百分比×360°,即可解答;(4)根据概率公式,即可解答.【解答】解:(1)105÷35%=300(人).故答案为:300;(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.故答案为:72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是=.答:从该校学生中随机抽取一个最关注热词D的学生的概率是.【点评】本题考查条形统计图与扇形统计图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了概率的求法与运用.21.在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:(1)填空:tan∠ABC= ;AB= (结果保留根号).(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.【考点】R8:作图﹣旋转变换.【分析】(1)把∠ABC放到格点直角三角形中,利用正切的定义求它的正切值,然后利用勾股定理计算AB的长;(2)利用关于原点对称的点的坐标特征写出A′、B′、C′点的坐标,然后描点即可得到△A′B′C′,再利用待定系数法求直线A′C′的函数表达式.【解答】解:(1)tan∠ABC=;AB==;故答案为,;(2)如图,A′(1,﹣4),B′(3,﹣1),C′(2,﹣1),△A′B′C′为所作;设直线A′C′的函数表达式为y=kx+b,把A′(1,﹣4),C′(2,﹣1)代入得,解得,所以直线A′C′的函数表达式为y=3x﹣7.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了待定系数法求一次函数解析式.22.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?【考点】B7:分式方程的应用.【分析】(1)求单价,总价已知,应根据数量来列等量关系.关键描述语是:“苹果数量是试销时的2倍”;等量关系为:2×试销时的数量=本次数量.(2)根据盈利=总售价﹣总进价进行计算.【解答】解:(1)设试销时这种苹果的进货价是每千克x元.依题意,得:解之得:x=5(6分)经检验:x=5是原方程的解.∴x=5.答:试销时该品种苹果的进货价是每千克5元.(7分)(2)试销时进苹果的数量为: =1000(千克).第二次进苹果的数量为:2×1000=2000(千克).(8分)盈利为:(3000﹣400)×7+400×7×0.7﹣5000﹣11000=4160(元).(9分)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.(10分)【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.五、解答题(三)(本大题共有3小题,每小题9分,共27分)23.(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d ,当p 为何值时,d 2取得最小值,并求出最小值.【考点】HA :抛物线与x 轴的交点;AB :根与系数的关系.【分析】(1)先根据求根公式得出x 1、x 2的值,再求出两根的和与积即可;(2)把点(﹣1,﹣1)代入抛物线的解析式,再由d=|x 1﹣x 2|可知d 2=(x 1﹣x 2)2=(x 1+x 2)2﹣4 x 1•x 2=p 2,再由(1)中 x 1+x 2=﹣p ,x 1•x 2=q 即可得出结论. 【解答】证明:(1)∵a=1,b=p ,c=q∴△=p 2﹣4q∴x=即x 1=,x 2=∴x 1+x 2=+=﹣p ,x 1•x 2=•=q ;(2)把(﹣1,﹣1)代入y=x 2+px+q 得1﹣p+q=﹣1,所以,q=p ﹣2,设抛物线y=x 2+px+q 与x 轴交于A 、B 的坐标分别为(x 1,0)、(x 2,0)∵d=|x 1﹣x 2|,∴d 2=(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1•x 2=p 2﹣4q=p 2﹣4p+8=(p ﹣2)2+4当p=2时,d 2的最小值是4.【点评】本题考查的是抛物线与x 轴的交点及根与系数的关系,熟知x 1,x 2是方程x 2+px+q=0的两根时,x 1+x 2=﹣p ,x 1x 2=q 是解答此题的关键.24.如图1,△ABC 内接于⊙O ,∠BAC 的平分线AD 交⊙O 于点D ,交BC 于点E ,过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:△BDE ∽∠ADB ;(2)试判断直线DF 与⊙O 的位置关系,并说明理由;(3)如图2,条件不变,若BC 恰好是⊙O 的直径,且AB=6,AC=8,求DF 的长.【考点】MR:圆的综合题.【分析】(1)由AD平分∠BAC,易得∠BAD=∠CAD=∠CBD,又由∠BDE是公共角,即可证得:△BDE∽∠ADB;(2)首先连接OD,由AD平分∠BAC,可得=,由垂径定理,即可判定OD⊥BC,又由BC∥DF,证得结论;(3)首先过点B作BH⊥AD于点H,连接OD,易证得△BDH∽△BCA,然后由相似三角形的对应边成比例,求得BH的长,继而求得AD的长,然后证得△FDB∽△FAD,又由相似的性质,求得答案.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DAC=∠DBC,∴∠DBC=∠BAD,∵∠BDE=∠ADB,∴△BDE∽∠ADB;(2)相切.理由:如图1,连接OD,∵∠BAD=∠DAC,∴=,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;(3)如图2,过点B作BH⊥AD于点H,连接OD,则∠BHD=90°,∵BC是直径,∴∠BAC=90°,∴∠BHD=∠BAC,∵∠BDH=∠C,∴△BDH∽△BCA,∴=,∵AB=6,AC=8,∴BC==10,∴OB=OD=5,∴BD==5,∴=,∴BH=3,∴DH==4,AH==3,∴AD=AH+DH=7,∵DF与⊙O相切,∴∠FDB=∠FAD,∵∠F=∠F,∴△FDB∽△FAD,∴===,∴AF=DF,BF=DF,∴AB=AF﹣BF=DF﹣DF=6,解得:DF=.【点评】此题属于圆的综合题.考查了切线的判定与性质、圆周角定理、垂径定理、弦切角定理、相似三角形的判定与性质以及勾股定理等知识.注意准确作出辅助线是解此题的关键.25.如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B 的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.【考点】LO:四边形综合题.【分析】(1)设线段OB所在直线的函数表达式为y=kx,把B(4,2)代入求出k即可解决问题.(2)如图1中,延长CD交OA于点F,设AF=CF=m,则OF=4﹣m,由OF2+OC2=CF2,列出方程求出m,求出直线CF的解析式,解方程组即可解决问题.(3)如图2中,作点C关于直线OB的对称点F,作FP⊥BC,交OB于D,垂足为P,则点P、D就是所求的点,此时DC+DP=DF+PD=FP最短,求出点F坐标即可解决问题.【解答】解:(1)设线段OB所在直线的函数表达式为y=kx,把B(4,2)代入,得2=4k,解得k=,∴线段OB所在直线的函数表达式为y=x.CD的范围:≤CD<4.(2)如图1中,延长CD交OA于点F,∵∠ACF=∠ACB=∠CAF,∴AF=CF,设AF=CF=m,则OF=4﹣m,∵OF2+OC2=CF2,∴(4﹣m)2+22=m2,解得m=,∴OF=∴直线CF的解析式为y=﹣x+2,由解得,∴点D坐标(,).(3)如图2中,作点C关于直线OB的对称点F,作FP⊥BC,交OB于D,垂足为P,则点P、D就是所求的点,此时DC+DP=DF+PD=FP最短(垂线段最短).∵直线OB的解析式为y=x,CF⊥OB,∴可以设直线CF的解析式为y=﹣2x+b,把C(0,2)代入得b=2,∴直线CF解析式为y=﹣2x+2,设直线CF交OB于点E,由解得,∴点E坐标(,),∵C、F关于点E对称,∴点F坐标(,﹣),∴CD+PD最小值=PF=2+=.【点评】本题考查四边形综合题、一次函数、矩形的性质、待定系数法勾股定理、最小值问题等知识,解题的关键是学会构建函数,利用方程组求交点坐标,想到利用垂线段最短解决最小值问题,属于中考压轴题.。
2017年广东中考数学模拟试卷2017年广东中考数学模拟试卷一、选择题(每小题3分,共30分)1.6的相反数的倒数是()A。
-6B。
-1/6C。
-6D。
62.下列实数中最大的是()A。
πB。
|-4|C。
327D。
-53.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的有()A。
2个B。
3个C。
4个D。
5个4.2017年某市全年房地产投资约为317亿元,这个数据用科学记数法表示为()A。
317×10^8B。
3.17×10^10C。
3.17×10^11D。
3.17×10^125.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC。
若AC=4,则四边形OCED的周长为()A。
4B。
8C。
10D。
126.在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83。
83,85,89,则这组数据的众数、中位数分别为()A。
81,82B。
83,81C。
81,81D。
83,827.若关于x的方程x^2+3x+a=0有一个根为1,则另一个根为()A。
-4B。
2C。
4D。
-38.已知点A的坐标为(5,12),O为坐标原点,则射线OA与x轴的正半轴形成的角的余弦值为()A。
1/25B。
12/13C。
5/12D。
13/129.如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G,则BG的长为()A。
5B。
4C。
3D。
210.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止。
设点M运动的路程为x,MN^2=y,则y关于x的函数图象大致为()A。
B。
C。
D。
二、填空题(每小题4分,共24分)11.实数-27的立方根是-3.12.因式分解:x^3-9x=x(x+3)(x-3)。
13.不等式组{x+2>1,2x-1≤8-x}的最大整数解是4.14.一个多边形的每一个外角都等于30°,则该多边形的内角和等于180°。
澄海区初中毕业生学业模拟考试 数学科试题参考答案及评分意见一、选择题(本大题共10小题,每小题3分,共30分)1.B ;2.D ;3.D ;4.C ;5.A ;6.A ;7.B ;8.C ;9.A ;10.C . 二、填空题(本大共题6小题,每小题4分,共24分)11.3-≠x ;12.2)1(2-a ;13.10;14.33;15.3;16.64,222-n .三、解答题(一)(本大题共6小题,每小题3分,共18分) 17.解:原式13341-+-+=-------------------4分 4=----------------------------------------6分 18.解:原式)1)(1(1-+⋅+=x x x x x -------------------3分11-=x ------------------------------------4分当2014=x 时,原式2013111=-=x ------------------6分19.解:(1)如图,⊙O 为所求作的圆------------3分 (2)BC 与⊙O 相切.---------------------------------4分 连结OD ,∵OA=OD ,∴∠OAD =∠ODA , ∵∠OAD=∠DAC , ∴∠ODA=∠DAC ,∴OD ∥AC ,---------------------------------------------5分 ∵∠C =90º,∴∠BDO =90º,∴BC 与⊙O 相切.------------------------------------6分四、解答题(二)(本大题共3小题,每小题7分,共21分) 20.解(1)40;---------------------------------------1分 (2)54,补充条形图如图20-2;-------------3分 (3)330;------------------------------------------5分 (4)解:列表如下:∵有12种等可能结果,其中“小亮被选上”的结果有6种, ∴P (A )=21126=-------------------------------------------------------7分21.解:(1)设第一批童装每套的进价为x 元,依题意得:A B C D A (A ,B ) (A ,C ) (A ,D ) B (B ,A ) (B ,C )(B ,D ) C (C ,A ) (C ,B ) (C ,D )D(D ,A )(D ,B )(D ,C )OCD(第19题2 4 6 8 10 12 0.511.5 2 小时14 人数第20题图(2)250045001.510x x ⨯=+,------------------------------------------------2分解得:50x =,------------------------------------------------------3分 经检验:50x =是原方程的解.答:第一批童装每套的进价为50元.--------------------------4分 (2)设每套童装的售价为y 元,依题意得:%25)45002500()45002500()5.11(502500⨯+≥+-+y ,----5分 解得70y ≥,-------------------------------------------------------6分答:每套童装的售价至少为70元.----------------------------7分22.解:在Rt ECD △中,tan DC DEC EC ∠=,------------------1分3040tan 0.75DC EC DEC ∴==∠≈(m ).------------------------2分在Rt BAC △中,45BCA BA CA ∠=∴=°,.设AB =x ,则CA =x ,EA =40+x ,-------------------------------3分在Rt BAE △中,tan BA BEA EA∠=,∴75.040=+x x,---------------------------------------------------4分 解得120=x ,-----------------------------------------------------5分经检验:120=x 是原分式方程的解,-------------------------6分 答:电视塔的高度为120m .----------------------------------7分 五、解答题(三)(本大题共3小题,每小题9分,共27分)23.解:(1)5;----------------------------------------------------------------------------------2分 (2) 52; ----------------------------------------------------------------------------------------5分 (3)原式表示的几何意义是点(x ,y )到点(-2,-4)和(3,1)的距离之和, 当点(x ,y )在以(-2,-4)和(3,1)为端点的线段上时其距离之和最小,--6分 ∴原式最小值为25)14()32(22=--+--.-------------------------------------------9分 BACDE37° 45°第22题图F∵∠ACB =90°,O 为AB 中点,∴CO =21AB=AO ,∠BCO =45°,CO ⊥AB ,∴∠NCO =∠MAO =135°,∴△NOC ≌△MOA (SAS ),---------------------------------------7分 ∴OM=ON ,∠AOM =∠NOC ,------------------------------------8分 ∴∠AOM +∠AON =90°,∴∠MON =90°,即OM ⊥ON .-----------------------------------9分 25.解:(1)∵点A (1,-4)在直线y =kx -6上, ∴-4=k -6,解得k =2,∴直线的解析式为y =2x -6,-----------------------------------------1分 又当y =0时,2x -6=0,解得x =3, ∴B (3,0),∵A 为顶点,∴设抛物线的解析为y =a (x -1)2-4,又∵点B 在抛物线上,∴0=a (3-1)2-4,解得a =1,-----------2分 ∴抛物线的解析式为y =(x -1)2-4,即y =x 2-2x -3.---------------3分(2)存在.过点P 作PF ⊥x 轴于F . ∵OB=OC =3,OP=OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,--------------------4分 此时PO 平分第三象限的角,∴∠POF =45°.∴PF =OF . 设PF =OF = m .则点P 的坐标为P (-m ,m ),其中m >0. ∵点P 在抛物线y =x 2-2x -3上,∴m=m 2+2m -3---------------------------------------------------- 5分 解得m 1113-+m 2113--(不合题意,舍去)∴P 113-131------------------------------------------6分(3)①如图,当∠Q 1AB =90°时,∠Q 1AD =∠BOD= 90°, ∵∠ADQ 1=∠BDO ,∴△ADQ 1∽△DOB , ∴1DQ AD OD DB =1535=,∴DQ 1=52, ∴OQ 1=72,即Q 1(0,72-);------------------------------------7分②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB ,∴2OQ OB OD OB=,即2363OQ =, ∴OQ 2=32,即Q 2(0,32);----------------------------------------------8分 ③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E , 则△BOQ 3∽△Q 3EA , ∴33OQ OB Q EAE=,即33341OQ OQ =-, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即Q 3(0,-1),Q 4(0,-3).∴Q 点坐标为(0,72-),(0,32),(0,-1),(0,-3).---------9分。
年广东省汕头中考数学试题【解析版】由于版式的问题,试题可能会出现乱码的现象,为了方便您的阅读请点击全屏查看一、选择题(本大题共小题,每小题分,共分).的相反数是()...﹣.﹣.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,年广东省对沿线国家的实际投资额超过美元,将用科学记数法表示为().×.×.×.×.已知∠°,则∠的补角为().°.°.°.°.如果是方程﹣的一个根,则常数的值为()...﹣.﹣.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:,,,,,则这组数据的众数是().....下列所述图形中,既是轴对称图形又是中心对称图形的是().等边三角形.平行四边形.正五边形.圆.如图,在同一平面直角坐标系中,直线(≠)与双曲线(≠)相交于,两点,已知点的坐标为(,),则点的坐标为().(﹣,﹣).(﹣,﹣).(﹣,﹣).(﹣,﹣).下列运算正确的是()..•.()..如图,四边形内接于⊙,,∠°,则∠的大小为().°.°.°.°.如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:①△△;②△△;③△△;④△△,其中正确的是().①③.②③.①④.②④二、填空题(本大题共小题,每小题分,共分).分解因式:..一个边形的内角和是°,则..已知实数,在数轴上的对应点的位置如图所示,则.(填“>”,“<”或“”).在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,,,,,随机摸出一个小球,摸出的小球标号为偶数的概率是..已知,则整式﹣的值为..如图,矩形纸片中,,,先按图()操作:将矩形纸片沿过点的直线折叠,使点落在边上的点处,折痕为;再按图()操作,沿过点的直线折叠,使点落在上的点处,折痕为,则、两点间的距离为.三、解答题(本大题共小题,每小题分,共分).计算:﹣﹣(﹣π)()﹣..先化简,再求值:()•(﹣),其中..学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理本,女生每人整理本,共能整理本;若男生每人整理本,女生每人整理本,共能整理本.求男生、女生志愿者各有多少人?四、解答题(本大题共小题,每小题分,共分).如图,在△中,∠>∠.()作边的垂直平分线,与,分别相交于点,(用尺规作图,保留作图痕迹,不要求写作法);()在()的条件下,连接,若∠°,求∠的度数..如图所示,已知四边形,都是菱形,∠∠,∠为锐角.()求证:⊥;()若,求∠的度数..某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:②在扇形统计图中,组所在扇形的圆心角的度数等于度;()如果该校九年级有名学生,请估算九年级体重低于千克的学生大约有多少人?五、解答题(本大题共小题,每小题分,共分).如图,在平面直角坐标系中,抛物线﹣交轴于(,),(,)两点,点是抛物线上在第一象限内的一点,直线与轴相交于点.()求抛物线﹣的解析式;()当点是线段的中点时,求点的坐标;()在()的条件下,求∠的值..如图,是⊙的直径,,点为线段上一点(不与,重合),作⊥,交⊙于点,垂足为点,作直径,过点的切线交的延长线于点,⊥于点,连接.()求证:是∠的平分线;()求证:;()当时,求劣弧的长度(结果保留π).如图,在平面直角坐标系中,为原点,四边形是矩形,点,的坐标分别是(,)和(,),点是对角线上一动点(不与,重合),连结,作⊥,交轴于点,以线段,为邻边作矩形.()填空:点的坐标为;()是否存在这样的点,使得△是等腰三角形?若存在,请求出的长度;若不存在,请说明理由;()①求证:;②设,矩形的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值.年广东省汕头中考数学试题参考答案解析一、选择题(本大题共小题,每小题分,共分).的相反数是()...﹣.﹣【考点】:相反数.【分析】根据相反数的概念解答即可.【解答】解:根据相反数的定义有:的相反数是﹣.故选:..“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,年广东省对沿线国家的实际投资额超过美元,将用科学记数法表示为().×.×.×.×【考点】:科学记数法—表示较大的数.【分析】科学记数法的表示形式为×的形式,其中≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值大于时,是正数;当原数的绝对值小于时,是负数.【解答】解:×.故选:..已知∠°,则∠的补角为().°.°.°.°【考点】:余角和补角.【分析】由∠的度数求出其补角即可.【解答】解:∵∠°,∴∠的补角为°,故选.如果是方程﹣的一个根,则常数的值为()...﹣.﹣【考点】:一元二次方程的解.【分析】把代入已知方程列出关于的新方程,通过解方程来求的值.【解答】解:∵是一元二次方程﹣的一个根,∴﹣×,解得,.故选:..在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:,,,,,则这组数据的众数是()....【考点】:众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据出现了两次,次数最多,所以这组数据的众数是.故选..下列所述图形中,既是轴对称图形又是中心对称图形的是().等边三角形.平行四边形.正五边形.圆【考点】:中心对称图形;:轴对称图形.【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形为轴对称图形;圆既是轴对称图形又是中心对称图形.故选..如图,在同一平面直角坐标系中,直线(≠)与双曲线(≠)相交于,两点,已知点的坐标为(,),则点的坐标为().(﹣,﹣).(﹣,﹣).(﹣,﹣).(﹣,﹣)【考点】:反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵点与关于原点对称,∴点的坐标为(﹣,﹣).故选:..下列运算正确的是()..•.().【考点】:幂的乘方与积的乘方;:合并同类项;:同底数幂的乘法.【分析】根据整式的加法和幂的运算法则逐一判断即可.【解答】解:、,此选项错误;、•,此选项正确;、(),此选项错误;、与不是同类项,不能合并,此选项错误;故选:..如图,四边形内接于⊙,,∠°,则∠的大小为().°.°.°.°【考点】:圆内接四边形的性质.【分析】先根据补角的性质求出∠的度数,再由圆内接四边形的性质求出∠的度数,由等腰三角形的性质求得∠的度数.【解答】解:∵∠°,∴∠°﹣∠°﹣°°,∵四边形为⊙的内接四边形,∴∠°﹣∠°﹣°°,∵,∴∠°,故选..如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:①△△;②△△;③△△;④△△,其中正确的是().①③.②③.①④.②④【考点】:正方形的性质.【分析】由△≌△,即可推出△△,故①正确,由,∥,推出,可得△△,△△,△△,故②③错误④正确,由此即可判断.【解答】解:∵四边形是正方形,∴∥,,∠∠,在△和△中,,∴△≌△,∴△△,故①正确,∵,∥,∴,∴△△,△△,△△,故②③错误④正确,故选.二、填空题(本大题共小题,每小题分,共分).分解因式:().【考点】:因式分解﹣提公因式法.【分析】直接提取公因式分解因式得出即可.【解答】解:().故答案为:()..一个边形的内角和是°,则.【考点】:多边形内角与外角.【分析】多边形的内角和可以表示成(﹣)•°,依此列方程可求解.【解答】解:设所求正边形边数为,则(﹣)•°°,解得..已知实数,在数轴上的对应点的位置如图所示,则<.(填“>”,“<”或“”)【考点】:实数大小比较;:实数与数轴.【分析】首先根据数轴判断出、的符号和二者绝对值的大小,根据“异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.【解答】解:∵在原点左边,在原点右边,∴<<,∵离开原点的距离比离开原点的距离大,∴>,∴<.故答案为:<..在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,,,,,随机摸出一个小球,摸出的小球标号为偶数的概率是.【考点】:概率公式.【分析】确定出偶数有个,然后根据概率公式列式计算即可得解.【解答】解:∵个小球中,标号为偶数的有、这个,∴摸出的小球标号为偶数的概率是,故答案为:.已知,则整式﹣的值为﹣.【考点】:代数式求值.【分析】先求出的值,然后整体代入进行计算即可得解.【解答】解:∵,∴,﹣﹣﹣;故答案为:﹣..如图,矩形纸片中,,,先按图()操作:将矩形纸片沿过点的直线折叠,使点落在边上的点处,折痕为;再按图()操作,沿过点的直线折叠,使点落在上的点处,折痕为,则、两点间的距离为.【考点】:翻折变换(折叠问题);:矩形的性质.【分析】如图中,连接.由题意可知在△中,,﹣﹣,根据,计算即可.【解答】解:如图中,连接.由题意可知在△中,,﹣﹣,∴,故答案为.三、解答题(本大题共小题,每小题分,共分).计算:﹣﹣(﹣π)()﹣.【考点】:实数的运算;:零指数幂;:负整数指数幂.【分析】直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案.【解答】解:原式﹣..先化简,再求值:()•(﹣),其中.【考点】:分式的化简求值.【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将的值代入求解可得.【解答】解:原式[]•()(﹣)•()(﹣),当时,原式..学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理本,女生每人整理本,共能整理本;若男生每人整理本,女生每人整理本,共能整理本.求男生、女生志愿者各有多少人?【考点】:二元一次方程组的应用.【分析】设男生志愿者有人,女生志愿者有人,根据“若男生每人整理本,女生每人整理本,共能整理本;若男生每人整理本,女生每人整理本,共能整理本”,即可得出关于、的二元一次方程组,解之即可得出结论.【解答】解:设男生志愿者有人,女生志愿者有人,根据题意得:,解得:.答:男生志愿者有人,女生志愿者有人.四、解答题(本大题共小题,每小题分,共分).如图,在△中,∠>∠.()作边的垂直平分线,与,分别相交于点,(用尺规作图,保留作图痕迹,不要求写作法);()在()的条件下,连接,若∠°,求∠的度数.【考点】:作图—基本作图;:线段垂直平分线的性质.【分析】()根据题意作出图形即可;()由于是的垂直平分线,得到,根据等腰三角形的性质得到∠∠°,由三角形的外角的性质即可得到结论.【解答】解:()如图所示;()∵是的垂直平分线,∴,∴∠∠°,∴∠∠∠°..如图所示,已知四边形,都是菱形,∠∠,∠为锐角.()求证:⊥;()若,求∠的度数.【考点】:菱形的性质.【分析】()连结、.根据菱形四边相等得出,再利用证明△≌△,得出,那么在线段的垂直平分线上,又,即在线段的垂直平分线上,进而证明⊥;()设⊥于,作⊥于,证明.在直角△中得出∠°,再根据平行线的性质即可求出∠°﹣∠°.【解答】()证明:如图,连结、.∵四边形,都是菱形,∴,.在△与△中,,∴△≌△,∴,∴在线段的垂直平分线上,∵,∴在线段的垂直平分线上,∴是线段的垂直平分线,∴⊥;()如图,设⊥于,作⊥于,则四边形是矩形,∴.∵,,∴.在直角△中,∵∠°,,∴∠°,∵∥,∴∠°﹣∠°..某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:②在扇形统计图中,组所在扇形的圆心角的度数等于度;()如果该校九年级有名学生,请估算九年级体重低于千克的学生大约有多少人?【考点】:扇形统计图;:用样本估计总体;:频数(率)分布表.【分析】()①根据组的人数及百分比进行计算即可得到的值;②根据组的百分比即可得到所在扇形的圆心角的度数;()根据体重低于千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于千克的学生数量.【解答】解:()①调查的人数为:÷(人),∴﹣﹣﹣﹣;②组所在扇形的圆心角的度数为×°°;故答案为:,;()九年级体重低于千克的学生大约有×(人).五、解答题(本大题共小题,每小题分,共分).如图,在平面直角坐标系中,抛物线﹣交轴于(,),(,)两点,点是抛物线上在第一象限内的一点,直线与轴相交于点.()求抛物线﹣的解析式;()当点是线段的中点时,求点的坐标;()在()的条件下,求∠的值.【考点】:抛物线与轴的交点;:待定系数法求二次函数解析式;:解直角三角形.【分析】()将点、代入抛物线﹣,解得,可得解析式;()由点横坐标为可得点横坐标,将点横坐标代入()中抛物线解析式,易得点坐标;()由点的坐标可得点坐标,、、的坐标,利用勾股定理可得长,利用∠可得结果.【解答】解:()将点、代入抛物线﹣可得,,解得,,﹣,∴抛物线的解析式为:﹣﹣;()∵点在轴上,所以点横坐标,∵点是线段的中点,∴点横坐标,∵点在抛物线﹣﹣上,∴﹣,∴点的坐标为(,);()∵点的坐标为(,),点是线段的中点,∴点的纵坐标为×﹣,∴点的坐标为(,),∴,∴∠..如图,是⊙的直径,,点为线段上一点(不与,重合),作⊥,交⊙于点,垂足为点,作直径,过点的切线交的延长线于点,⊥于点,连接.()求证:是∠的平分线;()求证:;()当时,求劣弧的长度(结果保留π)【考点】:相似三角形的判定与性质;:垂径定理;:切线的性质;:弧长的计算.【分析】()根据等角的余角相等证明即可;()欲证明,只要证明△≌△即可;()作⊥于.则,设,,,利用相似三角形的性质求出,求出∠的值即可解决问题;【解答】()证明:∵,∴∠∠,∵是⊙的切线,⊥,∴∠∠°,∴∠∠°,∠∠°,∴∠∠,∴平分∠.()证明:连接.∵是直径,∴∠°,∴∠∠°,∠∠°,∵∠∠,∴∠∠,∵∠∠°,,∴△≌△,∴.()解:作⊥于.则,设,,,∵△∽△,∴,∴•,∴,∴∠,∴∠°,∴∠∠∠°,∴的长π..如图,在平面直角坐标系中,为原点,四边形是矩形,点,的坐标分别是(,)和(,),点是对角线上一动点(不与,重合),连结,作⊥,交轴于点,以线段,为邻边作矩形.()填空:点的坐标为(,);()是否存在这样的点,使得△是等腰三角形?若存在,请求出的长度;若不存在,请说明理由;()①求证:;②设,矩形的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值.【考点】:相似形综合题.【分析】()求出、的长即可解决问题;()存在.连接,取的中点,连接、.首先证明、、、四点共圆,可得∠∠,∠∠,由∠,推出∠°,∠°由△是等腰三角形,观察图象可知,只有,推出∠∠∠∠°,推出∠∠°,可得△是等边三角形,推出,由此即可解决问题;()①由()可知,、、、四点共圆,推出∠∠°,由此即可解决问题;②作⊥于.想办法用表示、的长,构建二次函数即可解决问题;【解答】解:()∵四边形是矩形,∴,,∠∠°,∴(,).故答案为(,).()存在.理由如下:连接,取的中点,连接、.∵∠∠°,∴,∴、、、四点共圆,∴∠∠,∠∠,∵∠,∴∠°,∠°①如图中,△是等腰三角形,观察图象可知,只有,∴∠∠∠∠°,∴∠∠°,∴△是等边三角形,∴,在△中,∵∠°,,∴,∴﹣﹣.∴当时,△是等腰三角形.②如图中,∵△是等腰三角形,易知,∠∠∠°,∴∠∠°,∴,综上所述,满足条件的的值为或.()①由()可知,、、、四点共圆,∴∠∠°,∴∠,∴.②如图中,作⊥于.在△中,∵,∠∠°,∴,,∴﹣,在△中,,∴•,∴矩形的面积为 [](﹣),即﹣,∴(﹣),∵>,∴时,有最小值.。
2017年广东省中考数学模拟试卷(一)及答案1.﹣3的相反数是()A.13B.-13C.3D.﹣32.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.州3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108B.[1.309\times {{10}^{10}}\).C.1.309×109D.1309×1064.如图所示,几何体的主视图是()A.B.C.D.图象的每条曲线上y都随x增大而增大,则k的取值范围是5.反比例函数y=1−kx()图象的每条曲线上y都随x增大而增大,则k的取值范围是(1)反比例函数y=1−kx()A.k>1B.k>0C.k<1D.k<06.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°8.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.129.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.72048+x −72048=5B.72048+5=72048+xC.72048−720x=5D.72048−72048+x=510.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(√22)2013B.(√22)2014C.(12)2013D.(12)201411.分解因式:x y2−x=_ _.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是_ _.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是_ _元.14.一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为_ _.15.若关于x 的方程x 2+2x +m −5=0有两个相等的实数根,则m =_ _.16.如图,菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 按顺时针方向旋转90°,则图中阴影部分的面积是_ _.17.计算:2cos45∘+(√2−1)0−(12)−1.18.化简,再求值:(a −2ab−b 2a )÷a−b a,其中a =2,b =﹣3. 19.如图,点C 、E 、B 、F 在同一直线上,AB ∥DE ,AC ∥DF ,AC =DF ,判断CE 与FB 的数量关系,证明你的结论.20.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共_ _吨;,每回收1吨塑料类垃圾可获得0.7吨二(3)调查发现,在可回收物中塑料类垃圾占15级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.√3(取1.732)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC 于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;的解集;(2)根据所给条件,请直接写出不等式k1x+b>k2x图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(−2,y2)是函数y=k2x24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.25.如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?个平方单位?若存在,求出相应的x (3)是否存在某个时刻x,使△OPQ的面积为3√34值;若不存在,请说明理由.1.【能力值】无【知识点】(1)相反数【详解】(1)【考点】相反数【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.【答案】(1)C2.【能力值】无【知识点】(1)正方体相对两个面上的文字【详解】(1)【考点】专题:正方体相对两个面上的文字【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“建”与“州”是相对面,“美”与“广”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【答案】(1)D3.【能力值】无【知识点】(1)正指数科学记数法【详解】(1)【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)C4.【能力值】无【知识点】(1)由立体图形到视图【详解】(1)【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【答案】(1)B5.【能力值】无【知识点】(1)反比例函数的应用【详解】(1)【考点】反比例函数的性质来说,当k<0时,每一条曲线上,y随x的增大而增大;当k 【分析】对于函数y=kx>0时,每一条曲线上,y随x的增大而减小.的图象上的每一条曲线上,y随x的增大而增大,【解答】解:∵反比例函数y=1−kx∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运中k的意义不理解,直接认为k<0,造成错误.用.易错易混点:学生对解析式y=kx【答案】(1)A6.【能力值】无【知识点】(1)众数、中位数【详解】(1)【考点】统计量的选择【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.【答案】(1)D7.【能力值】无【知识点】(1)圆周角定理及其推理【详解】(1)【考点】圆周角定理【分析】首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC 的度数,然后利用圆周角定理求解,即可求得答案.【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∠BOC=48°.∴∠A=12故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.【答案】(1)B8.【能力值】无【知识点】(1)平行四边形及其性质、相似三角形的性质【详解】(1)【考点】平行四边形的性质;相似三角形的判定与性质【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得DEDA =EFAB,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴DEDA =EFAB,∵EF=3,∴37=3AB,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选:B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.【答案】(1)B9.【能力值】无【知识点】(1)分式方程的应用【详解】(1)【考点】由实际问题抽象出分式方程【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048+x,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048+x , 可以列出方程:72048−72048+x =5.故选:D .【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.【答案】(1)D10.【能力值】无【知识点】(1)等腰直角三角形【详解】(1)【考点】等腰直角三角形【分析】根据等腰直角三角形的性质结合三角形的面积公式可得出部分Sn 的值,根据面积的变化即可找出变化规律“S n =4×(12)n−1”,依此规律即可解决问题.【解答】解:观察,发现:S 1=22=4,S 2=(2×√22)2=2,S 3=(√2×√22)2=1,S 4=(1×√22)2=12,…,∴S n =[2×(√22)n−1]2=4×(12)n−1,∴S 2016=4×(12)2016−1=(12)2013.故选:C .【点评】本题考查了等腰直角三角形的性质、三角形的面积、正方形的面积以及规律型中数字的变化类,根据面积的变化找出变化规律“S n =4×(12)n−1”是解题的关键.【答案】(1)C11.【能力值】无【知识点】(1)因式分解法【详解】(1)【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【答案】(1)解:x y2−x,=x(y2−1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.【能力值】无【知识点】(1)三角形的内角和【详解】(1)【考点】三角形内角和定理【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.【答案】(1)解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.【能力值】无【知识点】(1)解常规一元一次方程【详解】(1)【考点】一元一次方程的应用【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【点评】此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×8折﹣获利,利用方程思想解答.【答案】(1)解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.【能力值】无【知识点】(1)公式求概率【详解】(1)【考点】概率公式【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.【答案】(1)解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和3个黄球,共10个,摸到红球的概率为:510=12.故答案为:12.15.【能力值】无【知识点】(1)一元二次方程的根【详解】(1)【考点】根的判别式【分析】根据已知条件“关于x的方程x2+2x+m−5=0有两个相等的实数根”知,根的判别△=b2−4ac=0式,然后列出关于m的方程,解方程即可.【点评】本题主要考查了一元二次方程的根的判别式.一元二次方程ax2+bx+c=0(a ≠0)的根的判别式△=b2﹣4ac:①△>0⇒方程有两个不等实数根;②△=0⇒方程有两个相等实数根;③△<0⇒方程没有实数根.【答案】(1)解:∵关于x 的方程x 2+2x +m −5=0有两个相等的实数根, ∴△=4﹣4(m ﹣5)=0,解得,m =6;故答案为:6.16.【能力值】无【知识点】(1)扇形面积的计算、旋转变换、菱形的性质【详解】(1)【考点】菱形的性质;扇形面积的计算;旋转的性质【分析】连接OB 、OB ′,阴影部分的面积等于扇形BOB ′的面积减去两个△OCB 的面积和扇形OCA ′的面积.根据旋转角的度数可知:∠BOB ′=90°,已知了∠A =120°,那么∠BOC =∠A ′OB ′=30°,可求得扇形A ′OC 的圆心角为30°,进而可根据各图形的面积计算公式求出阴影部分的面积.【解答】解:连接OB 、OB ′,过点A 作AN ⊥BO 于点N ,菱形OABC 中,∠A =120°,OA =1,∴∠AOC =60°,∠COA ′=30°,∴AN =12,∴NO =√12−(12)2=√32, ∴BO =√3,∴S △CBO =S △C ′B ′O =12×12AO.2CO.sin60∘=√34, S 扇形OCA ′=30π×1360=π12, S 扇形OBB =90π×(√3)2360=3π4; ∴阴影部分的面积=3π4﹣(2×√34+π12)=2π3−√32. 故答案为:2π3−√32.【点评】此题考查了菱形的性质、扇形的面积公式、等边三角形的性质等知识点.【答案】(1)2π3−√3217.【能力值】无【知识点】(1)实数、锐角三角函数的性质、负指数幂运算、零指数幂运算【详解】(1)【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】根据45°角的余弦等于√22,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数,进行计算即可得解.【点评】本题考查了实数的运算,主要利用了零指数幂,负整数指数幂,以及特殊角的三角函数值,是基础题,熟记性质以及特殊角的三角函数值是解题的关键.【答案】(1)解:2cos45∘+(√2−1)0−(1)−1=2×√22+1﹣2=√2﹣1.18.【能力值】无【知识点】(1)分式的混合运算【详解】(1)【考点】分式的化简求值【分析】首先化简(a−2ab−b2a )÷a−ba,然后把a=2,b=﹣3代入化简后的算式,求出算式的值是多少即可.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.【答案】(1)解:(a−2ab−b2a )÷a−ba=(a−b)2a ÷a−ba=a﹣b当a=2,b=﹣3时,原式=2﹣(﹣3)=5.19.【能力值】无【知识点】(1)全等形的概念及性质【详解】(1)【考点】全等三角形的判定与性质【分析】根据两直线平行,内错角相等可得∠ABC=∠DEF,∠C=∠F,然后利用“角角边”证明△ABC和△DEF全等,根据全等三角形对应边相等可得BC=EF,然后都减去BE 即可得证.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于利用平行线的性质求出三角形全等的条件.【答案】(1)答:CE=FB.证明如下:∵AB∥DE,∴∠ABC=∠DEF,∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,{∠ABC=∠DEF∠C=∠FAC=DF,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣BE=EF﹣BE,即CE=FB.20.【能力值】无【知识点】(1)扇形统计图、条形统计图(2)扇形统计图、条形统计图(3)扇形统计图、条形统计图【详解】(1)【考点】扇形统计图;条形统计图【分析】根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(2)【考点】扇形统计图;条形统计图【分析】求得C组所占的百分比,即可求得C组的垃圾总量;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(3)【考点】扇形统计图;条形统计图【分析】首先求得可回收垃圾量,然后求得塑料颗粒料即可;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【答案】(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.21.【能力值】无【知识点】(1)解直角三角形的实际应用【详解】(1)【考点】解直角三角形的应用﹣方向角问题【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.【答案】(1)解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×√3≈108.25(米)>100米.2答:消防车不需要改道行驶.22.【能力值】无【知识点】(1)全等三角形的性质(D )(2)全等三角形的性质(D )【详解】(1)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】由AD ∥BC ,知∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,所以∠DBC =∠BDF ,得BE =DE ,即可用AAS 证△DCE ≌△BFE ;【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.(2)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】在Rt △BCD 中,CD =2,∠ADB =∠DBC =30°,知BC =2√,在Rt △BCD 中,CD =2,∠EDC =30°,知CE =2√33,所以BE =BC ﹣EC =4√33. 【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.【答案】(1)∵AD ∥BC ,∴∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,∠F =∠A =∠C =90°,∴∠DBC =∠BDF ,∴BE =DE ,在△DCE和△BFE中,{∠BEF=∠DEC∠C=∠FBE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2√3,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2−EC2=CD2,∴CE=2√33,∴BE=BC﹣EC=4√33.23.【能力值】无【知识点】(1)一次函数的应用(2)一次函数的应用(3)一次函数的应用【详解】(1)【考点】反比例函数与一次函数的交点问题【分析】把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(2)【考点】反比例函数与一次函数的交点问题【分析】根据A、B的横坐标,结合图象即可得出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(3)【考点】反比例函数与一次函数的交点问题【分析】分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.【答案】(1)得:k2=2m=﹣2n,把A(2,m),B(n,﹣2)代入y=k2x即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC =12.BC.BD∴12×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=k2x得:k2=6,即反比例函数的解析式是y=6x;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>k2x的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.24.【能力值】无【知识点】(1)等边三角形的性质、切线的判定、解直角三角形(2)等边三角形的性质、切线的判定、解直角三角形(3)等边三角形的性质、切线的判定、解直角三角形【详解】(1)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OB,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O的切线;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(2)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(3)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH=12BD=3,DH=√3BH=√33.解Rt△AFG,得AG=12AF=92,则GH=AB﹣AG﹣BH=92,于是根据正切函数的定义得到tan∠GDH=GHDH =√32,则tan∠FGD可求.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.【答案】(1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6.在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC ﹣CF =12﹣3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×√32=9√32; (3)解:过D 作DH ⊥AB 于H .∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH .在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =√3BH =3√3.在Rt △AFG 中,∵∠AFG =30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan∠GDH=GHDH =923√3=√32,∴tan∠FGD=tan∠GDH=√32.25.【能力值】无【知识点】(1)解直角三角形(2)解直角三角形(3)解直角三角形【详解】(1)【考点】三角形综合题【分析】过点Q作QD⊥OA于点D,解直角三角形QOD,分别求出OD,QD和x的关系式,即可得到点Q的坐标;.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(2)【考点】三角形综合题【分析】由三角形面积公式可得s与x之间的二次函数关系式,然后利用配方法求得其最大值即可;【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(3)【考点】三角形综合题【分析】存在某个时刻x的值,使△OPQ的面积为3√34个平方单位,由(2)可知把y=3√34代入求出对应的x值即可.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.【答案】(1)过点Q 作QD ⊥OA 于点D ,如图所示:∵△ABO 是等边三角形,∴∠AOB =60°,∵动点Q 从B 点出发,速度为每秒1个单位长度,∴BQ =x ,∴OQ =4﹣x ,在Rt △QOD 中,OD =OQ •cos60°=(4﹣x )×12=2﹣12x ,QD =OQ •sin60°=(4﹣x )×√32=2√3﹣√32x ,∴点Q 的坐标为(2﹣12x ,2√﹣√32x );(2)∵动点P 从O 点出发,速度为每秒1个单位长度,∴OP =x ,∴S =12OP •QD =12x (2√﹣√32x )=-√34x 2+x ,=−√34(x −2)2+√3(0<x <4),∵a =﹣√34<0,∴当x =2时,S 有最大值,最大值为√3;(3)存在某个时刻x 的值,使△OPQ 的面积为3√34个平方单位,理由如下:,假设存在某个时刻,使△OPQ 的面积为3√34个平方单位,由(2)可知)=−√34x 2+√3x =3√34,解得x =1或x =3,∵0<x<4,∴x=1或x=3都成了,个平方单位.即当x=1s或3s时,能使△OPQ的面积为3√34。
2017年广东省高中阶段学校招生考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.D 2.C 3.D 4.B 5.B 6.B 7.B 8.B 9.B 10.C二、填空题(本大题共6小题,每小题4分,共24分)11.312.30 13.20 14.-3 15.9 16.π313-三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:原式3213=-+…………………………………………………(5分) 4=.……………………………………………………………………………………(6分)18.解:设小宏能买x 瓶甲饮料,则买乙饮料(10-x )瓶.…………………………(1分)根据题意,得7x +4(10-x )≤50,………………………………………………(3分) 解得133x ≤.………………………………………………………………………(5分) 因为x 取正整数,所以小宏最多能买3瓶甲饮料.……………………………(6分)19.(1)(图略)…………………………………………………………………………(3分)(2)解:∵在Rt △ACD 中,∠CAD =30°,∴CD =21AD . ∴BC =CD +BD =CD +AD =3CD .………………………………………………(4分)∴S △DAC =2CD AC ⋅,S △ABC =232CD AC BC AC ⋅=⋅.…………………………(5分) ∴S △DAC ∶S △ABC =2CD AC ⋅∶23CD AC ⋅=1∶3.………………………………(6分) 四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE .∵E 是AB 的中点,∴AE =BE .又∵∠AED =∠BEF ,∴△ADE ≌△BFE (AAS ).………(3分)(2)解: EG 与DF 的位置关系是EG ⊥DF .………………(4分)理由如下:∵∠ADE =∠BFE ,∠GDF =∠ADF ,‘∴∠GDF =∠BFE . ……………………………………(5分)∴GD =GF .又∵△ADE ≌△BFE ,∴DE =EF .…………………………………………………(6分) ∴EG ⊥DF .……………………………………………………(7分)21.解:(1)列表如下:点A (x ,y )共9种情况.……………………………………………………(4分)(2)∵点A 落在第三象限共有(-7,-2),(-1,-2)两种情况,……………(6分)∴点A 落在第三象限的概率是29.………………………………………………(7分) 22.解:(1)利用图象设y 关于x 的函数解析式为y =k x +b ,将(10,10),(50,6)代入解析式,得⎩⎨⎧=+=+,650,1010b k b k 解得⎪⎩⎪⎨⎧=-=.11,101b k …(3分) ∴y 关于x 的函数解析式为y =110-x +11(10≤x ≤50).……………(4分) (2)当生产这种产品的总成本为280万元时,)(11101+-x x =280,解得x 1=40,x 2=70(不合题意,舍去).……(6分) ∴当生产这种产品的总成本为280万元时,该产品的生产数量为40 t .…(7分)五、解答题(三)(本大题共3小题,每小题9分,共27分)23.解:(1)把A (1,0),B (0,3),C (2,-1)代入,2c bx ax y ++=得 ⎪⎩⎪⎨⎧-=++==++,,,12430c b a c c b a ……………………………………………………………(1分)解得⎪⎩⎪⎨⎧=-==.341c b a ,,…………………………………………………………………(2分)所以抛物线的解析式为.342+-=x x y ……………………………………(3分)(2)令2430x x -+=,解得3121==x x ,.∵点A 的坐标为(1,0),∴点D 的坐标为(3,0).(5分)(3)存在.……………………………………………………………………………(6分) 由(1)知该抛物线的对称轴为,-21242=⨯-=-=a b x ……………………(7分) 点A 关于对称轴x =2的对称点为点D ,连接BD ,则直线BD 与对称轴x =2的交点即为点P .令直线BD 的解析式为y kx b =+,代入点B (0,3)和点D (3,0),得⎩⎨⎧=+=,,033b k b 解得⎩⎨⎧-==.13k b ,∴直线BD 的解析式为3y x =-+.……………(8分) 当x =2时,y =-2+3=1,∴点P (2,1).…………………………………(9分)24.(1)证明:∵△ABC ,△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°.∴∠BAM =∠CAN .∵在△BAM 和△CAN 中,⎪⎩⎪⎨⎧=∠=∠=,AN AM CAN BAM AC AB ,,∴△BAM ≌△CAN (SAS ).∴∠ABC =∠ACN .………………………………(3分)(2)解:结论∠ABC =∠ACN 仍成立.理由如下:∵△ABC ,△AMN 是等边三角形,① ② ③∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°.∴∠BAM =∠CAN .∵在△BAM 和△CAN 中,⎪⎩⎪⎨⎧=∠=∠=,AN AM CAN BAM AC AB ,,∴△BAM ≌△CAN (SAS ).∴∠ABC =∠ACN .………………………………(6分)(3)解:∠ABC =∠ACN .理由如下:∵BA =BC ,MA =MN ,顶角∠ABC =∠AMN ,∴底角∠BAC =∠MAN .∴△ABC ∽△AMN .∴.ANAC AM AB = 又∵∠BAM =∠BAC -∠MAC ,∠CAN =∠MAN ―∠MAC ,∴∠BAM =∠CAN .∴△BAM ∽△CAN .∴∠ABC =∠ACN .………………(9分)25.解:(1)∵CG ∥AP ,∴△GCD ∽△APG .∴.AGPG GD CD = ∵GF =4,CD =DA =1,AF =x ,∴GD =3-x ,AG =4-x . ∴,x y x -=-431即.34x x y --=∴y 关于x 的函数关系式为.34xx y --= 当y =3时,x x y --=34=3,解得x =2.5. 经检验,x =2.5是分式方程的根.故x 的值为2.5.…………………………(3分)(2)∵S 1=GP •GD =•x x --34•(3-x )=24x -,………………………(4分) S 2=GD ·CD =·(3-x )·1=23x -,……………………………………(5分) ∴S 1-S 2=24x --23x -= ,即为常数.……………………………………(6分) (3)延长PD 交AC 于点Q .∵正方形ABCD 中,AC 为对角线,∴∠CAD =45°.∵PQ ⊥AC ,∴∠ADQ =45°.∴∠GDP =∠ADQ =45°.∴△DGP 是等腰直角三角形,则GD =GP .∴3-x =x x --34.…………………(8分)化简,得x 2-5x +5=0,解得x =.∵0≤x ≤2.5, ∴x =.在Rt △DGP 中,PD =︒45cos GD=·(3﹣x )=.………………(9分)。
2A B CDE 1 3第7题图广东省汕头市澄海区2017届九年级数学5月模拟试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母填涂在答题卷中对应题号的方格内) 1.8的平方根是 A .2 B .2±C .22D .22±2.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是A .B .C .D .3.据教育部数据显示,2017届全国普通高校毕业生预计795万人.将数据795万用科学记数法可表示为 A .5105.79⨯ B .61095.7⨯ C .21095.7⨯ D .710795.0⨯4.下列运算正确的是A .5234)2(a a =- B .24±= C .632m m m =⋅ D .3332x x x -=- 5.一个正多边形的每个外角都等于36°,那么它是 A .正六边形 B .正八边形C .正十边形D .正十二边形6.不等式组⎩⎨⎧≤-->1321x x 的解集在数轴上表示正确的是7.如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠2=80°, 那么∠3的度数为A .40°B .50°C .60°D .70° 8.如图,在⊙O 中,弦AB 与CD 交于点E ,BE=DE ,∠B =40°,则∠A 的度数是A .20°B .30°C .40°D .80°ACBDOE 第8题图2B . -12A . -12C . 2D .第14题图AB CD PABC EFD 第15题图O 2 4S ((cm 2) A .4 2 t (s )BCMPQ第10题图(s )O2 4S ((cm 2)B .4 2 (s )O2 4S ((cm 2)C .4 2(s )O2 4S ((cm 2)D .4 2第16题图9.如果从-1,2,3三个数中任取一个数记作m ,又从0,1,-2三个数中任取一个数记作n ,那么点(),P m n 恰在第四象限的概率为 A .92 B .91 C .31 D .6110.如图,在△ABC 中,∠C =90°,AC =BC =4cm ,M 是AB 的中点,点P 、Q 分别从A 、C 两点同时出发,以1cm /s 的速度沿AC 、CB 方向均速运动,到点C 、B 时停止运动,设运动时间为)(s t ,△PMQ 的面积为S (cm 2), 则S (cm 2)与)(s t 的函数关系可用图象表示为二、填空题(本大题共6小题,每小题4分,共24分,请将下列各题的正确答案填写在答题卷相应的位置上) 11.-2017的相反数是 .12.分解因式:=-332a .13.若关于x 的一元二次方程022=+-k x x 有实数根,则实数k 的取值范围是 .14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形 的顶点上,AB ,CD 相交于点P ,则△PBD 与△PAC 的面积比为 . 15.如图,在△ABC 中,∠ACB =90°,AC=BC =4,将△ABC 折叠, 使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为 .16.如图,边长不等的正方形依次排列,第一个正方形的边长为1,第二个 正方形的边长是第一个正方形边长的2倍,第三个正方形的边长是第二个正 方形边长的2倍,依此类推,…….若阴影三角形的面积从左向右依次记为S 1、S 2、S 3、……、S n ,则S 4的值为 .AC第19题图三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:121)2(45tan 4|2|-⎪⎭⎫⎝⎛+----πο.18.先化简,再求值:)1()1111(-⋅+--x x x ,其中12-=x .19.如图,在△ABC 中, AC=6, BC =4.(1)用直尺和圆规作∠ACB 的角平分线CD ,交AB 于点D ; (保留作图痕迹,不要求写作法和证明)(2)在(1)所作的图形中,若△ACD 的面积为3,求△BCD 的面积.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得不完整频数分布表和频数分布直方图如下: 组别 噪声声级分组 频数 频率 1 44.5—59.5 40.1 2 59.5—74.5 a0.2 3 74.5—89.5 100.254 89.5—104.5 bc5104.5—119.5 6 0.15 合计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)请补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.如图,为了测量矗立在高速公路水平地面上的交通警示牌的第20题图2 4 6 8 10 12 46测量点数目 14 噪声声级/dB10危险路段谨慎驾驶高度CD ,在距M 相距4米的A 处,测得警示牌下端D 的仰角为 45°,再笔直往前走8米到达B 处,在B 处测得警示牌上端C 的 仰角为30°,求警示牌的高度CD .(结果精确到0.1米,参考数据:41.12≈,73.13≈)22.荔枝是岭南一带的特色时令水果.今年5月份荔枝一上市,某水果店的老板用3000元购进了一批荔枝,由于荔枝刚在果园采摘比较新鲜,前两天他以高于进价40% 的价格共卖出150千克,由于荔枝保鲜期短,第三天他发现店里的荔枝卖相已不大好,于是果断地将剩余荔枝以低于进价20%的价格全部售出,前后一共获利750元. (1)若购进的荔枝为a 千克,则这批荔枝的进货价为 ;(用含a 的式子来表示) (2)求该水果店的老板这次购进荔枝多少千克.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,一次函数b ax y +=的图象与反比例函数x k y =的图象交于点A (1,3)和B (-3,m ).(1)求一次函数和反比例函数的解析式;(2)点C 是平面直角坐标系内一点,BC ∥x 轴,AD ⊥BC 于点D ,连结AC ,若CD AC 5=,求点C 的坐标.24.如图,已知四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连结AC 、AE , ∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB=AD ,AC =23,tan ∠ADC=3,求BE 的长.第23题图B AOy D ABC DEO第24题图25.如图,已知矩形ABCD 的一条边AD =8 cm ,点P 在CD 边上,AP=AB , PC =4cm ,连结PB .点M 从点P 出发,沿PA 方向匀速运动(点M 与点P 、A 不重合);点N 同时从点B 出发,沿线段AB 的延长线匀速运动,连结MN 交PB 于点F . (1)求AB 的长;(2)若点M 的运动速度为1cm /s ,点N 的运动速度为2cm /s ,△AMN 的面积为S ,点M 和点N 的运动时间为t ,求S 与t 的函数关系式,并求S 的最大值;(3)若点M 和点N 的运动速度相等,作ME ⊥BP 于点E .试问当点M 、N 在运动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.BA CDP ME F N 第25题图A C E FD第19题图2017年澄海区初中毕业生学业模拟考试数学科试题参考答案及评分意见一、选择题(本大题共10小题,每小题3分,共30分)1.D ;2.C ;3.B ;4.D ;5.C ;6.B ;7.A ;8.C ;9.A ;10.B . 二、填空题(本大共题6小题,每小题4分,共24分)11.2017;12.)1)(1(3-+a a ;13.1≤k ;14.1:9;15.31;16.2048.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:原式21142+-⨯-=---------------------------------------------------4分 1-=.---------------------------------------------------------------6分 18.解:原式)1()1)(1(11-⋅+-+-+=x x x x x -----------------------------------------------2分12+=x ,----------------------------------------------------------------4分 当12-=x 时,原式12+=x 22=2=.---------------------------------------6分19.解:(1)如图所示,CD 为所求作的角平分线;--------------------------3分(2)过点D 分别作DE ⊥AC 于点E ,DF ⊥BC 于点F ,---------------------4分∵CD 是∠ACB 的角平分线,∴DE =DF ,-----------------------------------------------------------------------------5分∵321=⋅=∆DE AC S ACD ,且AC =6, ∴DF =DE= 1,------------------------------------------------------------------------6分 ∴2142121=⨯⨯=⋅=∆DF BC S BCD .-----------------------------------------------7分四、解答题(二)(本大题共3小题,每小题7分,共21分)20.解:(1)a =8,b =12,c =0.3.(每对一个给1分)-------------------------3分 (2)如下图:(画对一个直方图给1分)----------------------------------------5分(3)(0.1+0.2)×200=60,---------------------------------------------------------6分 ∴在这一时刻噪声声级小于75dB 的测量点约有60个------------------------7分21.解:在Rt △ADM 中, ∵AM =4,∠MAD =45°,∴DM =AM =4,------------------------------------------------------------------------2分 ∵AB =8,∴MB=AM +AB =12,------------------------------------------------------------3分 在Rt △BCM 中, ∵∠MBC =30°,2 46 8 1012 4 6测量点数目/个 14 噪声声级/dB 10 812危险路段谨慎驾驶CD30°45°∴MC =MB tan 30°=34,-------------------------------------------------------5分 ∴DC = MC - DM =9.2434≈-(米),----------------------------------6分 答:警示牌的高度CD 约为2.9米.----------------------------------------7分 22.解:(1)a 3000元/千克;-------------------------------------------------2分(2)设水果店的老板这次购进荔枝x 千克,根据题意得: 750)150(%203000150%403000=-⨯⨯-⨯⨯x xx ,---------------------4分 解得:200=x ,-----------------------------------------------------------------5分 经检验:200=x 是原方程的根,--------------------------------------------6分 答:该水果店的老板这次购进荔枝200千克.---------------------------7分 五、解答题(三)(本大题共3小题,每小题9分,共27分) 23.解:(1)将点A (1,3)代入反比例函数解析式xk y =得,331=⨯=k ,∴反比例函数解析式为x y 3=,----------------------------------------------1分∵A (1,3)和B (-3,m )都在反比例函数的图象上, ∴m 331-=⨯,解得:1-=m ,∴B (-3,-1),---------------------------------------------2分 ∵一次函数b ax y +=的图象经过A (1,3)和B (-3,-1),∴⎩⎨⎧-=+-=+133b a b a , 解得:⎩⎨⎧==21b a ,------------------------------------------------------------------3分 ∴一次函数解析式为2+=x y .---------------------------------------------4分 (2)∵BC ∥x 轴,AD ⊥BC 于点D ,且A (1,3),B (-3,-1), ∴D (1,-1),C (x ,-1),∴|1|-=x CD ,AD=4,-------------------------------------------------------5分 ∵|1|55-==x CD AC ,∴在Rt △ACD 中,有22)1(516)1(-=+-x x ,---------------------------6分解得:31=x ,11-=x ,------------------------------------------------------7分 ∴点C 的坐标为C (-1,-1)或(3,-1).-------------------------------9分 24.(1)证明:连结OA ,OB , ∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,-------------------------------------------------------------1分 ∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,--------------------------------------------------------------------------2分第23题图BAO yD C∴∠OAE =∠OAB +∠BAE =90°, ∴OA ⊥AE . ∵点A 在⊙O 上,∴AE 是⊙O 的切线.-----------------------------------------------------------------3分(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD ,∴弧AB =弧AD . ∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =23,∠ACF =45°,∴AF=CF=AC ·sin∠ACF =3,--------------------------------------------------------4分 ∵在Rt △AFD 中, tan ∠ADC=3=DF AF ,∴DF =1,∴101322=+==AD AB ,-------------------------------------------------------5分 且CD = CF +DF =4, -------------------------------------------------------------------6分 ∵四边形ABCD 内接于⊙O , ∴∠ABE =∠CDA , ∵∠BAE =∠DCA ,∴△ABE ∽△CDA ,-------------------------------------------------------------------7分 ∴CD AB DA BE =,---------------------------------------------------------------------------8分 ∴41010=BE ,∴25=BE .------------------------------------------------------------------------------9分25.解:(1)设AB=x ,则AP=x ,DP=4-x , 在Rt△ADP 中, 由勾股定理得:64)4(22=--x x ,----------------------------------------------------------------------1分解得:10=x ,∴AB =10.-------------------------------------------------------------------------------2分 (2)过点M 作MG ⊥AN 于点G ,则∠AGM =∠D =90°, ∵DC ∥AB ,∴∠APD =∠MAG , ∴Rt △APD ∽Rt △MAG , ∴PA AM AD MG =, ∴10108t MG -=, ∴t MG 548-=,-----------------------------------------------------------------------3分AB C D E OF第24题图∵t AN 210+=,∴MG AN S ⋅=21)548)(210(21t t -+=45)25(542+--=t --------------------------------------------------4分∴当25=t 时,S 取得最大值为45.------------------------------------------------5分(3)作MQ ∥AN ,交PB 于点Q , ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP ,∠ABP =∠MQP , ∴∠APB =∠MQP ,∴MP =MQ , ∵ME ⊥PQ ,∴PE =EQ =21PQ ,----------------------------------------------------------------------6分∵BN =PM ,PM =MQ , ∴BN =QM ,∵MQ ∥AN ,∴∠QMF =∠BNF , 在△MFQ 和△NFB 中, ∵⎪⎩⎪⎨⎧=∠=∠∠=∠BN QM BFN QFM BNF QMF , ∴△MFQ ≌△NFB ,--------------------------------------------------------------------7分 ∴QF =BF ,∴QF =21QB ,∴EF =EQ +QF =21PQ +21QB =21PB ,------------------------------------------------8分在Rt△PBC 中, ∵PC =4,BC =8, ∴544822=+=PB , ∴EF =21PB =52, ∴点M 、N 在运动过程中,线段EF 的长度不变,长度为52.--------------9分B ACDP ME FN第25题图GQ。
2017年广东省中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分)1.﹣2016的相反数是()A.2016 B.±2016 C.12016D.﹣120162.下列运算正确的是()A.=±3 B.a8÷a4=a2C.3=3 D.a2•a3=a53.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=50°,则∠2=()A.40°B.50°C.60°D.130°4.点P(5,﹣3)关于原点的对称点是()A.(5,3)B.(﹣3,5)C.(﹣5,3)D.(3,﹣5)5.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A.正方体B.长方体C.圆柱 D.圆锥6.下列图形中,是轴对称图形的是()A.B.C.D.7.一元二次方程x2﹣3x﹣5=0的根的情况是()A.有两个相等的实数根B.没有实数根C.无法确定是否有实数根D.有两个不相等的实数根8.某班“环保小组”的5位同学在一次活动中,捡废弃塑料袋的个数分别为:4,6,10,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,10 C.10,16 D.8,169.“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是()A.7B.8C.9D.1010.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.我国西部地区幅员辽阔、资源丰富,面积约6720000平方公里,占中国国土面积70%,用科学记数法表示6720000=.12.一个多边形的每个外角都等于60°,这个多边形的内角和为.13.在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是.14.已知a+b=4,a﹣b=3,则a2﹣b2= .15.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.16.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是.(结果保留根号)三、解答题(本大题3小题,每小题6分,共18分)17.计算:﹣(3﹣π)0﹣3tan30°+()﹣1.18.解不等式3x﹣1<7,将解集在数轴上表示出来,并写出它的非负整数解.19.如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.四、解答题(本大题3小题,每小题7分,共21分)20.近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?21.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动.如图,一艘海监船位于钓鱼岛D的北偏东60°方向,与钓鱼岛的距离为16海里的A处,它沿正南方向航行,航行1小时后,发现此时海监船位于钓鱼岛的南偏东45°方向上的B处.(1)求此时这艘海监船所在的B处与钓鱼岛的距离(结果保留根号)(2)求这艘海监船的速度.(结果精确到0.1)(参考数据:≈1.41,≈1.73,≈2.44)22.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.五、解答题(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.25.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点A的坐标为(0,2),点B在抛物线y=ax2+ax ﹣2上.(1)点B的坐标为,抛物线的关系式为;(2)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD,当△BCD的面积最大时,求点D的坐标;(3)若将三角板ABC沿射线BC平移得到△A′B′C′,当C′在抛物线上时,问此时四边形ACC′A′是什么特殊四边形?请证明之,并判断点A′是否在抛物线上,请说明理由.2017年广东省中考数学模拟试卷答案一、选择题1~5:A D A C B 6~10: C D C B D一、填空题11. 6.72×10612. 720°13. 0<m<3 14. 1215. 4π16. 2三、解答题17. 解:原式=2﹣1﹣3×+3=+218.解:移项得,3x<7+1,合并同类项得,3x<8,把x的系数化为1得,x<.在数轴上表示为:,故其非负整数解为:0,1,2.19.(1)解:如图所示:(2)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠ABC=∠ACB,∴AB=AC,∵在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).20.解:设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得,=,解得:x=1200,经检验得:x=1200是原方程的解,则x+300=1500,答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.21.解:(1)作DC⊥AB于C点,∴∠ADC=30°,∠BDC=45° AD=16(海里).在Rt△ADC中,cos∠ADC=,∴DC=AD•cos∠ADC=8(海里).在Rt△DCB中,cos∠BDC=,∴DB===8(海里).答:此时海监船所在的B处与钓鱼岛的距离是8海里.(2)∵DA=16海里,∠ADC=30°,∠AC D=90°,∴AC=8海里,∵∠CDB=45°,∠ACD=90°,∴∠CBD=45°,∴DC=BC=8海里,∴AB=AC+BC=16+8(海里),∴这艘海监船的速度是:(16+8)÷1=16+8≈30(海里/时)答:这艘海监船的速度约为30海里/时.22.解:列表得:(1)点P3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1),∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.23.解:(1)∵四边形OABC是矩形,∴BC=OA,AB=OC,∵tan∠COD=,∴设OC=3x,CD=4x,∴OD=5x=5,∴x=1,∴OC=3,CD=4,∴D(4,3),设过点D的反比例函数的解析式为:y=,∴k=12,∴反比例函数的解析式为:y=;(2)∵点D是BC的中点,∴B(8,3),∴BC=8,AB=3,∵E点在过点D的反比例函数图象上,∴E(8,),∴S△DBE=BD•BE==3;(3)存在,∵△OPD为直角三角形,∴当∠OPD=90°时,PD⊥x轴于P,∴OP=4,∴P(4,0),当∠ODP=90°时,如图,过D作DH⊥x轴于H,∴OD2=OH•OP,∴OP==.∴P(,O),∴存在点P使△OPD为直角三角形,∴P(4,O),(,O).24.(1)证明:连接AD,如图所示:∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD;(2)解:设⊙O的半径是R,则FO=4+R,FA=4+2R,OD=R,连接OD,如图所示:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,即R2﹣R﹣12=0,∵R为半径,∴R=4,R=﹣3(舍去),即⊙O的半径是4.(3)△ABC是等边三角形;理由:∵EF是⊙O的切线,∴OD⊥EF,∴∠ODF=90°,∵FO=4+4=8,OD=4,∴∠F=30°,∴∠FOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠ABC=60°,∵AC=AB,∴△ABC是等边三角形.25. 解:(1)作BM⊥x轴于M,如图1所示:则∠BMC=90°,∴∠CBM+∠BCM=90°,∵C的坐标为(﹣1,0),点A的坐标为(0,2),∴CO=1,OA=2,∵△ABC是等腰直角三角形,∴BC=CA,∠ACB=90°,∴∠BCM+∠ACO=90°,∴∠CBM=∠ACO,在△BCM和△CAO中,,∴△BCM≌△CAO(AAS),∴BM=CO=1,MC=OA=2,∴OM=2+1=3,∴点B的坐标为:(﹣3,1);故答案为:(﹣3,1);把B(﹣3,1)代入抛物线y=ax2+ax﹣2得:9a﹣3a﹣2=1,解得:a=,∴抛物线的解析式为:y=x2+x﹣2;故答案为:y=x2+x﹣2;(2)设直线BC的解析式为:y=kx+b,根据题意得:,解得:k=﹣,b=﹣,∴直线BC的解析式为:y=﹣x﹣,作直线l∥BC,交抛物线于D,如图2所示:设直线l的解析式为:y=﹣x+c,解方程组,即x2+x﹣2=﹣x+c,整理得:x2+2x﹣4﹣2c=0,当△=0时,S△BCD最大,此时x1=x2=﹣1,y=﹣2,∴点D的坐标为:(﹣1,﹣2);(3)四边形ACC′A′是正方形;点A′在抛物线上;理由如下:根据题意得:点C′为直线BC与抛物线的交点,解方程组得:,或(舍去),∴点C′的坐标为:(1,﹣1),设直线AC的解析式为:y=kx+b,根据题意得:,解得:k=2,b=2,∴直线AC的解析式为:y=2x+2,∵A′C′∥AC,设直线A′C′的解析式为:y=2x+c,把点C′(1,﹣1)代入得:c=﹣3,∴直线A′C′的解析式为:y=2x﹣3,设直线A′C′与抛物线y=x2+x﹣2交于另一点G,解方程组得:,或(舍去),∴点G的坐标为:(2,1),∴C′G==,∵AC==,∴A′与G重合,∴A′在抛物线上;作C′F⊥x轴于F,如图3所示:根据勾股定理得:CC′==,∴CC′=A′C′,∵AC∥A′C′,AC=A′C′,∴四边形ACC′A′是平行四边形,又∵∠ACC′=90°,∴四边形ACC′A′是正方形;。
2A B CDE 1 3第7题图广东省汕头市澄海区2017届九年级数学5月模拟试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的,请将所选选项的字母填涂在答题卷中对应题号的方格内) 1.8的平方根是 A .2 B .2±C .22D .22±2.在下列四个黑体字母中,既是轴对称图形,又是中心对称图形的是A .B .C .D .3.据教育部数据显示,2017届全国普通高校毕业生预计795万人.将数据795万用科学记数法可表示为A .5105.79⨯B .61095.7⨯C .21095.7⨯D .710795.0⨯4.下列运算正确的是A .5234)2(a a =- B .24±= C .632m m m =⋅ D .3332x x x -=- 5.一个正多边形的每个外角都等于36°,那么它是 A .正六边形 B .正八边形 C .正十边形 D .正十二边形6.不等式组⎩⎨⎧≤-->1321x x 的解集在数轴上表示正确的是7.如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠2=80°, 那么∠3的度数为A .40°B .50°C .60°D .70° 8.如图,在⊙O 中,弦AB 与CD 交于点E ,BE=DE ,∠B =40°,则∠A 的度数是A .20°B .30°C .40°D .80°ACBDOE -12B . 2A . 2C . -12D .第14题图AB CD PA BC EFD第15题图A .t(s )M第10题图(s )B .(s )C .(s )D .9.如果从-1,2,3三个数中任取一个数记作m ,又从0,1,-2三个数中任取一个数记作n ,那么点(),P m n 恰在第四象限的概率为 A .92 B .91 C .31 D .6110.如图,在△ABC 中,∠C =90°,AC =BC =4cm ,M 是AB 的中点,点P 、Q 分别从A 、C 两点同时出发,以1cm /s 的速度沿AC 、CB 方向均速运动,到点C 、B 时停止运动,设运动时间为)(s t ,△PMQ 的面积为S (cm 2)则S (cm 2)与)(s t 的函数关系可用图象表示为二、填空题(本大题共6小题,每小题4分,共24分,请将下列各题的正确答案填写在答题卷相应的位置上)11.-2017的相反数是 .12.分解因式:=-332a .13.若关于x 的一元二次方程022=+-k x x 有实数根,则实数k 的取值范围是 .14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形 的顶点上,AB ,CD 相交于点P ,则△PBD 与△PAC 的面积比为 . 15.如图,在△ABC 中,∠ACB =90°,AC=BC =4,将△ABC 折叠, 使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为 .AC第19题图第16题图16.如图,边长不等的正方形依次排列,第一个正方形的边长为1,第二个 正方形的边长是第一个正方形边长的2方形边长的2S 1、S 2、S 3、……、S n ,则S 4的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:1021)2(45tan 4|2|-⎪⎭⎫⎝⎛+----πο.18.先化简,再求值:)1()1111(-⋅+--x x x ,其中12-=x .19.如图,在△ABC 中, AC=6, BC =4.(1)用直尺和圆规作∠ACB 的角平分线CD ,交AB 于点D ; (保留作图痕迹,不要求写作法和证明)(2)在(1)所作的图形中,若△ACD 的面积为3,求△BCD 的面积.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得不完整频数分布表和频数分布直方图如下:第20题图噪声声级/dB根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)请补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.如图,为了测量矗立在高速公路水平地面上的交通警示牌的 高度CD ,在距M 相距4米的A 处,测得警示牌下端D 的仰角为 45°,再笔直往前走8米到达B 处,在B 处测得警示牌上端C 的 仰角为30°,求警示牌的高度CD .(结果精确到0.1米,参考数据:41.12≈,73.13≈)22.荔枝是岭南一带的特色时令水果.今年5月份荔枝一上市,某水果店的老板用3000元购进了一批荔枝,由于荔枝刚在果园采摘比较新鲜,前两天他以高于进价40% 的价格共卖出150千克,由于荔枝保鲜期短,第三天他发现店里的荔枝卖相已不大好,于是果断地将剩余荔枝以低于进价20%的价格全部售出,前后一共获利750元.(1)若购进的荔枝为a 千克,则这批荔枝的进货价为 ;(用含a 的式子来表示) (2)求该水果店的老板这次购进荔枝多少千克.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系中,一次函数b ax y +=的图象与反比例函数x k y =的图象交于点A (1,3)和B (-3,m ).(1)求一次函数和反比例函数的解析式;(2)点C 是平面直角坐标系内一点,BC ∥x 轴,AD ⊥BC 于点D ,连结AC ,若CD AC 5=,求点C 的坐标.第23题图M危险路段谨慎驾驶ABCD30°45°第21题图24.如图,已知四边形ABCD 内接于⊙O ,点E 在CB 的延长线上,连结AC 、AE , ∠ACB =∠BAE =45°.(1)求证:AE 是⊙O 的切线;(2)若AB=AD ,AC =23,tan ∠ADC=3,求BE 的长.25.如图,已知矩形ABCD 的一条边AD =8 cm ,点P 在CD 边上,AP=AB , PC =4cm ,连结PB .点M 从点P 出发,沿PA 方向匀速运动(点M 与点P 、A 不重合);点N 同时从点B 出发,沿线段AB 的延长线匀速运动,连结MN 交PB 于点F . (1)求AB 的长;(2)若点M 的运动速度为1cm /s ,点N 的运动速度为2cm /s ,△AMN 的面积为S ,点M 和点N 的运动时间为t ,求S 与t 的函数关系式,并求S 的最大值;(3)若点M 和点N 的运动速度相等,作ME ⊥BP 于点E .试问当点M 、N 在运动过程中,线段EF 的长度是否发生变化?若变化,说明理由;若不变,求出线段EF 的长度.第24题图BACD P ME F N 第25题图A C E F D第19题图 2017年澄海区初中毕业生学业模拟考试数学科试题参考答案及评分意见一、选择题(本大题共10小题,每小题3分,共30分)1.D ;2.C ;3.B ;4.D ;5.C ;6.B ;7.A ;8.C ;9.A ;10.B . 二、填空题(本大共题6小题,每小题4分,共24分)11.2017;12.)1)(1(3-+a a ;13.1≤k ;14.1:9;15.31;16.2048.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:原式21142+-⨯-=---------------------------------------------------4分 1-=.---------------------------------------------------------------6分 18.解:原式)1()1)(1(11-⋅+-+-+=x x x x x -----------------------------------------------2分12+=x ,----------------------------------------------------------------4分当12-=x 时,原式12+=x 22=2=.---------------------------------------6分19.解:(1)如图所示,CD 为所求作的角平分线;--------------------------3分(2)过点D 分别作DE ⊥AC 于点E ,DF ⊥BC 于点F ,---------------------4分∵CD 是∠ACB 的角平分线,∴DE =DF ,-----------------------------------------------------------------------------5分∵321=⋅=∆DE AC S ACD ,且AC =6, ∴DF =DE= 1,------------------------------------------------------------------------6分 ∴2142121=⨯⨯=⋅=∆DF BC S BCD .-----------------------------------------------7分四、解答题(二)(本大题共3小题,每小题7分,共21分)20.解:(1)a =8,b =12,c =0.3.(每对一个给1分)-------------------------3分 (2)如下图:(画对一个直方图给1分)----------------------------------------5分(3)(0.1+0.2)×200=60,---------------------------------------------------------6分∴在这一时刻噪声声级小于75dB 的测量点约有60个------------------------7分 21.解:在Rt △ADM 中, ∵AM =4,∠MAD =45°,噪声声级/dB∴DM =AM =4,------------------------------------------------------------------------2分 ∵AB =8,∴MB=AM +AB =12,------------------------------------------------------------3分 在Rt △BCM 中, ∵∠MBC =30°,∴MC =MB tan 30°=34,-------------------------------------------------------5分 ∴DC = MC - DM =9.2434≈-(米),----------------------------------6分答:警示牌的高度CD 约为2.9米.----------------------------------------7分 22.解:(1)a 3000元/千克;-------------------------------------------------2分(2)设水果店的老板这次购进荔枝x 千克,根据题意得: 750)150(%203000150%403000=-⨯⨯-⨯⨯x xx ,---------------------4分 解得:200=x ,-----------------------------------------------------------------5分 经检验:200=x 是原方程的根,--------------------------------------------6分 答:该水果店的老板这次购进荔枝200千克.---------------------------7分 五、解答题(三)(本大题共3小题,每小题9分,共27分) 23.解:(1)将点A (1,3)代入反比例函数解析式y =331=⨯=k ,∴反比例函数解析式为x y 3=,----------------------------------------------1分∵A (1,3)和B (-3,m )都在反比例函数的图象上, ∴m 331-=⨯,解得:1-=m ,∴B (-3,-1),分∵一次函数b ax y +=的图象经过A (1,3)和B (-3,-1),∴⎩⎨⎧-=+-=+133b a b a , 解得:⎩⎨⎧==21b a ,------------------------------------------------------------------3分 ∴一次函数解析式为2+=x y .---------------------------------------------4分 (2)∵BC ∥x 轴,AD ⊥BC 于点D ,且A (1,3),B (-3,-1), ∴D (1,-1),C (x ,-1),∴|1|-=x CD ,AD=4,-------------------------------------------------------5分第23题图M危险路段谨慎驾驶A B CD30°45°第21题图∵|1|55-==x CD AC ,∴在Rt △ACD 中,有22)1(516)1(-=+-x x ,---------------------------6分解得:31=x ,11-=x ,------------------------------------------------------7分 ∴点C 的坐标为C (-1,-1)或(3,-1).-------------------------------9分∵四边形ABCD 内接于⊙O , ∴∠ABE =∠CDA , ∵∠BAE =∠DCA ,∴△ABE ∽△CDA ,-------------------------------------------------------------------7分 ∴CDAB DA BE =,---------------------------------------------------------------------------8分 ∴41010=BE ,∴25=BE .------------------------------------------------------------------------------9分25.解:(1)设AB=x ,则AP=x ,DP=4-x , 在Rt△ADP 中, 由勾股定理得:64)4(22=--x x ,----------------------------------------------------------------------1分解得:10=x , ∴AB=10.-------------------------------------------------------------------------------2分(2)过点M 作MG ⊥AN 于点G ,则∠AGM =∠D =90°, ∵DC ∥AB ,∴∠APD =∠MAG , ∴Rt △APD ∽Rt △MAG , ∴PA AM AD MG =, ∴10108t MG -=, ∴t MG 548-=,-----------------------------------------------------------------------3分∵t AN 210+=,∴MG AN S ⋅=21)548)(210(21t t -+=45)25(542+--=t --------------------------------------------------4分∴当25=t 时,S 取得最大值为45.------------------------------------------------5分(3)作MQ ∥AN ,交PB 于点Q , ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP ,∠ABP =∠MQP , ∴∠APB =∠MQP ,∴MP =MQ , ∵ME ⊥PQ ,B ACDP ME FN第25题图GQ∴PE =EQ =21PQ ,----------------------------------------------------------------------6分∵BN =PM ,PM =MQ , ∴BN =QM ,∵MQ ∥AN ,∴∠QMF =∠BNF , 在△MFQ 和△NFB 中, ∵⎪⎩⎪⎨⎧=∠=∠∠=∠BN QM BFN QFM BNF QMF , ∴△MFQ ≌△NFB ,--------------------------------------------------------------------7分∴QF =BF ,∴QF =21QB ,∴EF =EQ +QF =21PQ +21QB =21PB ,------------------------------------------------8分在Rt△PBC 中, ∵PC =4,BC =8, ∴544822=+=PB , ∴EF =21PB =52, ∴点M 、N 在运动过程中,线段EF 的长度不变,长度为52.--------------9分。