(完整版)八年级数学反比例函数基础练习题
- 格式:pdf
- 大小:79.99 KB
- 文档页数:2
初中数学反比例函数基础测试题含答案一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误; B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.6.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( )A .3个B .2个C .1个D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x =<,过整点(-1,-2),(-2,-1),当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.7.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.8.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.下列函数:①y=-x ;②y=2x ;③1y x=-;④y=x 2 . 当x<0时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y =-x 中k <0,∴y 随x 的增大而减小,故本选项正确;∵正比例函数y =2x 中,k =2,∴当x <0时,y 随x 的增大而增大,故本选项错误;∵反比例函数1y x=中,k =-1<0,∴当x <0时函数的图像在第二象限,此时y 随x 的增大而增大,故本选项错误; ∵二次函数y =x 2,中a =1>0,∴此抛物线开口向上,当x <0时,y 随x 的增大而减小,故本选项正确.故选B .【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.11.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.12.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.13.反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( )A .3B .5C .6D .8【答案】B【解析】【分析】 根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k 的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.14.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( ) A .0B .1C .2D .3 【答案】D【解析】【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数k y x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=,∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】 本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a 的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C【解析】【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解.【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<,故选C .【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.17.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.18.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数k yx =在第一象限内的图象经过点D,交BC于点E.若4AB=,2CEBE=,34ADOA=,则线段BC的长度为()A.1 B.32C.2 D.23【答案】B【解析】【分析】设OA为4a,则根据题干中的比例关系,可得AD=3a,CE=2a,BE=a,从而得出点D和点E 的坐标(用a表示),代入反比例函数可求得a的值,进而得出BC长.【详解】设OA=4a根据2CEBE=,34ADOA=得:AD=3a,CE=2a,BE=a∴D(4a,3a),E(4a+4,a)将这两点代入解析得;3444kaakaa⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D、E的坐标,然后代入解析式求解.20.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<2【答案】B【解析】【分析】根据反比例函数的性质,可得m+2<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+2<0,解得m<-2.故选B.。
反比例函数基础训练一.选择题(共20小题)1.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b >解集为()A.x>2或﹣1<x<0B.﹣1<x<0C.﹣1<x<0或0<x<2D.x>22.对于反比例函数y=,下列说法不正确的是()A.图象分布在第一、三象限B.当x>0时,y随x的增大而减小C.图象经过点(2,3)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y23.若反比例函数y=的图象分布在二、四象限,则关于x的方程kx2﹣3x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根4.如图,A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=()A.4B.5C.6D.85.某密闭容器内装有一定质量的某种气体,当改变容积V时,气体的密度P是容积V的反比例函数,当容积为5m3时,密度是1.4kg/m3,则P与V之间的函数表达式为()A.p=B.p=7V C.P=D.p=6.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1B.k>1C.0<k<1D.k≤17.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,那么y1,y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 8.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为()A.B.C.D.9.如图,双曲线经过Rt△BOC斜边上的点A,且满足,与BC交于点D,S△BOD =8,则k的值为()A.B.1C.2D.810.函数y=(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A.B.C.D.11.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数的图象上,若点B(﹣6,0),则反比例函数表达式为()A.B.C.D.12.如图,点P在反比例函数y=的图象上,P A⊥x轴于点A,若△P AO的面积为4,那么k的值为()A.2B.4C.8D.﹣413.从3、1、﹣1、﹣2、﹣3这五个数中,取一个数作为函数y=和关于x的方程(k+1)x2+2kx+1=0中k的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k的值共有()个.A.1B.2C.3D.414.如图,在平面直角坐标系中,正方形ABCO的顶点O在坐标原点,点B的坐标为(2,6)点A在第二象限.反比例函数y=(k≠0)的图象经过点A,则k的值是()A.﹣9B.﹣8C.﹣7D.﹣615.如图,在平面直角坐标系中,点A(m,6)、B(3,n)均在反比例函数y=(k>0)的图象上,若△AOB的面积为8,则k的值为()A.3B.6C.9D.1216.对于双曲线,x>0时,y随x的增大而增大,则k的取值范围为()A.k<2B.k≤2C.k>2D.k≥217.如图,在平面直角坐标系中,直角△AOB的直角顶点O在坐标原点,OB=5,OA=10,斜边AB的中点C恰在y轴上,反比例函数y=(k>0)的图象经过点B,则k的值为()A.10B.C.D.4018.如图,函数的图象与平行于x轴的直线分别相交于A、B两点,且点A在点B的右侧,点C在x轴上,且△ABC的面积为1,则()A.a+b=1B.a﹣b=1C.a+b=2D.a﹣b=219.如图,过x正半轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y =﹣(x>0)的图象交于A点和B点,连接OA、OB,则△OAB的面积为()A.4B.6C.8D.1020.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B 的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.﹣2<x<0或x>2C.﹣2<x<0或0<x<2D.x<﹣2或0<x<2二.填空题(共4小题)21.如图,点A和点B分别在双曲线y=和y=上,点C,D在x轴上,且四边形ABCD 为矩形,则矩形ABCD面积为_______.22.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD 的面积为2,则k的值为_______.23.如图,△OAB中,∠ABO=90°,点A位于第一象限,点O为坐标原点,点B在x轴正半轴上,若双曲线y=(x>0)与△OAB的边AO、AB分别交于点C、D,点C为AO的中点,连接OD、CD.若S△OBD=3,则S△OCD为_______.24.如图,反比例函数(x>0)图象上一点A,连结OA,作AB⊥x轴于点B,作BC ∥OA交反比例函数图象于点C,作CD⊥x轴于点D,若点A、点C横坐标分别为m、n,则m:n的值为_______.三.解答题(共4小题)25.如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.26.如图,在平面直角坐标系xOy中,正比例函数y=﹣x与反比例函数y=的图象在第二象限交于点A,且点A的横坐标为﹣2.(1)求反比例函数的解析式;(2)点B的坐标为(﹣4,0),若点P在y轴上,且△AOP的面积与△AOB的面积相等,求出点P的坐标.27.如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.28.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.反比例函数基础训练参考答案与试题解析一.选择题(共20小题)1.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b >解集为()A.x>2或﹣1<x<0B.﹣1<x<0C.﹣1<x<0或0<x<2D.x>2解:由图可知,x>2或﹣1<x<0时,ax+b>.故选:A.2.对于反比例函数y=,下列说法不正确的是()A.图象分布在第一、三象限B.当x>0时,y随x的增大而减小C.图象经过点(2,3)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2解:A、k=6>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=6>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵=3,∴点(2,3)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选:D.3.若反比例函数y=的图象分布在二、四象限,则关于x的方程kx2﹣3x+2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根解:因为反比例函数y=的图象分布在二、四象限,所以k<0,所以关于x的方程kx2﹣3x+2=0,△=9﹣8k>0所以关于x的方程kx2﹣3x+2=0有两个不相等的实数根.故选:A.4.如图,A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=()A.4B.5C.6D.8解:∵A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,∴S1+S阴影=S+S阴影=5,又∵S阴影=1,∴S1=S2=5﹣1=4,∴S1+S2=8.故选:D.5.某密闭容器内装有一定质量的某种气体,当改变容积V时,气体的密度P是容积V的反比例函数,当容积为5m3时,密度是1.4kg/m3,则P与V之间的函数表达式为()A.p=B.p=7V C.P=D.p=解:∵当改变容积V时,气体的密度P是容积V的反比例函数,当容积为5m3时,密度是1.4kg/m3,∴PV=5×1.4,则P=.故选:C.6.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1B.k>1C.0<k<1D.k≤1解:∵双曲线的图象的一支位于第三象限,∴k﹣1>0,∴k>1;故选:B.7.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,那么y1,y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2解:把点(﹣2,y1),(﹣1,y2),(1,y3)分别代入y=得y1=﹣=3,y2=﹣=6,y3=﹣=﹣6,所以y3<y1<y2.故选:A.8.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为()A.B.C.D.解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=5,S△AOC=1,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故选:C.9.如图,双曲线经过Rt△BOC斜边上的点A,且满足,与BC交于点D,S△BOD =8,则k的值为()A.B.1C.2D.8解:作AE⊥x轴,则AE∥BC,∴△AOE∽△BOC,∵S△AOE=S△DOC,∴S四边形BAEC=S△BOD=8,∵△AOE∽△BOC,∴=()2=()2=,∴S△AOE=1,∴k=2.故选:C.10.函数y=(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A.B.C.D.解:∵反比例函数y=的图象位于第二、四象限,∴k<0,﹣k>0.∵k<0,∴函数y=kx﹣k的图象过二、四象限.又∵﹣k>0,∴函数y=kx﹣k的图象与y轴相交于正半轴,∴一次函数y=kx﹣k的图象过一、二、四象限.故选:B.11.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数的图象上,若点B(﹣6,0),则反比例函数表达式为()A.B.C.D.解:过点C作CD⊥x轴于D,∵点B(﹣6,0),∴菱形的边长为6,∵在菱形ABOC中,∠A=60°,∴∠DOC=60°,在Rt△CDO中,OD=6×cos60°=3,CD=6×sin60°=3,则C(﹣3,3),∵顶点C在反比例函数的图象上,∴k=﹣3×=﹣9,∴反比例函数为y=﹣,故选:D.12.如图,点P在反比例函数y=的图象上,P A⊥x轴于点A,若△P AO的面积为4,那么k的值为()A.2B.4C.8D.﹣4解:∵S△P AO=4,∴|x•y|=4,即|k|=4,则|k|=8,∵图象经过第一、三象限,∴k>0,∴k=8,故选:C.13.从3、1、﹣1、﹣2、﹣3这五个数中,取一个数作为函数y=和关于x的方程(k+1)x2+2kx+1=0中k的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k的值共有()个.A.1B.2C.3D.4解:∵函数y=的图象经过第二、四象限,则k﹣2<0,解得:k<2,∴符合要求的有1,﹣1,﹣2,﹣3,∵关于x的方程(k+1)x2+2kx+1=0有实数根,∴(2k)2﹣4×(k+1)≥0或k+1=0,∴符合要求的有,﹣1,﹣2,﹣3,∴恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k的值共有3个.故选:C.14.如图,在平面直角坐标系中,正方形ABCO的顶点O在坐标原点,点B的坐标为(2,6)点A在第二象限.反比例函数y=(k≠0)的图象经过点A,则k的值是()A.﹣9B.﹣8C.﹣7D.﹣6解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵AC和OB互相垂直平分,点B的坐标为(2,6),∴它们的交点F的坐标为(1,3),∴,解得,∴k=﹣8,故选:B.15.如图,在平面直角坐标系中,点A(m,6)、B(3,n)均在反比例函数y=(k>0)的图象上,若△AOB的面积为8,则k的值为()A.3B.6C.9D.12解:∵点A(m,6)、B(3,n)均在反比例函数y=(k>0)的图象上,∴k=6m=3n,∴2m=n,作AC⊥x轴于C,BD⊥x轴于D,∵点A(m,6)、B(3,n),∴OC=m,AC=6,OD=3,BD=n=2m,∵S△AOB=S△AOC+S梯形ABDC﹣S△BOD=S梯形ABDC,△AOB的面积为8,∴S梯形ABDC=(AC+BD)(OD﹣OC)=8,即(6+2m)(3﹣m)=8,解得m=±1,(负数舍去),∴A(1,6),∴k=1×6=6,故选:B.16.对于双曲线,x>0时,y随x的增大而增大,则k的取值范围为()A.k<2B.k≤2C.k>2D.k≥2解:∵双曲线,x>0时,y随x的增大而增大,∴k﹣2<0∴k<2,故选:A.17.如图,在平面直角坐标系中,直角△AOB的直角顶点O在坐标原点,OB=5,OA=10,斜边AB的中点C恰在y轴上,反比例函数y=(k>0)的图象经过点B,则k的值为()A.10B.C.D.40解:在Rt△AOB中,AB===5,∵点C为斜边AB的中点,∴OC=AB=,∴C点坐标为(0,),设B(m,n),∴m2+n2=52,m2+(n﹣)2=()2,∴n=,m=2,∴B点坐标为(2,),把B(2,)代入y=得k=2×=10.故选:A.18.如图,函数的图象与平行于x轴的直线分别相交于A、B两点,且点A在点B的右侧,点C在x轴上,且△ABC的面积为1,则()A.a+b=1B.a﹣b=1C.a+b=2D.a﹣b=2解:设A(,m),B(,m),则:△ABC的面积=•AB•y A=•(﹣)•m=1,则a﹣b=2.故选:D.19.如图,过x正半轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y =﹣(x>0)的图象交于A点和B点,连接OA、OB,则△OAB的面积为()A.4B.6C.8D.10解:∵AB⊥x轴,根据k的函数意义,S△AOP=×4=2,S△BOP=|﹣8|=4,∴S△AOB=S△AOP+S△BOP=2+4=6.故选:B.20.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B 的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2B.﹣2<x<0或x>2C.﹣2<x<0或0<x<2D.x<﹣2或0<x<2解:由函数的中心对称性可得点A的横坐标为2,由图象可得,当y1≤y2时,x<﹣2或0<x<2,故选:D.二.填空题(共4小题)21.如图,点A和点B分别在双曲线y=和y=上,点C,D在x轴上,且四边形ABCD 为矩形,则矩形ABCD面积为2.解:设OD=a,把x=a代入y=得,y=,即:AD=,把y=代入y=得,x=3a,即OC=3a,∴CD=OC﹣OD=2a,∴矩形ABCD的面积=CD•AD=2a×=2,故答案为:2.22.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD 的面积为2,则k的值为4.解:过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE===1,∴k=1,∴k=4.故答案为4.23.如图,△OAB中,∠ABO=90°,点A位于第一象限,点O为坐标原点,点B在x轴正半轴上,若双曲线y=(x>0)与△OAB的边AO、AB分别交于点C、D,点C为AO的中点,连接OD、CD.若S△OBD=3,则S△OCD为.解:过C作CE⊥OB于E,∵点C、D在双曲线y=(x>0)上,∴S△COE=S△BOD,∵S△OBD=3,∴S△COE=3,∵CE∥AB,∴△COE∽△AOB,∴=()2,∵C是OA的中点,∴OA=2OC,∴=()2=,∴S△AOB=4×3=12,∴S△AOD=S△AOB﹣S△BOD=12﹣3=9,∵C是OA的中点,∴S△ACD=S△COD,∴S△COD=,故答案为.24.如图,反比例函数(x>0)图象上一点A,连结OA,作AB⊥x轴于点B,作BC ∥OA交反比例函数图象于点C,作CD⊥x轴于点D,若点A、点C横坐标分别为m、n,则m:n的值为.解:∵点A、点C横坐标分别为m、n,∴A(m,),C(n,),∴OB=m,OD=n,AB=,CD=,∴BD=n﹣m,∵BC∥OA,∴∠AOB=∠CBD,∵AB⊥x轴于点B,CD⊥x轴于点D,∴∠ABO=∠CDB=90°,∴△OAB∽△BCD,∴=,即=,整理得,m2+mn﹣n2=0,解得m=n,(负数舍去),∴m:n=,故答案为.三.解答题(共4小题)25.如图,一次函数y1=﹣x+5与反比例函数y2=的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.解:(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=,得k=1×4=4,所以反比例函数解析式为y2=;(2)如图,设一次函数图象与x轴交于点C,当y=0时,﹣x+5=0,解得x=5,则C点坐标为(5,0),所以S△AOB=S△AOD﹣S△BOD=×5×4﹣×5×1=7.5.26.如图,在平面直角坐标系xOy中,正比例函数y=﹣x与反比例函数y=的图象在第二象限交于点A,且点A的横坐标为﹣2.(1)求反比例函数的解析式;(2)点B的坐标为(﹣4,0),若点P在y轴上,且△AOP的面积与△AOB的面积相等,求出点P的坐标.解:(1)∵正比例函数y=﹣x的图象经过点A,且点A的横坐标为﹣2,∴点A的纵坐标为3,A点坐标为(﹣2,3).∵反比例函数y=的图象经过点A(﹣2,3),∴3=.∴k=﹣6.∴反比例函数的解析式y=﹣.(2)∵S△AOB=×4×3=6,∴S△APO=×2OP=OP,∴OP=6,∴点P的坐标为(0,6)或(0,﹣6).27.如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得n=﹣,∴B(﹣,﹣6),∵反比例函数的图象也经过点B,∴,解k=3;答:k和n的值为3、﹣.(2)设直线y=3x﹣5分别与x轴、y轴相交于点C、点D,当y=0时,即,∴,当x=0时,y=3×0﹣5=﹣5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1.即A(2,1),∴S△AOB=S△AOC+S△COD+S△BOD=.答:△AOB的面积未经.(3)根据图象可知:或x>2.28.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴BC=,∴=m,∴m=5,当BD=AB时,m=AB==2,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.。
第一课时[A 组]1、下列函数中,哪些是反比例函数?( )(1)y=-3x ; (2)y=2x+1; (3) y=-x 2;(4)y=3(x-1)2+1; 2、下列函数中,哪些是反比例函数(x 为自变量)?说出反比例函数的比例系数:(1) x y 1-= ;(2)xy=12 ;(3) xy=-13 (4)y=3x3、列出下列函数关系式,并指出它们是分别什么函数.说出比例系数①火车从安庆驶往约200千米的合肥,若火车的平均速度为60千米/时,求火车距离安庆的距离S(千米)与行驶的时间t(时)之间的函数关系式 ②某中学现有存煤20吨,如果平均每天烧煤x 吨,共烧了y 天,求y 与x 之间的函数关系式. 4、.已知一个长方体的体积是100立方厘米,它的长是ycm ,宽是5cm ,高是xcm . (1) 写出用高表示长的函数式; (2) 写出自变量x 的取值范围; (3) 当x =3cm 时,求y 的值5、已知y 与x 成反比例,并且x =3时y =7,求: (1)y 和x 之间的函数关系式;(2)当13x =时,求y 的值; (3)y =3时,x 的值。
7、写出一个经过点(-3,6)的反比例函数 你还能写出另外一个也经过点(-3,6)的双曲线吗?8、当m 为何值时,函数224-=m x y 是反比例函数,并求出其函数解析式.9、已知y 成反比例,且当4b =时,1y =-。
求当10b =时,y 的值。
10:画出下列函数双曲线,y=-x 2的图象,已知点A (-3,a )、B (-2,b ),C(4,c)在双曲线,y=-x 2的图象令上,请把[B 组]11、已知函数221()m y m m x -=+,当m 取何值时(1)是正比例函数;(2)是反比例函数。
12、(1)已知y =y1+y2,y1与x 成正比例,y2与x 成反比例, 并且x =2和x =3时,y 的值都等于 19.求y 和x 之间的函数关系式(2)若y 与2x -2成反比例,且当x=2时,y=1,则y 与x 之间的关系式为13、(03广东)如图1,某个反比例函数的图像经过点P .则它的解析式( )(A )xy 1=(x >0) (B )x y 1-= (x >0)(C )xy 1=(x <0) (D )x y 1-= (x <0)第二课时[A 组]1、xy 3-=的图像叫 ,图像位于 象限,在每一象限内,当x 增大时,则y ;函数4y x=图象在第象限,在每个象限内y 随x 的减少而 2:、根据下列表格中x 与y 的对应值:(1)在直角坐标系中,描点画出图象;(2)试求式。
完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。
y = 1/xB。
y = -1/xC。
y = 2/xD。
y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。
第一、二象限B。
第一、三象限C。
第二、四象限D。
第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。
k。
2B。
k ≥ 2C。
k ≤ 2D。
k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。
2B。
-2C。
4D。
-45.对于反比例函数y = 2/x,下列说法不正确的是()A。
点(-2.-1)在它的图象上B。
它的图象在第一、三象限C。
当x。
0时,y随x的增大而增大D。
当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。
0时,y随x 的增大而增大,则m的值是()A。
±1B。
小于1的实数C。
-1D。
1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。
A。
S1 < S2 < S3B。
S2 < S1 < S3C。
S3 < S1 < S2D。
S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。
3B。
2C。
1D。
09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。
初二反比例函数基础练习题反比例函数是一种常见的数学函数形式,在初二数学中是一个重要的概念。
为了帮助初二学生加深对反比例函数的理解和掌握,本文将提供一些基础练习题,并解答这些练习题,帮助学生巩固知识点。
练习题1:已知一个反比例函数y与x的关系式为y = k/x,其中k 是常数。
如果当x = 2时,y = 4,求k的值。
解答:根据给定的关系式,当x = 2时,y = k/2。
由题意可知,当y = 4时,代入可得4 = k/2,解方程得k = 8。
所以k的值为8。
练习题2:已知一个反比例函数y与x的关系式为y = 6/x,如果x 的取值范围是{1, 2, 3, 4, 5},求对应的y的取值。
解答:根据给定的关系式,当x = 1时,y = 6/1 = 6;当x = 2时,y = 6/2 = 3;当x = 3时,y = 6/3 = 2;当x = 4时,y = 6/4 = 1.5;当x = 5时,y = 6/5 = 1.2。
所以当x分别取1、2、3、4、5时,对应的y的取值分别为6、3、2、1.5、1.2。
练习题3:已知一个反比例函数y与x的关系式为y = 10/x,求当x = 0.1时,y的值。
解答:根据给定的关系式,当x = 0.1时,y = 10/0.1 = 100。
所以当x = 0.1时,y的值为100。
练习题4:已知一个反比例函数y与x的关系式为y = 3/x + 2,求当x = -1时,y的值。
解答:根据给定的关系式,当x = -1时,y = 3/(-1) + 2 = -3 + 2 = -1。
所以当x = -1时,y的值为-1。
练习题5:已知一个反比例函数y与x的关系式为y = k/x,如果当y = 6时,x = 2,求k的值。
解答:根据给定的关系式,当y = 6时,6 = k/2,解方程得k = 12。
所以k的值为12。
通过以上基础练习题的解答,我们可以看到反比例函数的特点。
当x增大时,y会减小;当x减小时,y会增大。
反比例函数(附答案)一.选择题1、如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( )A .S S S <<B .S S S >>C . S S S =>D .S S S =<),则此反比例函数表达式为(A .y x =; B .y x =-;C .12y x=;D .12y x=-.7、已知k >0 ,那么函数y=kx的图象大致是 ( 8、在反比例函数y=xm21-的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是(C )第6题图第5题A 、m <0B 、m >0C 、m <21 D 、m >219、在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )10. 如图,某个反比例函数的图象经过点(-1,1),则它的解析式为( )A .)0(1>=x x y B .)0(1>-=x x y C .)0(1<=x x y D .)0(1<-=x xy 11. 在函数21-=x y 中,自变量x 的取值范围是( )X BC16.函数(0)ky k x=≠的图象过点(22)-,,则此函数的图象在平面直角坐标系中的( ) A .第一、三象限 B .第三、四象限C .第一、二象限D .第二、四象限17如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90o ,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90o ,点O 的对应点C 恰好落在双曲线y =kx(x >0)上,则k =( )A .2B .3C .4D .6218.) A .()m n -,B .(n ,)nD .()m n ,19. 在平面直角坐标系中,反比例函数)0(<=k xy 图象的两支曲线分别在( ). A. 第一、三象限; B. 第二、四象限; C. 第一、二象限; D. 第三、四象限. 且 ) C.25. 函数xky-=1与x y 2=的图象没有交点,则k 的取值范围为( )A .0<kB .1<kC .0>kD .1>k26.双曲线x 10y=与x6y =在第一象限内的图象依次是M 和N ,设点P 在图像M 上,PC 垂直于X 轴于点C 交图象N 于点A 。
数学反比例函数测试题及试卷答案(时间90分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分)1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( ) A .正比例函数 B .反比例函数 C .一次函数D .二次函数2.函数y =-4x的图象与x 轴的交点的个数是 ( )A .零个B .一个C .两个D .不能确定3.反比例函数y =-4x的图象在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( ) A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 33)第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面 积为 ( ) A .2 B . 4 C .6 D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时, y 1<y 2,则m 的取值范围 ( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____. 10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两 个交点,你认为这两位同学所描述的反比例函数的解析式是 . 15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 . 17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k y x =的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;O 12 第17题④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x的函数表达式,并画出函数的图象.21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m - (1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客.(1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示:(1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?图1图2月)y ()28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式;(2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B;2. A;3. B;4. A ;5. B ;6. C ;7.A ;8. C.二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y =x 3 15.B16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k =-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =x k(k >0),当x 变小时,y 增大 27.(1)y =t6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =15 28.(1)8xy =-;(2)126。
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
反比例函数综合复习题一、选择题1.反比例函数y =xn 5图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、1 2.若反比例函数y =xk(k≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)3.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5.一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 第6题图 6.如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定7.在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).Q pxyot /hO t /hOt /hOt /hv /(km/h)OA .B .C .D .A 、1.4kgB 、5kgC 、6.4kgD 、7kg 第7题图 8.若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9.已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21 D 、m >21 10.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 第10题图二、填空题11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12.已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14.反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15.有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16.如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .第16题图 第19题图 第20题图17.使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18.过双曲线y =xk(k≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为____ __. 19. 如图,直线y =kx(k >0)与双曲线xy 4交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20.如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是 .三、解答题21.如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时,求△BOC 的面积.22.如图,已知反比例函数y =-x8与一次函数y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2. 求:(1)一次函数的解析式;(2)△AOB 的面积.23.如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.24.如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点.(1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.25.如图,点P 的坐标为(2,23),过点P 作x 轴的平行线交y 轴于点A ,交双曲线x k y =(x>0)于点N ;作PM ⊥AN 交双曲线xky =(x>0)于点M ,连结AM.已知PN=4.(1)求k 的值.(2)求△APM 的面积.26.如图,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.O xAyB27.如图8,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式; (2)求△AOC 的面积.28.已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.参考答案DACBD ; CDBDD . 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 21、解:(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ;(2)△BOC 的面积为2.22、解:(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM+S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.23、解:(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 24.解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2, ∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA·MC +21OA·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.26.解:(1)∵当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ). ∵ 点A 是直线 与双曲线 (k>0)的交点 ,∴ k = 4 ×2 = 8 . (2) 解法一:如图12-1,∵ 点C 在双曲线上,当y = 8时,x = 1 ∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 . S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .(3)∵ 反比例函数图象是关于原点O 的中心对称图形 ,∴ OP=OQ ,OA=OB .∴ 四边形APBQ 是平行四边形 .∴ S △POA = S 平行四边形APBQ = ×24 = 6 .设点P 的横坐标为m (m > 0且4m ≠), 得P ( m , ) .过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .若0<m <4,如图12-3,∵ S △POE + S 梯形PEF A = S △POA + S △AOF ,∴ S 梯形PEFA = S △POA = 6 ∴18(2)(4)62m m+⋅-=. x y 21xy 8=4141m8解得m= 2,m= - 8(舍去) . ∴P(2,4).若m>4,如图12-4,∵ S△AOF+ S梯形AFEP = S△AOP+ S△POE,∴ S梯形PEF A = S△POA= 6 .∴18(2)(4)62mm+⋅-=,解得m= 8,m= - 2 (舍去) .∴P(8,1).∴点P的坐标是P(2,4)或P(8,1).28.(1)y=;y=x;(2)0<x<3;(3)BM=DM,。
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。