专题14 图形中的等腰三角形分类讨论(解析版)
- 格式:docx
- 大小:944.20 KB
- 文档页数:16
关于等腰三角形中分类讨论问题的探讨所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想.对于分类讨论问题,初中教学阶段虽然没有对此方面的教学要求,但是需要用分类讨论的思想去解决的问题却经常遇见,华东师大版七年级下册教材中典型的分类讨论问题是在"等腰三角形〞一节中,主要有由于几何图形性质不明确而需分类讨论的问题和几何图形之间的位置关系不明确而需分类讨论的问题.下面举例简要论述这两类问题:一、当腰长或底边长不能确定时,必须进行分类讨论例1、〔1〕已知等腰三角形的两边长分别为8cm和10cm,求周长.〔2〕等腰三角形的两边长分别为3cm和7cm,求周长.分析:由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是"腰〞,哪条边是"底〞不明确,而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论.解〔1〕因为8+8>10,10+10>8,则在这两种情况下都能构成三角形;当腰长为8时,周长为8+8+10=26;当腰长为10时,周长为10+10+8=28;故这个三角形的周长为26cm或28cm.解〔2〕当腰长为3时,因为3+3<7,所以此时不能构成三角形;当腰长为7时,因为7+7>3,所以此时能构成三角形,因此三角形的周长为:7+7+3=17;故这个三角形的周长为17cm.注意:对于此类题目在进行分类讨论时,必须运用三角形的三边关系来验证是否能构成三角形.二、当顶角或底角不能确定时,必须进行分类讨论例2、等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数;分析:题目没有指明"顶角是底角的4倍〞,还是"底角是顶角的4倍〞因此必须进行分类讨论.解:〔1〕当底角是顶角的4倍时,设顶角为x,则底角为4x,∴ 4x+4x+x=1800, ∴ x=200, ∴ 4x=800,于是三角形的各个内角的度数为:200,800,800.〔2〕当顶角是底角的4倍时,设底角为x,则顶角为4x,∴ x+x+4x=1800, ∴ x=300, ∴ 4x=1200,于是三角形的各个内角的度数为:300,300,1200.故三角形各个内角的度数为200,800,800或300,300,1200.例3、已知等腰三角形的一个外角等于1500,求它的各个内角.分析:已知等腰三角形的一个外角等于1500,有两种情况:与一个底角相邻的外角等于1500;与顶角相邻的外角等于1500.因此需要分类讨论;解:〔1〕当顶角的外角等于1500时,则顶角=1800-1500=300,∴每个底角=〔1800-顶角〕÷2=750;〔2〕当底角的外角等于1500时,则每个底角=1800-1500=300;∴顶角=1800-底角⨯2=1800-300⨯2=1200;故三角形各个内角的度数为300,750,750或1200,300,300.三、当高的位置关系不确定时,必须分类讨论例4、等腰三角形一腰上的高与另一边的夹角为250,求这个三角形的各个内角的度数.分析:由于题目中的"另一边〞没有指明是"腰〞还是"底边〞,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.解:设AB=AC,BD ⊥AC ;〔1〕高与底边的夹角为250时,高一定在△ABC 的内部,如图1,∵∠DBC=250,∴∠C=900-∠DBC=900-250=650,∴∠ABC=∠C=650,∠A=1800-2×650=500. 〔2〕当高与另一腰的夹角为250时, 图1①如图2,高在△ABC 内部时,当∠ABD=250时,∠A=900-∠ABD=650,∴∠C=∠ABC=〔1800-∠A 〕÷2=57.50;②如图3,高在△ABC 外部时,∠ABD=250A B C D∴∠BAD=900-∠ABD=900-250=650,∴∠BAC=1800-6500∴∠ABC=∠C=〔1800-1150〕÷2=32.50故三角形各内角为:650,650,500或650,650,57.50或1150,32.50,32.50.四、由腰的垂直平分线所引起的分类讨论例5、在三角形ABC 中,AB=AC,AB 边上的垂直平分线与AC 所在的直线相交所得的锐角为400,求底角B 的度数.分析:题目中AB 边上的垂直平分线与直线AC 相交有两种情形;图4解:〔1〕如图4,AB∠ADE=400,则∠A=900-∠ADE=500,∵AB=AC, ∴∠B=〔1800-500〕÷2=650.〔2〕如图5,AB 边的垂直平分线与直线AC 的反向 延长线交于点D,∠ADE=400,则∠DAE=500, 图5∴∠BAC=1300,∵AB=AC,∴∠B=〔1800-1300〕÷2=250,故∠B 的大小为650或250.五、由腰上的中线引起的分类讨论例6、等腰三角形底边为5cm,一腰上的中线把其周长分为两部分的差为3cm,求腰长.分析:如图6,由于题目中的"一腰上的中线把其周长分为两部分的差为3cm 〞,没有指明是"〔AB+AD 〕-〔BC+CD 还是"〔BC+CD 〕-〔AB+AD 〕〞的"差为3cm 〞,因此必须 分两种情况讨论. 解:如图6, ∵BD 为AC 边上的中线,∴AD=CD,〔1〕当〔AB+AD 〕-〔BC+CD 〕=3时,则AB-BC=3, ∵BC=5 ∴AB=BC+3=8;〔2〕当〔BC+CD 〕-〔AB+AD 〕=3时,则BC-AB=3,∵BC=5 ∴AB=BC-3=2;但是当AB=2时,三边长为2,2,5;而2+2<5,不合题意,舍去;故腰长为8.六、几何图形之间的位置关系不明确而需分类讨论的问题例7、已知C 、D 两点在线段AB 的中垂线上,且∠ACB=500,0的度数.分析:由于点C 、D 可以在线段AB线段AB 的两侧,因此要分两种情况进行讨论.解:〔1〕如图7,当C 、D 两点在线段AB 的同侧时,∵C 、D 两点在线段AB 的垂直平分线上,∴CA=CB,△CAB 是等腰三角形,又CE ⊥AB, 图7∴CE 是∠ACB 的角平分线,∴∠ACE=∠BCE,而∠ACB=500,∴∠ACE=250,同理可得∠ADE=400,∴∠CAD=∠ADE-∠ACE=400-250=150.〔2〕如图8,当C 、D 两点在线段AB 的两侧时,同〔1〕∠ADE=400,于是∠CAD=1800-〔∠ADE+∠ACE 〕 =1800-〔400+250〕=1800-650=1150故∠CAD 的度数为150或1150.例8、如图9,已知△ABC 中,BC>AB>AC,∠ACB=400,如果D 、E 是直线AB 上的两点,且AD=AC,BE=BC, 求∠DCE 的度数. 图9分析:因为在不等边△ABC 中,D 、E 是直线AB 上的两点,所以点D 、E 可以在点A 的同侧,也可以在点A 的两侧,因此需要分类讨论.解:〔1〕当点D 、E 在点A 的同侧,且都在BA 的延长线上时,如图10,图 2-∠BAC ÷2=〔180-∠ABC-∠BAC 〕÷2=∠ACB ÷2=400÷2=200.〔2〕当点D 、E 在点A 的同侧,且点D 在D ’的位置,E 在E ’的为时,如图11,与〔1〕类似地也可以求得E C D ''∠=∠ACB ÷2=200. 〔3〕当点D 、E 在点A 的两侧,且E 点在E ’的位置时,如图12,图12 图13∵BE ’=BC,∴()221800÷∠=÷'∠-='∠ABC E CB C E B ,∵AD=AC, ∴∠ADC=〔1800-∠DAC 〕÷2=∠BAC ÷2,又∵()ADC C E B E DC ∠+'∠-='∠0180,∴()21800÷∠+∠-='∠BAC ABC E DC =1800-〔1800-∠ACB 〕÷2 =900+∠ACB ÷2=900+400÷2=1100.〔4〕当点D 、E 在点A 的两侧,且点D 在D ’的位置时,如图13, ∵AD ’=AC,∴()(),2180218000÷∠-=÷'∠-='∠BAC AC D C D A ∵BE=BC,∴∠BEC=〔1800-∠ABC 〕÷2,∴()()C D A BEC C D E EC D CE D '∠+∠-='∠+'∠-='∠00180180,=1800-〔〔1800-∠ABC 〕÷2+〔1800-∠BAC 〕÷2〕=〔∠BAC+∠ABC 〕÷2=〔1800-∠ACB 〕÷2=〔1800-400〕÷2=700,故∠DCE 的度数为200或1100或700.。
等腰三角形中的分类讨论一、等腰三角形的定义等腰三角形是指具有两条边相等的三角形,也就是说,等腰三角形的两条边边长相等,而另一条边则较短。
等腰三角形可以有不同的形状和性质,下面将对等腰三角形进行分类讨论。
二、等腰三角形的分类1. 等腰直角三角形等腰直角三角形是一种特殊的等腰三角形,其中的一个内角为直角(即90度)。
在等腰直角三角形中,另外两个内角相等,均为45度。
根据勾股定理,等腰直角三角形的斜边与两条直角边之间的关系为:斜边的长度等于直角边长度的平方根乘以2。
2. 等腰锐角三角形等腰锐角三角形是指两个等腰三角形的顶点角小于90度的三角形。
在等腰锐角三角形中,两个等腰边的边长相等,而顶点角则小于90度。
等腰锐角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。
3. 等腰钝角三角形等腰钝角三角形是指两个等腰三角形的顶点角大于90度的三角形。
在等腰钝角三角形中,两个等腰边的边长相等,而顶点角则大于90度。
等腰钝角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。
4. 等腰等边三角形等腰等边三角形是一种特殊的等腰三角形,其中的三个边全都相等。
等腰等边三角形的三个内角均为60度。
等腰等边三角形具有许多特殊性质,例如:它的三条高线、中线、角平分线和垂直平分线都重合于同一个点;它的外接圆和内切圆都与三个顶点相切。
三、等腰三角形是指具有两条边相等的三角形,根据顶点角的大小和不同属性,可以进一步分类为等腰直角三角形、等腰锐角三角形、等腰钝角三角形和等腰等边三角形。
每种分类的等腰三角形都有其特殊的性质和关系,值得我们深入学习和研究。
注意:此文档仅为示例文档,实际写作时请根据需求进行修改和扩展,结合数学知识以及示例文档提供的内容,形成一篇丰富详尽的文档。
第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。
等腰三角形性质及分类讨论(讲义)一、知识点睛1. 在等腰三角形中,顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),这是等腰三角形的重要性质.2. 在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,尝试构造等腰三角形.3. 分类讨论的类型: ①定义法则.如绝对值,平方,完全平方式等. ②关键词不明确.如等腰三角形的角(底角与顶角),边(底边与腰)等. ③位置不确定.如线段端点的位置,角的位置,高等. ④对应关系不确定.如两部分的差,全等三角形对应关系等. 4. 分类讨论题目解题要点: ①辨识类型;②画出各种类型的图形并求解; ③根据标准进行取舍.标准包括限制条件,实际意义等.二、精讲精练1. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE 交于点O .求证:AB =AC .O EC DB2. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,求BD 的长.AED3.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CF平分∠ACB,交AB于F,AF=BF.求证:BC=CD.AF4.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于点F.求证:EC平分∠DEF.GEBFC A5.(1)若4x2-(m-1)xy+9y2是完全平方式,则m=_________.(2)若x2-4xy+ny2是完全平方式,则n=_________.(3)若9x2-12xy+(m+1)2y2是完全平方式,则m=_________.6.等腰三角形的一个角是另一个角的4倍,则顶角的度数为______________.7.已知一等腰三角形的三边分别是3x-1,x+1,5,则x=________.8.在直线l上任取一点A,截取AB=2cm,再截取AC=3cm,则线段BC的长为______________.9.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为__________.10.若等腰三角形的底边长为5cm,一腰上的中线把其周长分成的两部分之差为3cm,则腰长为__________.11.已知等腰三角形的周长为20cm,两边的差为2cm,则底边长为__________.12.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为30º,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.B30°lA13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△P AB为等腰三角形,找出所有符合条件的点P.AB C三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明略(提示:连接BC,证明AC=BC,AB=BC)2.10cm(提示:延长CE交BA的延长线于点F,证明BD=2CE)3.证明略(提示:延长CF到E,使CF=EF,连接BE,证明△AFC≌△BEF,再证明BE=BC)4.证明略(提示:利用等腰三角形“三线合一”,证明AD⊥EC,再证明ED=CD,利用平行导角)5.(1)-11,13 (2)4 (3)1,-36.120°或20°7. 28.1cm或5cm9.65°或115°10. 8cm 11. 8cm 或163cm 12. 作图略 13. 作图略等腰三角形性质及分类讨论(随堂测试)1. 若x 2-(a+1)xy +4y 2是完全平方式,则a =_________.2. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形顶角的度数为______________.3. 如图,在△ABC 中,D ,E 为BC 上的点,AC =CD ,CF ⊥AD 交AD 于G ,交AB 于F ,AD 平分∠BAE . 求证:DF ∥AE .【参考答案】1.3或-52.50°或130°3.证明略;(利用等腰三角形“三线合一”得到AG =DG ,得到AF =FD ,证得∠F AD =∠FDA ,由角平分线可得∠FDA =∠EAD ,所以DF ∥AE ) FGEDA等腰三角形性质及分类讨论(作业)14.已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.15.已知:如图,在等边△ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=ME.16.如图,在△ABC中,D为BC上一点,DE⊥AB,DF⊥AC,垂足分别为E,F,DE平分∠ADB,AF=FC,连接AD.M DAF DAE求证:BD=CD.AFE17.若4x2-axy+16y2是完全平方式,则a=_________.18.在直线l上任取一点A,截取AB=8cm,点C为AB中点,截取CD=5cm,则线段AD的长为______________.19.若等腰三角形的一个角比另一个角大30°,则此等腰三角形顶角的度数为______________.20.已知一等腰三角形的三边分别是5x 3,3x+3,27,则x=__________.21.等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则顶角的度数为__________.22.已知等腰三角形的周长为24cm,两边的差为3cm,则底边长为__________.23.在已知直线l上找一点C,和直线外的A,B两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l上找出所有符合条件的点C.l【参考答案】1.证明略(提示:延长AD到H,使DH=AD,连接BH,证明△BHD≌△CAD,导出AB=AC,再证明△BED≌△CFD)2.证明略(提示:连接BD,利用“三线合一”证明∠DBE=∠E=30°)3.证明略(提示:证明AD=DC,AD=BD)4.±165. 1cm 或9cm6. 80°或40°7. 6或88. 60°或120°9. 10cm 或6cm 10. 点C 有5个,作图略等腰三角形(讲义)一、知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________.二、精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.ABC DABDC第2题图第3题图3. 如图,在等腰△ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =_________.4. 如图,在Rt △ABC 中,∠B =90°,DE 垂60°108°BA C ABC A BCA直平分AC ,交AC 于D ,交BC 于E ,连接AE ,若 ∠BAE :∠BAC =1:5,则∠C =_____.5. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC . (1)若∠ADE =80°,则∠DEB =________.(2)若F 为BE 中点,则DF 与BE 的位置关系是________.C DAB EF6. 已知:如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE =CD ,DM ⊥BC 于M . 求证:M 是BE 的中点.7. 已知:如图,在△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E ,使AE =AD ,连接DE .求证:DE ⊥BC .E DCAECMAD B8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.11. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.12. 若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.13. 已知:如图,线段AB 的端点A 在直线l 上(AB 与l 不垂直),请在直线l上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.14.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】一、知识点睛1.有两边相等的三角形叫做等腰三角形.2.等腰三角形是轴对称图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.3.等腰三角形的两个底角相等,简称等边对等角.如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边.4.三边都相等的三角形是等边三角形.等边三角形三边都相等,三个内角都是60°.1.60°,60°;45°,45°;36°,36°2.80°3.108°4.40°5.(1)40°;(2)DF⊥BE6.提示:连接BD,由三线合一得∠DBC=∠E=30°,从而得到BD=ED,△BDE是等腰三角形,利用三线合一可以知道底边BE上的高DM也是BE边上的中线,所以M是BE的中点.7.提示:延长ED与BC交于点F,根据已知条件可以知道△AED和△ABC是等腰三角形,设∠E=α,可以表示出∠CDF=α,∠BAC=2α,∠C=90 α,得到∠EFC=90°,所以DE⊥BC.8.提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE.9.3cm10.5cm或353cm11.40°或100°12.50°或130°13.这样的点有4个14.这样的点有2个等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.DC2. 等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .E DCB A【参考答案】1. 20°2. 10cm 或8cm3. 提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得到BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD .等腰三角形(作业)1. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D ,点E 在BC 边上,且BD =BE .若∠A =84°,则∠DEC =______.E DC BA2. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.DCB AN MEA第2题图第3题图3. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N .若BM +CN =9,则线段MN 的长为( ) A .6B .7C .8D .94. 如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于D ,12CD BC.求证:∠ACD =∠B .DB A5. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .DBAP6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE . 求证:BD =CE .AB CD E7. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为________. 8. 等腰三角形的一个角比另一个角大30°,则这个三角形的顶角的度数为_____________.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.1.78°2.36°3. D4.提示:过点A作AE⊥BC于E,可证Rt△ADC≌Rt△AEB(HL),从而得到∠ACD=∠B.5.提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC.6.提示:根据等边对等角可以得到∠B=∠C,∠ADE=∠AED,进而可以得到∠BAD=∠CAE,从而证明△ABD≌△ACE(ASA),根据全等三角形对应边相等,可以得到BD=CE.7.208.80°或40°9.共有4个,图略.。
专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。
【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。
建议时间5分钟左右。
等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。
【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。
1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。
初中数学等腰三角形的分类讨论等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,在求解有关等腰三角形的问题时一定要注意分类讨论。
那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。
一. 遇角需讨论例1. 已知等腰三角形的一个内角为75°则其顶角为()A. 30°B. 75°C. 105°D. 30°或75°二. 遇边需讨论例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。
三. 遇中线需讨论例3. 若等腰三角形一腰上的中线分周长为9cm和12cm两部分,求这个等腰三角形的底和腰的长。
四. 遇高需讨论例4. 等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。
简析:依题意可画出图1和图2两种情形。
图1中顶角为45°,图2中顶角为135°。
30m的草皮铺设一块一边长为10m的等腰三角例5. 为美化环境,计划在某小区内用2形绿地,请你求出这个等腰三角形绿地的另两边长。
五. 遇中垂线需讨论例6.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________。
六. 和方程问题的综合讨论例7. 已知ΔABC 的两边AB ,AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 长为5。
(1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?(2)k 为何值时,ΔABC 是等腰三角形,并求ΔABC 的周长。
七、找点构造等腰三角形需讨论例8在直角坐标系中,O 为坐标原点,A (1,1);在坐标轴上确定一点P ,使ΔAOP 为等腰三角形,则符合条件的点P 共有( )A 、4个B 、6个C 、8个D 、1个等腰三角形中的分类讨论1.三角形中常见的分类问题I(1)等腰三角形两个内角的度数之比为1:2,这个等腰三角形底角的度数为_____________;(2)等腰△ABC 的周长为13,AB=5,则BC=________________;(3)等腰△ABC 的周长为16,AB=4,则BC=________________.2.三角形中常见的分类问题II(1)等腰三角形一腰上的高等于某条边的一半,则它的顶角是___________度;(2)等腰三角形一边上的高等于底边的一半,则它的顶角是___________度;(3)一个等腰三角形的一条高等于腰长的一半,则这个等腰三角形的底角的度数是_______________.3.三角形的剖分(1)已知等腰三角形ABC 中,AB=AC ,D 为BC 边上一点,连结AD ,若△ACD 和△ABD 都是等腰三角形,则∠C 的度数是______________;(2)有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为________________;(3)△ABC 中,AB=AC ,过△ABC 某一顶点的直线可将△ABC 分成两个等腰三角形,试求△ABC 各内角的度数。
【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论设等腰三角形中有一个角为α时对应结论 当α为顶角时底角=α2190-︒当α为直角或钝角时 不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角当等腰三角形的一个外角为α时对应结论 若α为锐角、直角 α必为顶角的外角若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.△ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是 8cm 或6cm .【分析】等腰三角形一腰上的中线将它的周长分为12厘米和18厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm ,哪个是12cm ,因此,有两种情况,需要分类讨论. 【解答】解:根据题意画出图形,如图, 设等腰三角形的腰长AB =AC =2x ,BC =y , ∵BD 是腰上的中线, ∴AD =DC =x ,若AB +AD 的长为12,则2x +x =12,解得x =4cm , 则x +y =9,即4+y =9,解得y =5cm ;若AB +AD 的长为9,则2x +x =9,解得x =3cm ,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.2.(1)等腰三角形中有一个角是70°,则它的顶角是70°或40°.(2)等腰三角形中有一个角是100°,则它的另两个角是40°,40°.(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【分析】(1)等腰三角形一内角为70°,没说明是顶角还是底角,所以有两种情况.(2)由于等腰三角形的两底角相等,所以100°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.(3)题中没有指明已知角是底角还是顶角,故应该分情况进行分析从而求解.【解答】解:(1)①当70°角为顶角,顶角度数即为70°;②当70°为底角时,顶角=180°﹣2×70°=40°.(2)∵等腰三角形的两底角相等∴两底角的和为180°﹣100°=80°∴两个底角分别为40°,40°.(3)①当∠A=70°时,则∠ABC=∠C=55°,因为BD⊥AC,所以∠DBC=90°﹣55°=35°;②当∠C=70°时,因为BD⊥AC,所以∠DBC=90°﹣70°=20°故答案为:70°或40°;40°,40°;35°或20°.3.如果等腰三角形的周长是35cm,一腰上中线把三角形分成两个三角形,其周长之差是4cm,则这个等腰三角形的底边长是9cm或cm.【分析】根据题意画出图形,设等腰三角形的腰长为xcm,则底边长为(19﹣2x)cm,再根据两个三角形的周长差是4cm求出x的值即可.【解答】解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=xcm,∵点D为AC的中点,∴AD=CD=,BC=25﹣(AB+AC)=35﹣2x,当△ABD的周长大于△BCD的周长时,AB+AD+BD﹣(BC+CD+BD)=4,即x+﹣(35﹣2x)﹣=4,解得x=13,底边长为35﹣13×2=9(cm);当△BCD的周长大于△ABD的周长时,则BC+CD+BD﹣(AB+AD+BD)=4,即35﹣2x+﹣(x+)=4,解得x=,底边长为35﹣×2=(cm).综上所述,这个等腰三角形的底边长为9cm或cm.故答案为:9cm或cm.4.已知△ABC中,CA=CB,AD⊥BC于D,∠CAD=50°,则∠B=70°或20°.【分析】利用直角三角形两锐角互余可求得∠C,再利用三角形内角和定理和等腰三角形的性质可求得∠B.【解答】解:若△ACB是锐角三角形,如图1.∵AD⊥BC,∠CAD=50°,∴∠C=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且2∠B+∠C=180°,∴∠B=70°,若△ACB是钝角三角形,如图2.∵AD⊥BC,∠CAD=50°,∴∠DCA=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且∠DCA=∠B+∠CAB∴∠B=20°故答案为:70°或20°.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△P AB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=P A;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠P AB;∴符合条件的点P有6个点.故选:B.6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.8【分析】设等腰三角形的腰为x,底边为y,根据三角形的周长求出y=21﹣2x,根据三角形三边关系定理得出x+x>y,求出x+y>21﹣2x,再求出不等式组的解集即可.【解答】解:设等腰三角形的腰为x,底边为y,则x>0,y>0,x+x>y,则x+x+y=21,即①y=21﹣2x>0,所以②x+x>21﹣2x,解①②得:5<x<10.5,所以整数x可以为6,7,8,9,10,共5种,故选:A.7.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为120°或75°或30°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.8.如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=4或12s时,△POQ是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即12﹣2t=t,解得,t=4s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用6s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣6)=t,解得,t=12s故答案为4s或12s.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【分析】如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此进行判断即可.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为75°或120°或15°.【分析】分三种情形分别求解即可.【解答】解:∵△ABC中,∠B=60°,∠C=90°,∴∠BAC=180°﹣60°﹣90°=30°,如图,有三种情形:①当AC=AD时,∠ADC==75°.②当CD′=AD′时,∠AD′C=180°﹣30°﹣30°=120°.③当AC=AD″时,∠AD″C==15°,故答案为:75°或120°或15°.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为3或9.【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【解答】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运动,∵△BPQ是等腰三角形,∴BQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=9,故答案为:3或9.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为45°或36°或或.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵过点C的直线能将△ABC分成两个等腰三角形,①如图1,∵∠ACB=2∠A,∴AD=DC=BD,∴∠ACB=90°,∴∠A=45°;②如图2,AD=DC=BC,∴∠A=∠ACD,∠BDC=∠B,∴∠BDC=2∠A,∴∠A=36°,③AD=DC,BD=BC,∴∠BDC=∠BCD,∠A=∠ACD,∴∠BCD=∠BDC=2∠A,∴∠BCD=2∠A,∵∠ACB=2∠A,故这种情况不存在.④如图3,AD=AC,BD=CD,∴∠ADC=∠ACD,∠B=∠BCD,设∠B=∠BCD=α,∴∠ADC=∠ACD=2α,∴∠ACB=3α,∴∠A=α,∵∠A+∠B+∠ACB=180°,∴α+α+3α=180°,∴α=,∴∠A=,⑤如图4,AC=CD=DB,∴∠A=∠CDA,∠B=∠DCB,∵∠CDB=180°﹣∠CDA=180°﹣∠A,∴∠B=∠DCB==,∴∠ACB=∠A=180°﹣,∵∠ACB=2∠A,∴180°﹣=2∠A,∴综上所述,∠A的度数为45°或36°或或.故答案为:45°或36°或或.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为3或9.【分析】①E在线段AB的延长线上时,过E点作EF⊥CD于F,②当E在线段AB的延长线时,过E点作EF ⊥CD于F,根据等边三角形的性质求出BE长和∠ABC=60°,解直角三角形求出BF,求出CF,即可求出答案.【解答】解:点E在直线AB上,AE=6,点E位置有两种情况:①E在线段AB的延长线上时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6﹣3=3,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=BE=,∴CF=+3=,∵ED=EC,∴CF=DF,∴CD=×2=9;②如图2,当E在线段AB的延长线时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6+3=9,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=AE=,∴CF=﹣3=,∵ED=EC,∴CF=DF,∴CD=×2=3;即C=9或3,故答案为:3或9.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.【分析】分两种情况考虑:当∠ABC为锐角时,如图1所示,由AD垂直于BC,BE垂直于AC,利用垂直的定义得到一对直角相等,再由一对对顶角相等,得到∠CAD=∠MBD,根据一对直角相等,再由BM=AC,利用AAS得出三角形BMD与三角形ACD全等,由全等三角形对应边相等得到AD=BD,得到三角形ABD为等腰直角三角形,可得出∠ABC=45°;当∠ABC为钝角时,如图2所示,同理利用AAS得出三角形ADC与三角形DBM全等,由全等三角形对应边相等得到AD=BD,得出三角形ABD为等腰直角三角形,求出∠ABD=45°,利用邻补角定义即可求出∠ABC=135°.【解答】解:分两种情况考虑:当∠ABC为锐角时,如图1所示,∵AD⊥DB,BE⊥AC,∴∠MDB=∠AEM=90°,∵∠AME=∠BMD,∴∠CAD=∠MBD,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABC=45°;当∠ABC为钝角时,如图2所示,∵BD⊥AM,BE⊥AC,∴∠BDM=∠BEC=90°,∵∠DBM=∠EBC,∴∠M=∠C,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABD=45゜,则∠ABC=135゜.16.已知点P为线段CB上方一点,CA⊥CB,P A⊥PB,且P A=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.【分析】根据全等三角形的判定得出△PMB≌△PNA,进而分类讨论得出答案即可.【解答】解:此题分以下两种情况:①如图1,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=3,∴BC=7;②如图2,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.综合上述CB=7或9.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°﹣18°=57°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,②如图2,当点D在线段BC上时,∠ADC=x°+α,③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.【分析】(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线即可;(2)在图③中画出顶角为45°的等腰三角形的三分线即可;(3)分两种情况:AD为等腰三角形的腰或底作图即可得结论.【解答】解:(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线;(2)在图③中画出顶角为45°的等腰三角形的三分线.每个等腰三角形顶角的度数为:90°、135°、45°.故答案为:90°、135°、45°.(3)如下图作△ABC,①如图1:当AD=AE时,∵2x+x=30+30,∴x=20.②如图2:当AD=DE时,∵2x+x+30+30=180.∴x=40.所以x的所有可能的值为20°或40°.故答案为20°或40°.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.【分析】(1)由平行线的性质得出∠CEP=∠BAP,∠ECP=∠ABP,由点P为AE的中点,得出PE=P A,由AAS证得△CEP≌△BAP,即可得出结论;(2)由CB⊥AB,AB∥CD,得出∠DCP=∠ABP=90°,在Rt△DCP中,CP==3,由(1)得CP=PB=3,在Rt△ABP中,AP==5;(3)①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,则AN=NQ,由S△ABP=AB•BP=AP•BN,求出BN=,在Rt△ABN中,AN==,则AQ=2AN=;③当AQ=QB时,证明QB=AQ=QP,则AQ=AP=.【解答】(1)证明:∵AB∥CD,∴∠CEP=∠BAP,∠ECP=∠ABP,∵点P为AE的中点,∴PE=P A,在△CEP和△BAP中,,∴△CEP≌△BAP(AAS),∴PC=PB,∴点P也是BC的中点;(2)解:∵CB⊥AB,AB∥CD,∴∠DCP=∠ABP=90°,在Rt△DCP中,CP===3,由(1)得:CP=PB=3,在Rt△ABP中,AP===5;(3)解:①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,如图1所示:则AN=NQ,S△ABP=AB•BP=AP•BN,即4×3=5BN,∴BN=,在Rt△ABN中,AN===,∴AQ=2AN=;③当AQ=QB时,如图2所示:∵AQ=QB,∴∠QAB=∠QBA,∵∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴QB=QP,∴QB=AQ=QP,∴AQ=AP=;综上所述,△ABQ是等腰三角形,AQ的长为4或或.。
等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2)“两定一动”等腰三角形存在性问题:即:如图:已知A,B两点是定点,找一点C构成等腰△ABC方法:两圆一线具体图解:①当AB=AC时,以点A为圆心,AB长为半径作⊙A,点C在⊙A上(B,C除外)②当AB=BC时,以点B为圆心,AB长为半径作⊙B,点C在⊙B上(A,E除外)③当AC=BC时,作AB的中垂线,点C在该中垂线上(D除外)1(2023秋·河北张家口·八年级统考期末)△ABC是等腰三角形,AB=5,AC=7,则△ABC的周长为()A.12B.12或17C.14或19D.17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当△ABC的腰为5时,△ABC的周长5+5+7=17;当△ABC的腰为7时,△ABC的周长5+7+7=19.故选:D.【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.2(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm,一边长为8cm,则其它两边长是()A.8cm,16cmB.12cm,12cmC.8cm,16cm或12cm,12cmD.12cm,8cm【答案】B【分析】根据等腰三角形的性质和构成三角形的条件即可得.【详解】解:∵等腰三角形的周长为32cm,一边长为8cm,∴①当底边长为8cm时,其它两边长是32-82=12(cm),②当腰长为8cm时,其它两边长是8cm或32-2×8=16(cm),8+8=16,此时三边不能构成三角形,综上,其它两边长是12cm,12cm,故选:B.【点睛】本题考查了等腰三角形,构成三角形的条件,解题的关键是掌握这些知识点.3(2023秋·广东八年级课时练习)若△ABC是等腰三角形,∠A=36°,则∠C的度数是()A.72°或108°B.36°或72°C.108°或36°D.36°或72°或108°【答案】D【分析】根据等腰三角形性质分情况讨论即可得到答案.【详解】解:∵△ABC是等腰三角形,∠A=36°,∴当∠A是顶角时,∠C=∠B=180°-36°2=72°;当∠A是底角时,①当∠B=∠A=36°时,则∠C=180°-2×36°=108°;②∠C=∠A=36°;综上所述,∠C的度数是36°或72°或108°,故选:D.【点睛】本题考查利用等腰三角形性质求角度,根据等腰三角形性质分类讨论是解决问题的关键.4(2022秋·江苏南通·八年级启东市长江中学校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为60°,那么这个等腰三角形的顶角的度数为.【答案】30°或150°【分析】根据题意画出图形,分别从锐角三角形与钝角三角形分析求解即可求出答案.【详解】根据题意得:AB=AC,BD⊥AC,如图(1)所示,∠ABD=60°,则∠A=30°,即顶角为30°;如图(2)所示,∠ABD=60°,则∠DAB=30°,∴∠BAC=150°,即顶角为150°;故答案为:30°或150°.【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.5(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使△ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰△ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.6(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ =90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE′F′=∠CQP+∠QDE′,∴∠QDE′=∠DE′F′-∠CQP=60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,∴∠CQP=90°,∴∠QDF′=90°-∠DF′E′=60°,∴∠QDE′=∠E′DF′-∠QDF′=30°,∴α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.7(2022秋·江苏徐州·八年级校考期中)如图,∠AOB=70°,点C是边OB上的一个定点,点P在角的另一边OA上运动,当△COP是等腰三角形,∠OCP=°.【答案】40或70或55【分析】分三种情况讨论:①当OC=PC,②当PO=PC,③当OP=OC,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,①当OC=PC时,∴∠COP=∠CPO=70°∴∠OCP=180°-∠OPC-∠COP=40°.②当PO=PC时,∠OCP=∠COP=70°;③当OP=OC时,∠OCP=180°-∠AOB2=55°;综上所述,∠OCP的度数为70°或40°或55°.故答案为:70或40或55.【点睛】本题考查了等腰三角形的性质以及三角形内角和定理,进行分类讨论是解题的关键.8(2023·安徽阜阳·八年级统考期末)在平面直角坐标系中,若点A0,4,B3,0,则AB=5.请在x轴上找一点C,使ΔABC是以AB为腰的等腰三角形,点C的坐标为.【答案】-3,0、-2,0或8,0【分析】分两种情况求解:①AB=AC,②AB=BC.【详解】解:①当AB=AC时,∵AO⊥BC,∴OC=BO=3,∴C(-3,0);②当AB=BC=5时,若点C在B点左侧,CO=BC-BO=2,此时点C的坐标为(-2,0);若点C在B点右侧,CO=BO+BC=8,此时点C的坐标为(8,0).综上所述,满足条件的点C有3个.故答案为:-3,0、-2,0或8,0.【点睛】本题考查了等腰三角形的性质、坐标与图形性质以及分类讨论,做题时需注意两点,一是注意点C 必须位于x轴上,二是注意不能漏解,应分AB=AC与AB=BC两种情况分别解答,难度适中.9(2023·江苏苏州·八年级校考期中)如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒2cm的速度沿折线A-B-C-A运动,设运动时间为t秒(t>0).(1)若点P 在BC 上,且满足PA =PB ,求此时t 的值;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值:(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.【答案】(1)6516(2)316或52(3)54或32或95或3【分析】(1)设PB =PA =xcm ,则PC =4-x cm ,利用勾股定理求出AC =3cm ,在Rt △ACP 中,依据AC 2+PC 2=AP 2,列方程求解即可得到t 的值.(2)如图所示,当点P 在AC 上时,过P 作PD ⊥AB 于D ,设PD =PC =ycm ,则AP =3-y cm ,在Rt △ADP 中,依据AD 2+PD 2=AP 2,列方程求解即可得到t 的值.当点P 与点B 重合时,点P 也在∠ABC 的角平分线上,此时,t =AB 2=52.(3)分四种情况:当P 在AB 上且AP =CP 时,当P 在AB 上且AP =CA =3cm 时,当P 在AB 上且AC =PC 时,当P 在BC上且AC =PC =3cm 时,分别依据等腰三角形的性质即可得到t 的值.【详解】(1)解:如图,设PB =PA =xcm ,则PC =4-x cm ,∵∠ACB =90°,AB =5cm ,BC =4cm ,∴AC =AB 2-BC 2=3cm ,在Rt △ACP 中,由勾股定理得AC 2+PC 2=AP 2,∴32+4-x 2=x 2,解得x =258,∴BP =258,∴t =AB +BP 2=5+2582=6516;(2)解:如图所示,当点P 在AC 上时,过P 作PD ⊥AB 于D ,∵BP 平分∠ABC ,∠C =90°,PD ⊥AB ∴PD =PC ,∠DBP =∠CBP ,在△BCP 与△BDP 中,∠BDP =∠BCP∠DBP =∠CBP BP =BP,∴△BDP ≌△BCP AAS∴BC =BD =4cm ,∴AD =5-4=1cm ,设PD =PC =ycm ,则AP =3-y cm ,在Rt △ADP 中,由勾股定理得AD 2+PD 2=AP 2,∴12+y2=3-y2,解得y=43,∴CP=43,∴t=AB+BC+CP2=5+4+432=316,当点P与点B重合时,点P也在∠ABC的角平分线上,此时,t=AB2=52.综上所述,点P恰好在∠ABC的角平分线上,t的值为316或52.(3)解:分四种情况:①如图,当P在AB上且AP=CP时,∴∠A=∠ACP,∵∠A+∠B=90°,∠ACP+∠BCP=90°,∴∠B=∠BCP,∴CP=BP=AP,∴P是AB的中点,即AP=12AB=52cm,∴t=AP2=54.②如图,当P在AB上且AP=CA=3cm时,∴t=AP2=32.③如图,当P在AB上且AC=PC时,过C作CD⊥AB于D,∵S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=125cm,在Rt△ACD中,由勾股定理得AD=AC2-CD2=32-1252=95cm,∴AP=2AD=185cm,∴t=AP2=95.④如图,当P在BC上且AC=PC=3cm时,则BP=4-3=1cm,∴t=AB+BP2=62=3.综上所述,当t的值为54或32或95或3时,△ACP为等腰三角形.【点睛】本题属于三角形综合题,考查了角平分线的性质,等腰三角形的性质以及勾股定理的综合运用.画出图形,利用分类讨论的思想是解第(3)题的关键.10(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O为坐标原点,经过A-2,6的直线交x轴正半轴于点B,交y轴于点C,OB=OC,直线AD交x轴负半轴于点D,若△ABD的面积为27(1)求直线AB的表达式和点D的坐标;(2)横坐标为m的点P在线段AB上(不与点A、B重合),过点P 作x轴的平行线交AD于点E,设PE的长为y y≠0,求y与m之间的函数关系式并直接写出相应的m 取值范围;(3)在(2)的条件下,在x轴上是否存在点F,使△PEF为等腰直角三角形?若存在求出点F的坐标;若不存在,请说明理由.【答案】(1)y=-x+4,D-5,0(2)y=32m+3,-2<m<4(3)存在,点F的坐标为25,0或-165,0或-87,0【分析】(1)据直线AB交x轴正半轴于点B,交y轴于点C,OB=OC,设直线AB解析式为y=-x+n,把A的坐标代入求得n的值,从而求得B的坐标,再根据三角形的面积建立方程求出BD的值,求出OD 的值,从而求出D点的坐标;(2)直接根据待定系数法求出AD的解析式,先根据B、A的坐标求出直线AB的解析式,将P点的横坐标代入直线AB的解析式,求出P的纵坐标,将P的纵坐标代入直线AD的解析式就可以求出E的横坐标,根据线段的和差关系就可以求出结论;(3)要使△PEF为等腰直角三角形,分三种情况分别以点P、E、F为直角顶点,据等腰直角三角形的性质求出(2)中m的值,就可以求出F点的坐标.【详解】(1)解:∵OB=OC,∴设直线AB的解析式为y=-x+n,∵直线AB经过A-2,6,∴2+n=6,∴n=4,∴直线AB的解析式为y=-x+4,∴B4,0,∴OB=4,∵△ABD的面积为27,A-2,6,∴S△ABD=12×BD×6=27,∴BD=9,∴OD=5,∴D-5,0,∴直线AB的解析式为y=-x+4,D-5,0(2)解:设直线AD的解析式为y=ax+b,∵A-2,6,D-5,0∴-2a+b=6-5a+b=0,解得a=2b=10.∴直线AD的解析式为y=2x+10;∵点P在AB上,且横坐标为m,∴P m,-m+4,∵PE∥x轴,∴E的纵坐标为-m+4,代入y=2x+10得,-m+4=2x+10,解得x=-m-62,∴E-m-62,-m+4,∴PE的长y=m--m-62=3m2+3;即y=32m+3,-2<m<4;(3)解:在x轴上存在点F,使△PEF为等腰直角三角形,①当∠FPE=90°时,如图①,有PF=PE,PF=-m+4,PE=32m+3,∴-m+4=32m+3,解得m=25,此时F25,0;②当∠PEF=90°时,如图②,有EP=EF,EF的长等于点E的纵坐标,∴EF=-m+4,∴-m+4=32m+3,解得:m=25,∴点E的横坐标为x=-m-62=-165,∴F-165,0;③当∠PFE=90°时,如图③,有FP=FE,∴∠FPE=∠FEP.∵∠FPE+∠EFP+∠FEP=180°,∴∠FPE=∠FEP=45°.作FR⊥PE,点R为垂足,∴∠PFR=180°-∠FPE-∠PRF=45°,∴∠PFR=∠RPF,∴FR=PR.同理FR=ER,∴FR= 12PE.∵点R与点E的纵坐标相同,∴FR=-m+4,∴-m+4=1232m+3,解得:m=107,∴PR=FR=-m+4=-107+4=187,∴点F的横坐标为107-187=-87,∴F-87,0.综上,在x轴上存在点F使△PEF为等腰直角三角形,点F的坐标为25,0或-165,0或-87,0.【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式的运用,解答本题时求出函数的解析式是关键.课后专项训练1(2023春·四川成都·七年级统考期末)等腰三角形的两边长分别为4cm和9cm,则这个三角形的周长为()A.22cmB.17cm或13cmC.13cmD.17cm或22cm【答案】A【分析】分4cm是腰长与底边长两种情况讨论求解.【详解】解:①4cm是腰长时,三角形的三边分别为4cm、4cm、9cm,因为4+4<9,故不能组成三角形;②4cm是底边长时,三角形的三边分别为4cm、9cm、9cm,能组成三角形,周长=4+9+9=22cm,综上所述,这个等腰三角形的周长是22cm.故选:A.【点睛】本题考查了等腰三角形的定义和三角形三边关系的应用,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.2(2023·浙江·八年级课堂例题)如图,P是射线ON上一动点,∠AON=30°,当△AOP为等腰三角形时,∠OAP的度数一定不可能是()A.120°B.75°C.60°D.30°【答案】C【分析】分AO=AP、AO=OP和OP=AP三种情况,利用等腰三角形的性质结合三角形的内角和定理解答即可.【详解】解:若△AOP为等腰三角形则有AO=AP、AO=OP和OP=AP三种情况,①当AO=AP时,则有∠O=∠APO=30°,故∠A=120°;②当AO=OP时,则∠A=∠APO=12180°-30°=75°;③当OP=AP时,则∠A=∠AON=30°,综上可知:∠A不可能为60°;故选:C.【点睛】本题考查了等腰三角形的性质和三角形的内角和定理,正确分类、熟练掌握等腰三角形的性质是解题的关键.3(2023·福建龙岩·八年级校考期中)在平面直角坐标系xOy中,点A2,0,B0,2,若点C在x轴上,且△ABC为等腰三角形,则满足条件的点C的个数为()A.1B.2C.3D.4【答案】D【分析】分为AB=AC、BC=BA,CB=CA三种情况画图判断即可.【详解】解:如图所示:当AB=AC时,符合条件的点有2个;当BC=BA时,符合条件的点有1个;当CB=CA,即当点C在AB的垂直平分线上时,符合条件的点有一个.故符合条件的点C共有4个.故选:D.【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A.0个B.2个C.4个D.8个【答案】C【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC为等腰三角形,且△ABC的面积为1,∴满足条件的格点C有4个,故选C.【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键5(2023·山东日照·八年级统考期末)如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A.3B.4C.5D.6【答案】D【分析】根据等腰三角形的判定即可得到结论.【详解】解:如图所示,使△ABP为等腰三角形的点P的个数是6,故选:D.【点睛】本题考查了等腰三角形的判定,正确的找出符合条件的点P是解题的关键.6(2022·山东青岛·统考二模)在平面直角坐标系中,O为坐标原点,点A的坐标为1,3,若M为x 轴上一点,且使得△MOA为等腰三角形,则满足条件的点M有()A.2个B.3个C.4个D.5个【答案】A【分析】分别以O、A为圆心,以OA长为半径作圆,与x轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点M的个数为2.故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7(2022·安徽淮北·九年级阶段练习)如图,在△ABC中,∠C=90°,BC=8,AC=6.若点P为直线BC上一点,且△ABP为等腰三角形,则符合条件的点P有( ).A.1个B.2个C.3个D.4个【答案】D【分析】根据勾股定理求出AB,分为三种情况:①AB=AP,②AB=BP,③AP=BP,得出即可.【详解】解:在△ABC中,∠B=90°,BC=8,AC=6,由勾股定理的:AC=AC2+BC2=62+82=10,如图,以点A为圆心,以10为半径画圆,交直线BC于两点,即点B和点P1;以点B为圆心,以10为半径画圆,交直线BC于两点,即点P2和P3;作线段AB的垂直平分线交直线BC与一点,即点P4;即共4个点,故选:D【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A的坐标为1,1,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,OA=12+12=2,当AO=OP1,AO=OP3时,P1(-2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个【答案】C【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】解:如图,①以A为圆心,AB为半径画圆,交直线AC有二点M1,M2,交BC有一点M3,(此时AB=AM);②以B为圆心,BA为半径画圆,交直线BC有二点M5,M4,交AC有一点M6(此时BM=BA).③AB的垂直平分线交AC一点M7(MA=MB),交直线BC于点M8;∴符合条件的点有8个.故选:C.【点睛】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.10(2023春·山东泰安·七年级统考期末)等腰三角形的一角为30°,则其顶角的大小是.【答案】120°或30°【分析】等腰三角形的一个内角是30°,则该角可能是底角,也可能是顶角,注意讨论即可.【详解】解:分两种情况:当30°的角是底角时,180°-30°×2=120°,则顶角度数为120°;当30°的角是顶角时,则顶角为30°;故答案为:120°或30°.【点睛】本题考查等腰三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11(2023·四川凉山·八年级校考期中)等腰三角形一腰上的高与另一腰的夹角是36°,则底角是.【答案】27°或63°【分析】等腰三角形的高相对于三角形有三种位置关系:三角形的内部、三角形的边上、三角形的外部,根据条件可知第二种高在三角形的边上这种情况不成立,因而应分两种情况进行讨论即可得解.【详解】解:①当高在三角形内部时,如图:∵BD⊥AC,∴∠ADB=90°,∵∠ABD=36°,∴∠A=90°-∠ABD=54°,∴∠ABC=∠C=12180°-54°=63°;②当高在三角形外部时,如图:∵BD ⊥AC ,∴∠ADB =90°,∵∠ABD =36°,∴∠DAB =90°-36°=54°,∴∠ABC =∠C =12∠DAB =12×54°=27°.∴综上所述,底角是27°或63°.故答案是:27°或63°.【点睛】本题主要考查了与三角形的高有关的计算、直角三角形两锐角互余、三角形外角的性质三角形的分类以及等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键.12(2023春·四川达州·八年级校考阶段练习)我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k .若k =2,则该等腰三角形的顶角为度.【答案】90【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:∵k =2,∴设顶角=2α,则底角=α,∴α+α+2α=180°,∴α=45°,∴该等腰三角形的顶角为90°,故答案为:90.【点睛】本题考查了等腰三角形的性质,掌握等腰三角形的两底角相等是解题的关键.13(2023春·四川达州·八年级校考阶段练习)如果等腰三角形一腰上的中线将其周长分别为12和9两部分,那么这个等腰三角形的腰和底的长分别是.【答案】6,9或8,5【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是12-9=3,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:12-9=3,①当底边比腰长时,设腰为x ,则底为x +3,由题意可得,x +3+2x =12+9,解得:x =6,x +3=6+3=9,②当腰比底边长时,设腰为x ,则底为x -3,由题意可得,x -3+2x =12+9,解得:x =8,x -3=8-3=5,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15(2022秋·江苏盐城·八年级校考阶段练习)如图,△ABC 中,∠ACB =90°,AB =10cm ,AC =8cm ,若点P 从点A 出发,以每秒1cm 的速度沿折线A -C -B -A 运动,设运动时间为t 秒t >0 ,当点P 在边AB 上,当t =s 时,△BCP 是等腰三角形.【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵∠ACB =90°,AB =10cm ,AC =8cm ,∴由勾股定理得:BC =AB 2-AC 2=102-82=36=6(cm ),当P 在BA 上时,①当BC =BP =6cm 时,如图,∴t =8+6+6 ÷1=20s ;②当BC =CP =6cm 时,过CD ⊥PB 于点D ,如图,∴BD =DP =12BP ,∵S △ABC =12AC ∙BC =12AB ∙CD ,∴CD =AC ∙BC AB=6×810=4.8,在Rt △CBD 中,由勾股定理得:BD =BC 2-CD 2=62-4.82=3.6cm ,∴BP =2BD =2×3.6=7.2cm ,∴t =8+6+7.2 ÷1=21.2s ,③当BP =CP ,如图,∵∠ACB =90°,BP =CP ∴CP =BP =12AB =5cm ∴t =8+6+5 ÷1=19s 综上可知:t 的值为:19或20或21.2.,故答案为:19或20或21.2.【点睛】此题考查了等腰三角形的判定与性质、角平分线的性质、勾股定理,解题时需要作辅助线构造直角三角形以及等腰三角形,熟练掌握等腰三角形的判定与性质,进行分类讨论是解题的关键.16(2022秋·江苏扬州·八年级统考阶段练习)如图,在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,动点P 从点B 出发,沿射线BC 以1cm/s 的速度运动,设运动时间为ts ,当t =s 时,△ABP 是以AB 为腰的等腰三角形.【答案】5或8【分析】△ABP 是以AB 为腰的等腰三角形时,分两种情况:①当AB =BP 时;②当AB =AP 时,分别求出BP 的长度,继而可求得t 值.【详解】解:在Rt △ABC 中,∠ACB =90°,AB =5cm ,AC =3cm ,∴BC =AB 2-AC 2=52-32=4cm ,①当AB =BP 时,如图1,则t =5;②当AB =AP 时,BP =2BC =8cm ,t =8故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.17(2022·河南平顶山·八年级期末)如图,△ABC 中,∠C =90°,BC =6,∠ABC 的平分线与线段AC 交于点D ,且有AD =BD ,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当△BDE 是等腰三角形时,则BE 的长为.【答案】4或43##43或4【分析】现根据已知条件得出∠CBD=∠ABD=∠BAD=30°,再根据BC=6,分别求出AB、AC、BD、AD、CD的长,然后分类讨论即可.【详解】解:∵△ABC中BD平分∠ABC,∴∠CBD=∠ABD,∵BD=AD,∴∠ABD=∠BAD,∴∠CBD=∠ABD=∠BAD,∵∠ACB=90°,∴∠CBD+∠ABD+∠BAD=90°,∴∠CBD=∠ABD=∠BAD=30°,∵BC=6,∴AB=2BC=12,AC=AB2-BC2=122-62=63,∵∠CBD=30°,且BC=6,∴BD=2CD,∵BD2=CD2+BC2,即(2CD)2=CD2+62,∴CD=23,BD=2CD=2×23=43=AD;(1)当BE=BD=43时,如图:(2)当BE=DE,如图:∵BE=DE,∴∠EDB=∠ABD=30°,∴∠AED=∠EDB+∠ABD=60°,∴∠ADE=180°-∠AED-∠A=180°-60°-30°=90°,∴△ADE为直角三角形,又∵∠A=30°且AD=43,∴DE=4,∴BE=4;(3)当BD=DE,时,点E与A重合,不符合题意;综上所述,BE为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,30°直角三角形的性质的应用,按三种不同的情况进行讨论是解题的关键.18(2023·上虞市初二月考)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有个.【答案】7【分析】①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时;③当APB,PB =BQ,PQ=CQ时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.19(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ΔACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点P1、P2、P3即为所求.【点睛】本题考查尺规作图-作等腰三角形.特别注意△ACP是等腰三角形的三种情况,避免漏答案.20(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.【分析】(1)根据线段垂直平分线的性质,作AB、AC的垂直平分线,交点P即为所求;(2)分别以点B、C为圆心,BC为半径画圆,以点A、B为圆心画圆,作出BC、AB的垂直平分线,交于P5,图中P1、P2、P3、P4、P5、P6即为所求,根据等腰三角形的性质分别求出∠BPC的度数即可得答案;(3)根据(2)中作图方法画出图形,即可得答案.【详解】(1)点P为所求,(2)如图:分别以点B、C为圆心,BC为半径画圆,以点A、B为圆心画圆,作出BC、AB的垂直平分线,交于P5,图中P1、P2、P3、P4、P5、P6即为所求,共6个,∵∠BAC=80°,AB=AC,P1P6是BC的垂直平分线,∠BAC=40°,∴∠ABC=∠ACB=50°,∠BP1A=∠CP1A,∠BAP5=12∵AP1=AB,∴∠P1BA=∠BP1A,∴∠BAP5=2∠P1BA=40°∴∠P1BA=20°,∴∠BP1C=2∠P1BA=40°,∵AP2=AC,BP2=BC,∴∠AP2C=∠ACP2,∠BP2C=∠BCP2,∴∠AP2C+∠BP2C=∠ACP2+∠BCP2,∴∠BP2A=∠BCA=50°,∴∠ABP2=∠ABC=50°,∴∠P2BC=100°,(180°-∠P2BC)=40°,同理可得:∠BP3C=40°,∴∠BP2C=12∵∠BAP5=40°,AP5=BP5,∴∠ABP5=∠BAP5=40°∵∠ABP5=∠BAP5=40°,∴∠P5BC=∠ABC-∠ABP5=10°,∵BP5=CP5,∴∠BPC=180°-2∠P5BC=160°,∵AC=AP4,∠CAP4=40°,∴∠APC=70°,∴∠BPC=2∠APC=140°,∵AC=CP6,∴∠AP6C=∠CAP6=40°,∴∠BP6C=2∠AP6C=80°.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.21(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,OA-6+OB-82=0.(1)求A,B两点的坐标;(2)若点O到AB的距离为245,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A(0,6),B(8,0);(2)AB=10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA=6,OB=8,据此可得点A和点B的坐标;(2)根据S△OAB=12AB∙d=1 2∙OA∙OB求解可得;(3)先设点P(a,0),根据A(0,6),B(8,0)得PA2=a2+62,PB2=a-82,AB2=102=100,再分PA=AB和AB=PB两种情况分别求解可得.(1)∵OA-6+OB-82=0∴OA-6=0OB-8=0∴OA=6OB=8则A点的坐标为A(0,6),B点的坐标为(8,0)(2)∵S△OAB=12AB∙d=12∙OA∙OB,d=245∴AB=OA∙OBd=6×8245=10(3)存在点P,使△ABP是以AB为腰的等腰三角形设点P(a,0),根据A(0,6),B(8,0)得PA2=a2+62,PB2=a-82,AB2=102=100①若PA=AB,则PA2=AB2,即a2+62=100,解得a=8(舍)或a=-8,此时点P(-8,0);②若AB=PB,即AB2=PB2,即100=a-82解得a=18或a=-2,此时点P(18,0)或(-2,0);综上,存在点P,使△ABP使以AB为腰的等腰三角形,其坐标为(-8,0)或(18,0)或(-2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键。
(苏科版)八年级上册数学《第2章 轴对称图形》2.4 等腰三角形的轴对称性第1课时 等腰三角形的性质和判定◆1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.◆2、等腰三角形性质1:等腰三角形的两个底角相等(简写“等边对等角”).★用符号语言表示为:在△ABC 中,∵ AB =AC (已知),∴ ∠B =∠C (等边对等角).◆3、等腰三角形性质2:等腰三角形底边上的高线、中线及顶角平分线重合.★用符号语言表示为:在△ABC 中,(1)∵AB =AC , ∠1=∠2(已知),∴BD =CD , AD ⊥BC (等腰三角形三线合一).(2)∵AB =AC , BD =CD (已知),∴∠1=∠2 , AD ⊥BC (等腰三角形三线合一).(3)∵AB =AC , AD ⊥BC (已知),∴BD =CD , ∠1=∠2(等腰三角形三线合一).★在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.★拓展:等腰三角形是轴对称图形,对称轴为顶角平分线(或底边上的高或底边上的中线)所在的直线.等腰三角形的判定方法:◆1、定义法:有两边相等的三角形是等腰三角形.◆2、判定定理:有两个角相等的三角形是等腰三角形.(简称“等角对等边”).几何语言:在△ABC中,∵∠B=∠C(已知),∴AB=AC(等角对等边).◆3、等腰三角形的判定与性质的区别条件结论作用性质(等边对等角)在同一个三角形中,两边相等.这两边所对的角也相等.证明角相等.判定(等角对等边)在同一个三角形中,两个角相等.这两个角所对的边也相等.证明线段相等.【例题1】(2022•梅江区校级开学)如图,等腰△ABC 中,AB =AC ,∠A =36°.BD 平分∠ABC ,则∠BDC 是( )A .36°B .60°C .72°D .80°【分析】根据等腰三角形的性质以及三角形的内角和定理可得∠ABC 的度数,再根据角平分线的定义可得∠ABD 的度数,然后根据三角形的外角性质解答即可.【解答】解:∵AB =AC ,∠A =36°,∴∠ABC =180°36°2=72°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =36°,∴∠BDC =∠A +∠ABD =72°.故选:C.【点评】本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;【变式1-1】(2022春•藁城区期末)如图,在△ABC中,∠ABC=90°,AD=DC,AE⊥BD,若∠DAE=28°,则∠BAE= °.【分析】根据等腰三角形的性质和直角三角形的性质即可得到结论.【解答】解:∵AE⊥BD,∴∠ARD=90°,∵∠DAE=28°,∴∠ADB=62°,∵∠ABC=90°,AD=DC,∴AD=BD,∴∠DAB=∠ABD=12×(180°﹣62°)=59°,∴∠BAE=∠BAD﹣∠DAE=31°,故答案为:31.【点评】本题考查了等腰三角形的性质,直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.【变式1-2】(2022春•三原县期末)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,交AB于点E,交AC于点D.若∠ADE=40°,则∠CBD= .【分析】由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE =40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案.【解答】解:∵DE垂直平分AB,∴∠AED=∠BED=90°,DA=DB,∵∠ADE=40°,∴∠A=∠ABD=50°,又∵AB=AC,∴∠ABC=(180°﹣50°)÷2=65°,∴∠CBD=∠ABC﹣∠ABD=65°﹣50°=15°.故答案为:15°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.【变式1-3】(2022春•碑林区校级期末)如图,已知在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AC于点D,交AB于点E,连接BD,则∠DBC的度数为( )A.30°B.32°C.34°D.36°【分析】根据等腰三角形的性质可得∠ABC的度数,根据线段垂直平分线的性质可得DA=DB,可得∠DBA 的度数,进一步即可求出∠DBC的度数.【解答】解:在△ABC中,AB=AC,∠A=40°,∴∠ABC =∠ACB =70°,∵AB 的垂直平分线交AC 于点D ,∴DA =DB ,∴∠DBA =∠A =40°,∴∠DBC =30°,故选:A .【点评】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握这些性质是解题的关键.【变式1-4】(2022春•铁西区期末)如图,在等腰△ABC 中,AB =AC ,延长BC 到点D ,使得CD =CA ,连接AD ,若∠D =25°,求∠BAC 的度数.【分析】两次利用等边对等角求得∠B =∠BCA =50°,然后利用三角形的内角和求得答案即可.【解答】解:∵CD =CA ,∠D =25°,∴∠BCA =2∠D =50°,∵AB =AC ,∴∠B =∠BCA =50°,∴∠BAC =180°﹣∠B ﹣∠C =80°.【点评】考查了等腰三角形的性质,解题的关键是了解“等边对等角”,难度不大.【例题2】(2022秋•云梦县期中)如图,在△ABC 中,AB =AC ,AD =DB ,DE ⊥AB 于点E ,若BC =3,且△BDC 的周长为8,则AE的长为( )A.2B.2.5C.3D.3.5【分析】根据已知可得BD+CD=5,从而可得AB=AC=5,然后利用等腰三角形的三线合一性质进行计算即可解答.【解答】解:∵BC=3,且△BDC的周长为8,∴BD+CD=8﹣3=5,∵AD=BD,∴AD+DC=5,∴AC=5,∵AB=AC,∴AB=5,∵AD=DB,DE⊥AB,∴AE=12AB=2.5,故选:B.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.【变式2-1】如图,在△ABC中,AB=AC,MN是AB的垂直平分线,△BNC的周长是24cm,BC=10cm,则AB的长是( )A .17cmB .12cmC .14cmD .34cm【分析】根据垂直平分线的性质可得:AN=BN ,根据△BNC 的周长和BC 的长度得出AC=14cm,再利用AB=AC ,则AB=AC=14cm .【解答】解:∵MN 是AB 的垂直平分线,∴AN =BN ,∵△BNC 的周长是24cm ,BC =10cm ,∴BN +NC +BC =AN +NC +BC =AC +BC =24(cm ),∴AC =14cm ,∵AB =AC ,∴AB =14cm ,故选:C .【点评】本题考查垂直平分线的性质以及等腰三角形的性质,解题的关键是掌握垂直平分线的性质,求出AC=14cm .【变式2-2】(2023春•西安月考)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =5cm ,则BF =( )A .8cmB .10cmC .12cmD .14cm【分析】先得出AD 是△ABC 的中线,得出S △ABC =2S △ABD =2×12AB •DE =AB •DE =5AB ,又S △ABC =12AC •BF ,将AC =AB 代入即可求出BF .【解答】解:∵△ABC 中,AB =AC ,AD ⊥BC ,∴AD 是△ABC 的中线,∴S △ABC =2S △ABD =2×12AB •DE =AB •DE =5AB ,∵S △ABC =12AC •BF ,∴12AC •BF =5AB ,∵AC =AB ,∴12BF =5,∴BF =10(cm ),故选:B .【点评】本题考查了等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.【例题3】(2022秋•栖霞区校级月考)如图,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .则下列结论:①∠C =2∠A ;②BD 平分∠ABC ;③BC =AD ;④OD =2CD .正确的有( )A .1个B .2个C .3个D .4个【分析】由在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,根据线段垂直平分线的性质与等腰三角形的性质,可求得∠ABD =∠DBC =∠A =36°,∠ABC =∠BDC =∠C =72°,继而求得:①∠C =2∠A ;②BD 平分∠ABC ;③BC =AD .【解答】解:∵AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,∴AD =BD ,∴∠ABD =∠A =36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠C=2∠A,故①正确;∴∠DBC=∠ABC﹣∠ABD=36°,∴∠ABD=∠DBC,∴BD平分∠ABC,故②正确;∴∠BDC=∠C=72°,∴BC=BD=AD,故③正确;由条件不能得出OD=2CD,故④错误.故选:C.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.【变式3-1】在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.下列结论中:①∠C=72°;②BD是△ABC的中线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.正确的序号有( )A.①③④B.①④⑤C.①②⑤D.②④⑤【分析】根据题意画出图形,再根据在△ABC中,已知AB=AC,∠A=36°求出∠C的度数;由线段垂直平分线的性质求出∠ABD的度数,故可得出∠DBC的度数,进而得出BD是∠ABC的平分线;由三角形内角和定理可求出∠BDC的度数;由线段垂直平分线的性质,易证得△ABD是等腰三角形.【解答】解:∵△ABC中,∠A=36°,AB=AC,∴∠ABC=∠C=180°∠A2=72°,故①正确;∵DM是AB的垂直平分线,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠DBC=72°﹣36°=36°,∴BD是∠ABC的平分线,故②错误;∵在△BCD中,∠DBC=36°,∠C=72°,∴∠BDC=180°﹣(∠DBC+∠C)=180°﹣(36°+72°)=72°.故③错误;∵DM是AB的垂直平分线,∴AD=BD∴△ABD是等腰三角形;故④正确;∵MN是线段AB的垂直平分线,∴AD=BD,∵∠A=∠ABD=36°,∴∠CBD=36°,∴BD=BC,∴AD=BD=BC,故⑤正确.故选:B.【点评】本题考查的是线段垂直平分线的性质及等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.【变式3-2】如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有( )A.1个B.2个C.3个D.4个【分析】利用等腰三角形的概念、性质以及角平分线的性质做题.【解答】解:∵AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC∴△ABC是等腰三角形,AD⊥BC,BD=CD,∠BED=∠DFC=90°∴DE=DF∴AD垂直平分EF∴(4)错误;又∵AD所在直线是△ABC的对称轴,∴(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF.故选:C.【点评】有两边相等的三角形是等腰三角形;等腰三角形的两个底角相等;(简写成“等边对等角”)等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”).【变式3-3】如图,在△ABC中,∠BAC与∠ACB的平分线交于点M,过点M作DE∥AC交AB于点D,交BC于点E,那么下列结论:①△ADM和△CEM都是等腰三角形;②△BDE的周长等于AB+BC;③AM=2CM;④AD+CE=AC.其中一定正确的结论有( )A.4个B.3个C.2个D.1个【分析】由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.【解答】解:∵DE∥AC,∴∠DMA=∠MAC,∠EMC=∠MCA,∵△ABC中,∠BAC与∠ACB的平分线交于点M,∴∠DAM=∠MAC,∠ECM=∠MCA,∴∠DAM=∠DMA,∠EMC=∠ECM,∴DA=DM,ME=EC,即△ADM和△CEM都是等腰三角形;故①正确;∴DE=DM+EM=AD+CE,∵AC>DE,∴AD+CE<AC,故④错误;∴△BDE的周长为:BD+DE+BE=DB+DM+ME+BE=AB+BC;故②正确;根据已知条件无法证明AM=2CM,故③错误.故选:C.【点评】本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.【变式3-4】(2022春•神木市期末)如图,在△ABC中,点E、D分别在AB、AC的延长线上,∠BAC 与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②CP平分∠BCD;③BP垂直平分CE,其中正确的结论有( )A.0个B.1个C.2个D.3个【分析】①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质即可得到结论;③根据线段垂直平分线的性质即可得出结论.【解答】解:①∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴GA=GP,故①正确;②∵∠BAC与∠CBE的平分线相交于点P,∴点P也位于∠BCD的平分线上,∴∠DCP=∠BCP,故②正确;③∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一),故③正确;故选:D.【点评】本题主要考查了角平分线的性质和定义,平行线的性质,等腰三角形的性质,熟练掌握各性质定理是解题的关键.【例题4】(2022春•巴中期末)在等腰△ABC中有一个角是50°,那么另外两个角分别是( )A.50°、80°B.50°、80°或65°、65°C.65°、65°D.无法确定【分析】根据等腰三角形的性质分∠B为顶角或底角两种情况求解即可.【解答】解:当∠B=50°为顶角时,此时∠A=∠C=180°50°2=65°;当∠B=50°为底角时,此时另一底角为50°,顶角为80°,故另外两个角分别是50°,80°或65°,65°.故选:B.【点评】本题考查了等腰三角形的性质和三角形的内角和定理,注意此题有两种情况.【变式4-1】(2022•上杭县校级开学)如果等腰三角形的一个外角为150°,则它的底角度数为( )A.30°B.75°C.30°或75°D.60°【分析】根据等腰三角形的一个外角等于150°,进行讨论可能是底角的外角是150°,也有可能顶角的外角是150°,从而求出答案.【解答】解:①当150°外角是底角的外角时,底角为:180°﹣150°=30°;②当150°外角是顶角的外角时,顶角为:180°﹣150°=30°,则底角为:(180°﹣30°)×12=75°,∴底角为30°或75°.故选:C.【点评】此题主要考查了等腰三角形的性质,此题应注意进行分类讨论,非常容易忽略一种情况.【变式4-2】(2022秋•南岗区校级月考)已知等腰三角形的两边长分别为7和3,则周长是( )A.13B.17C.18D.19【分析】分两种情况讨论:当3是腰时或当7是腰时,利用三角形的三边关系进行分析求解即可.【解答】解:当3是腰时,则3+3<7,不能组成三角形,舍去;当7是腰时,则三角形的周长是3+7×2=17.故选:B.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.【变式4-3】(2022春•榆次区期中)一个等腰三角形的周长为13cm,一边长为5cm,则另两边长分别为( )A.3cm,5cm B.4cm,4cmC.3cm,5cm或4cm,4cm D.以上都不对【分析】此题分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【解答】解:当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形;当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形.故另两边长分别为3cm,5cm或4cm,4cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.【变式4-4】(2022春•文登区期末)若实数m,n=0,且m,n恰好是等腰△ABC的两条边的长,则△ABC的周长是( )A.6B.8C.10D.8或10【分析】利用非负数的性质求出m,n的值,再分两种情形讨论即可.【解答】解:=0,∴m﹣2=0,n﹣4=0,解得:m=2,n=4,当2是等腰三角形的底时,4,4,2能构成三角形,周长为10,当4是底时,2,2,4不能构成三角形.故选:C.【点评】本题考查等腰三角形的性质,非负数的性质,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.【变式4-5】(2022秋•长汀县校级月考)已知等腰三角形一腰上的高线与另一腰的夹角为60°,那么这个等腰三角形的顶角等于( )A.15°或75°B.30°C.150°D.150°或30°【分析】方法1:首先根据题意画出图形,然后分别从锐角三角形与钝角三角形分析求解即可求得答案.方法2:读到此题我们首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,我们可以通过画图来讨论剩余两种情况.【解答】解:方法1:根据题意得:AB=AC,BD⊥AC,如图(1),∠ABD=60°,则∠A=30°;如图(2),∠ABD=60°,∴∠BAD=30°,∴∠BAC=180°﹣30°=150°.故这个等腰三角形的顶角等于30°或150°.方法2:①当为锐角三角形时可以画图,高与左边腰成60°夹角,由三角形内角和为180°可得,顶角为180°﹣90°﹣60°=30°,②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为30°,∴三角形的顶角为180°﹣30°=150°.故选:D.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.【例题5】已知:如图,P 、Q 是△ABC 边BC 上两点,且AB=AC ,AP=AQ .求证:BP=CQ .【分析】根据线段垂直平分线的性质,可得BO=CO ,PO=QO ,根据等式的性质,可得答案.【解答】证明:过点A 作AO ⊥BC 于O .∵AB=AC ,AO ⊥BC ,∴BO=CO , ∵AP=AQ ,AO ⊥BC ,∴PO=QO , ∴BO -PO=CO -QO∴BP=CQ .【点评】本题考查了等腰三角形的性质,利用线段垂直平分线的性质是解题关键.【变式5-1】已知:如图,在△ABC 中,AB =AC ,BD ,CE 是△ABC的角平分线.求证:BD =CE .【分析】由于AB=AC,BD,CE是△ABC的角平分线,利用等边对等角,角平分线定义,可得∠ABC=∠ACB,∠DBC=∠ECB,而BC=CB,利用ASA可证△EBC≌△DBC,再利用全等三角形的性质可证BD=CE.【解答】证明:如图所示,∵AB=AC,BD,CE是△ABC的角平分线.∴∠ABC=∠ACB,∴∠DBC=∠ECB,又∵BC=CB,∴△EBC≌△DCB(ASA),∴BD=CE.【点评】本题利用等腰三角形的性质、角平分线的定义、全等三角形的判定和性质.【变式5-2】如图,AB=AC,BD=CD,AD的延长线与BC交于E,求证:AE⊥BC.【分析】由AB=AC,BD=CD,AD是公共边,即可证得△ABD≌△ACD(SSS),则可得∠BAD=∠CAD,又由等腰三角形的三线合一的性质,证得AE⊥BC.【解答】解:在△ABD和△ACD中,AB=ACAD=AD,BD=CD∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,∵AB=AC,∴AE⊥BC.【点评】此题考查了等腰三角形的性质与全等三角形的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.【变式5-3】(2023•成武县校级三模)如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF,求证:DE=DF.【分析】首先连接AD,由AB=AC,D是BC的中点,根据三线合一的性质,可得∠EAD=∠FAD,又由SAS,可判定△AED≌△AFD,继而证得DE=DF.【解答】证明:连接AD,∵AB=AC,D是BC的中点,∴∠EAD=∠FAD,在△AED和△AFD中,AE=AF∠EAD=∠FAD,AD=AD∴△AED≌△AFD(SAS),∴DE=DF.【点评】此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.【变式5-4】如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E,AD与BE相交于点F.(1)求证:∠CBE=∠BAD;(2)若CE=EF,求证:AF=2BD.【分析】(1)根据∠CBE +∠C =90°,∠CAD +∠C =90°,得出∠CBE =∠CAD ,再根据等腰三角形的性质得出∠CAD =∠BAD 即可得证结论;(2)根据AAS 证△BCE ≌△AFE ,得出AF =BC ,根据BC =2BD ,即可得证结论.【解答】证明:(1)∵∠CBE +∠C =90°,∠CAD +∠C =90°,∴∠CBE =∠CAD ,∵AB =AC ,AD 是BC 边上的中线,∴∠CAD =∠BAD ,∴∠CBE =∠BAD ;(2)由(1)知∠CBE =∠CAD ,在△BCE 和△AFE 中,∠CBE =∠AFE ∠BEC =∠FEA =90°CE =EF,∴△BCE ≌△AFE (AAS ),∴AF =BC ,∵BC =2BD ,∴AF =2BD .【点评】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【例题6】(2022•建湖县一模)如图,每个小方格的边长为1,A ,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C的个数为( )A.1B.2C.3D.4【分析】根据“两圆一线”画图找点即可.【解答】解:如图,C点与P、Q、R重合时,均满足△ABC是等腰三角形,故选:C.【点评】本题考查“两圆一线”构造等腰三角形的方法,熟练使用两圆一线的方法是解题关键.【变式6-1】如图所示,共有等腰三角形( )A.4个B.5个C.3个D.2个【分析】由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.【解答】解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选:B.【点评】此题考查了三角形的内角和定理、三角形的外角的性质以及等腰三角形的判定方法.得到各角的度数是正确解答本题的关键.【变式6-2】(2022春•杨浦区校级期末)如图,在直角三角形ABC中,∠ACB=90°,∠B=36°,点D、E在AB上,如果BC=BD,∠CED=∠CDE,那么图中的等腰三角形共有( )个.A.3个B.4个C.5个D.6个【分析】先求出各个角的度数,然后根据等腰三角形的判定即可求出答案.【解答】解:∵∠ACB=90°,∠B=36°,∴∠A=54°,∵BC=BD,∴∠CDB=∠DCB=72°,∴∠ECB=36°,∠ACE=54°,∴CE=BE,AE=CE,∴△BCD,△CDE,△CEB,△ACE都是等腰三角形,故选:B.【点评】本题考查等腰三角形的判定,解题的关键是求出各个角的度数,本题属于基础题型.【变式6-3】如图,在△ABC中,且∠ABC=60°,且∠C=45°,AD是边BC上的高,∠ABC的平分线交AD于F,交AC于E,则图中等腰三角形的个数为( )A.2B.3C.4D.5【分析】根据三角形高线的性质及直角三角形的性质推出∠ADC=∠ADB=90°,∠BAD=90°﹣∠ABD=30°,∠DAC=90°﹣∠C=45°,从而利用等腰三角形的判定定理得到△ADC是等腰三角形,再根据角平分线的性质得到∠ABF=∠CBE=12∠ABC=30°,从而由∠ABF=∠BAD推出△ABF是等腰三角形,而∠BEA=∠EBC+∠C=45°+30°=75°,∠BAC=180°﹣60°﹣45°=75°=∠BEA,进而求解.【解答】解:∵AD是边BC上的高线,∴∠ADC=∠ADB=90°,∵∠ABC=60°,∠C=45°,∴∠BAD=90°﹣∠ABD=30°,∠DAC=90°﹣∠C=45°,∴△ADC是等腰三角形,∵BE是∠ABC的平分线,∴∠ABF=∠CBE=12∠ABC=30°,∴∠ABF=∠BAD,∴△ABF是等腰三角形,则∠BEA=∠EBC+∠C=45°+30°=75°,而∠BAC=180°﹣60°﹣45°=75°=∠BEA,故△ABE为等腰三角形,故选:B.【点评】本题考查等腰三角形的判定及直角三角形的性质,应充分运用数形结合的思想方法,结合图形从中寻找角之间的关系,结合相关定理及性质进行求解.【变式6-4】(2022秋•鼓楼区期末)如图,在3×3正方形网格中,点A,B在格点上,若点C也在格点上,且△ABC是等腰三角形,则符合条件的点C的个数为( )A.1B.2C.3D.4【分析】分别画出以A点和B点为顶点的等腰三角形,再画出C为顶点的等腰三角形即可.【解答】解:以AB为腰的等腰三角形有两个,以AB为底的等腰三角形有一个,如图:所以符合条件的点C的个数为3个,故选:C.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.掌握等腰三角形的判定方法是解题的关键.【变式6-5】(2022秋•镇江月考)如图,在4×4的正方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰三角形,满足条件的格点C的个数是( )A .5B .6C .8D .9【分析】分三种情况:当BA =BC 时,当AB =AC 时,当CA =CB 时,然后进行分析即可解答.【解答】解:如图:分三种情况:当BA =BC 时,以点B 为圆心,BA 长为半径作圆,点C 1,C 2,C 3即为所求;当AB =AC 时,以点A 为圆心,AB 长为半径作圆,点C 4,C 5,C 6,C 7,C 8即为所求;当CA =CB 时,作AB 的垂直平分线,与正方形网格的交点不在格点上,综上所述:满足条件的格点C 的个数是8,故选:C .【点评】本题考查了等腰三角形的判定,分三种情况讨论是解题的关键.【例题7】如图,在△ABC 中,AD 平分∠BAC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:△ABC是等腰三角形.【分析】由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,BD=CDDE=DF,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C;∴AB=AC∴△ABC为等腰三角形.【点评】本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质得出DE=DF 是解题的关键.【变式7-1】已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.【分析】根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.【解答】解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,∴∠BAD=∠CAD,∵DE∥AB,∴∠ADE=∠BAD,∴∠ADE=∠CAD∴AE=ED,∴△AED是等腰三角形.【点评】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.【变式7-2】如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD =BE,求证:△ABC为等腰三角形.【分析】要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.【解答】证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.【点评】本题考查了等腰三角形的判定方法;角的等量代换是正确解答本题的关键.【变式7-3】已知:如图,△ABC中,BC边上有D、E两点,∠1=∠2,∠3=∠4.求证:△ABC是等腰三角形.【分析】由∠1=∠2,∠3=∠4,根据三角形外角的性质,易证得∠B=∠C,然后由等角对等边,证得:△ABC 是等腰三角形.【解答】证明:∵∠B=∠3﹣∠1,∠C=∠4﹣∠2,又∵∠1=∠2,∠3=∠4,∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形.【点评】此题考查了等腰三角形的判定与三角形外角的性质.此题比较简单,注意掌握数形结合思想的应用.【变式7-4】已知如图,点D在AB上,点E在AC的延长线上,且BD=CE,FD=FE.求证:△ABC 是等腰三角形.【分析】过点D作DG∥AE于点G,利用平行线的性质得出∠GDF=∠CEF,进而利用ASA得出△GDF ≌△CEF,再利用全等三角形的性质以及等腰三角形的判定得出即可.【解答】证明:过点D作DG∥AE于点G,∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∠GDF=∠CEFDF=EF,∠DFG=∠CFE∴△GDF≌△CEF(ASA),∴DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.【点评】本题考查了全等三角形的判定与性质以及等腰三角形的判定,作出恰当的辅助线是解答此题的关键.【例题8】(2022秋•通州区校级月考)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,△AMN的周长为33,AB=15,则AC为( )A.15B.18C.20D.23【分析】根据角平分线的定义和平行线的性质可证△MBO和△NCO是等腰三角形,从而可得MO=MB,NO=NC,然后根据线段的和差关系可得,△AMN的周长=AB+AC,进行计算即可解答.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵△AMN的周长为33,AB=15,∴AM+MN+AN=33,∴AM+OM+ON+AN=33,∴AM+MB+CN+AN=33,∴AB+AC=33,∴AC=18,故选:B.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,熟练掌握根据角平分线的定义和平行线的性质可证等腰三角形是解题的关键.【变式8-1】如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为( )A.12B.16C.20D.8【分析】根据角平分线的性质,平行线的性质,可以求得∠B的度数,再根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.【点评】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.【变式8-2】如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE,AB=5,BE=3,则AC=( )A.10B.11C.13D.15【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM=5,BM=2BE=6,再利用∠4是△BCM的外角,利用等腰三角形判定得到CM=BM,利用等量代换即可求证.【解答】解:延长BE交AC于M,∵BE⊥AE,∴∠AEB=∠AEM=90°∴∠3=90°﹣∠1,∠4=90°﹣∠2,∵∠1=∠2,∴∠3=∠4,∴AB=AM=5,∵BE⊥AE,∴BM=2BE=6,∵∠4是△BCM的外角,∴∠4=∠5+∠C,∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5,∴3∠C=∠4+∠5=2∠5+∠C,∴∠5=∠C,∴CM=BM=6,∴AC=AM+CM=AB+2BE=11.故选:B.【点评】此题考查等腰三角形的判定与性质,利用三角形内角和定理,三角形外角的性质,准确添加辅助线构建等腰三角形是解题关键.【变式8-3】(2022春•神木市期末)如图,已知在△ABC中,AB=AC,BP、CQ是△ABC两腰上的高,BP与CQ交于点O.求证:△BCO是等腰三角形.【分析】由题意可求得∠ABC=∠ACB,再由高得∠BQC=∠CPB=90°,从而可求得∠OBC=∠OCB,即有OB=OC,从而得证△BCO是等腰三角形.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵BP、CQ是△ABC两腰上的高,∴∠BQC=∠CPB=90°,∵∠OBC=90°﹣∠ACB,∠OCB=90°﹣∠ABC,∴∠OBC=∠OCB,∴OB=OC,∴△BCO为等腰三角形.【点评】本题主要考查等腰三角形的判定,等腰三角形的性质,解答的关键是结合图形分析清楚角之间的关系.【变式8-4】如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)求证:∠B=∠DEF;(3)当∠A=40°时,求∠DEF的度数.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF 是等腰三角形;(2)根据△BDE≌△CEF,可知∠FEC=∠BDE,∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B 即可得出结论;(3)由(2)知∠DEF=∠B,再根据等腰三角形的性质即可得出∠DEF的度数.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,BD=CE ∠B=∠C BE=CF,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;。
专题14 图形中的等腰三角形分类讨论教学重难点1.理解等腰三角形的性质和判定定理;2.能用等腰三角形的判定定理进行相关计算和证明;3.初步体会等腰三角形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三角形;5.培养学生进行独立思考,提高独立解决问题的能力。
【备注】:1.此部分知识点梳理,根据第1个图先提问引导学生回顾学过的等腰三角形的性质,可以在黑板上举例让学生画图;2再根据第2个图引导学生总结出题目中经常出现的一些等腰三角形的题型;3.和学生一起分析二次函数背景下等腰三角形的基本考点,为后面的例题讲解做好铺垫。
建议时间5分钟左右。
等腰三角形的性质:等腰三角形常见题型分类:函数背景下的等腰三角形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进行等腰三角形的讨论:分“指定腰长”和“不指定腰长”两大类;4.根据点的位置和形成的等腰三角形立等式求解。
【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“参考教法”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比式引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。
1.(2019青浦二模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三角形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.图形背景下等腰三角形分类讨论的解题方法和策略:1.先寻找题目中的条件:相等的角、相等的边、相似的三角形等;2.根据题目中的条件求解相关线段的长度;3.等腰三角形讨论中,分三步走:分类、画图、计算;4.等腰讨论中,当不能直接利用边长相等求解时,一般情况下通过“画底边上的高”辅助线结合三角比计算求解;5.注意点的位置取舍答案;6.根据题目条件,注意快速、正确画图,用好数形结合思想;7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。
1.(2019秋•青浦区校级月考)已知,如图,在△ABC中,AB=AC,∠A=36°,BE是∠ABC的平分线,DE∥BC,则图中等腰三角形一共有()A.2个B.3个C.4个D.5个【分析】根据三角形内角和定理判定△ABC为等腰三角形,然后由角平分线、平行线的性质、等角对等边来找图中的等腰三角形,即可得出答案.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵DE∥BC,∴△ADE是等腰三角形;∵BE是∠ABC的平分线,∴∠DBE=∠EBC,∵DE∥BC,∴∠EBC=∠BED,∴△BDE是等腰三角形;△ABE和△BEC为等腰三角形;∴图中等腰三角形的个数有5个;故选:D.2.(2019春•浦东新区期末)已知:如图,在△ABC中,点D,E是边BC上的两点,且AB=BE,AC =CD.(1)若∠BAC=90°,求∠DAE的度数;(2)若∠BAC=120°,直接写出∠DAE的度数;(3)设∠BAC=α,∠DAE=β,猜想α与β的之间数量关系(不需证明).【分析】(1)根据等腰三角形性质得出∠BAE=∠BEA,∠CAD=∠CDA,根据三角形内角和定理得出∠B=180°﹣2∠BAE①,∠C=180°﹣2∠CAD②,①+②得出∠B+∠C=360°﹣2(∠BAE+∠CAD),求出2∠DAE=180°﹣∠BAC,代入求出即可;(2),(3)同(1).【解答】解:(1)∵BE=BA,∴∠BAE=∠BEA,∴∠B=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴∠C=180°﹣2∠CAD,②①+②得:∠B+∠C=360°﹣2(∠BAE+∠CAD)∴180°﹣∠BAC=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)],∴﹣∠BAC=180°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE],∴﹣∠BAC=180°﹣2(∠BAC+∠DAE),∴2∠DAE=180°﹣∠BAC.∵∠BAC=90°,∴2∠DAE=180°﹣90°=90°,∴∠DAE=45°;(2)由(1)知,∠DAE=12(180°﹣∠BAC)=12(180°﹣120°)=30°;(3)由(1)知,β=12(180°﹣α),∴α+2β=180°.3.(2018春•杨浦区期末)(1)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D.请说明△BDC是等腰三角形;(2)在(1)的条件下请设计四个不同的方案,将△ABC分割成三个等腰三角形,请直接画出示意图并标出每个等腰三角形顶角度数;(3)若有一个内角为36°的三角形被分割成两个等腰三角形,则原三角形中最大内角的所有可能值为.【分析】(1)由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案;(2)根据角平分线的定义和等腰三角形的性质即可得到结论;(3)分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:(1)∵AB=AC,∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形;(2)如图方案1,做∠B的角平分线BD交AC于点D,作∠BDC得角平分线DE交BC于点E,∵∠A=36°,∴∠C=∠ABC=72°,∴∠DBC=36°,∠BDC=72°,∴∠EDG=∠BDE=36°,∴△ABD,△BDE,△DEC为等腰三角形;如图方案2,做∠B的角平分线BF交AC于点F,作∠C得角平分线CM交BF于点M,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠FBC=∠ABF=36°,∠FCM=∠MCB=72°,∴∠CFM=∠CMF=72°,∴△ABF,△BMC,△CMF为等腰三角形;如图方案3,做∠C的角平分线CN交AB于点N,作∠BNC得角平分线NP交BC于点P,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCN=∠ACN=36°,∠BNC=∠B=72°,∴∠BNP=∠PNC=36°,∠NPB=72°,∴△ANC,△NPC,△BNP为等腰三角形;如图方案4,作∠B的角平分线BD交AC于点D,作∠BDE=∠BDC交AB于点E,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCD=∠BDE=∠BED=72°,∠AED=108°,∴∠A=∠ADE=36°,∴△AED,△BDE,△BCD为等腰三角形;(3)①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.故答案为:72°,90°,108°,132°,126°.4.如图,等腰梯形ABCD中,AD BC∥,5,AB DC==AD=2,BC=8,MEN B∠=∠.MEN∠的顶点E在边BC上移动,一条边始终经过点A,另一边与CD交于点F,联接AF。