等腰三角形的分类讨论问题教学设计
- 格式:doc
- 大小:52.50 KB
- 文档页数:3
初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。
等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。
等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。
同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。
如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:重点:等腰三角形性质的探索与应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。
二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。
4242课题:等腰三角形的分类讨论一、教学目标1、知识与技能:了解等腰三角形的分类,培养分类讨论的思想,掌握等腰三角形的分类讨论的基本方法,体会从特殊到一般的认识事物的方法。
2、过程与方法:会运用等腰三角形的分类讨论的思想来解决有关动点问题。
3、情感态度与价值观:激发学生的学习兴趣,让学生的思维能力,在解题中得到提高,享受成功的喜悦。
二、教学重点了解等腰三角形的分类,会运用等腰三角形的分类讨论的思想来解决有关动点的简单综合题三、教学难点会用分类讨论的思想解关于等腰三角形的双动点的综合题四、教学模式:小组合作探究五、教学过程:(一)思维点拨,引入:1.已知等腰三角形的两边长分别为5和8,求它的周长。
2. 已知等腰三角形的一个角为80°,求它的三内角度数。
问:从上面的2个题目的解答中,你认为等腰三角形的分类要注意些什么? 归纳:等腰三角形中:图形确定——不需分类图形不确定——分类(边不确定时,以边分类;角不确定时,以角分类)(二)合作探究,形成能力:引:这节课我们就来探究等腰三角形综合题中的分类讨论思想例. 如图,已知AB=BC,∠ABC=90度,1.当AB=BC=1时,求AC 长及∠A 的度数;你发现等腰直角△ABC 的斜边AC=__AB. (生完成工作单,指名回答,师板书)解:∵AC 2=AB 2+BC 2 =12+12=2又∵AC >02. 若AB=BC=4时,动点P 从点A 开始沿AC 边以每秒1个单位的速度运动,设运动时间为t 秒。
(1)点P 运动到点C 即止,请认真观察,在点P 的运动过程中,△ABP 中哪些边、角保持不变,哪些边、角发生变化?师:几何画板演示,生观察后回答。
师:请同学们注意,在动点问题中抓住不变的边或角,是解决问题的突破口 。
①用含t 的代数式表示AP ;并写出t 的取值范围。
分析:AP 就是点P 所经过的距离,如何求? 解:AP=t∵点P 在线段AC 上从点A 运动到C∴0≤t ≤ ∴AC=2∴AC=2AB4242 AQ=2AP4-t=2t t=4 2+142秒,4秒,22秒时AP=2AQt=2(4-t)t=42 2+14 2+1 秒,422+1秒,2秒时②求t为多少时,△ABP成为等腰三角形?师:几何画板演示。
等腰三角形中的分类讨论学案【学习目标】1、了解“分类讨论思想”的意义;理解为何分类及如何分类;2、理解分类讨论的步骤以及分类讨论法解题必须遵循总的原则;3、感受“分类讨论思想”在解决特殊三角形问题中的作用。
【课前热身】1、(2012广元)已知等腰三角形的一个内角为80°,则另两个角的度数是2、(2011烟台)等腰三角形的周长为14,其一边长为4,那么它的底边为3、关于分类讨论●分类讨论的定义:当数学问题中的条件、结论不确定时,就应分类讨论。
分类讨论思想是指在解决一个问题时,将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一加以解决,从而使问题得到解决,这就是分类讨论思想。
●分类讨论解题的实质:是将整体问题化为部分问题来解决。
●分类讨论的原则:是不重复、不遗漏。
讨论的方法是逐类进行,还必须要注意综合讨论的结果,以使解题步骤完整。
【例题精练】例1 关于角的分类(2007 杭州)一个等腰三角形的一个外角等于110 ,则这个三角形的三个角应该为。
例2 关于边的分类1、(2012攀枝花)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A. 20或16 B. 20 C. 16 D.以上答案均不对2、等腰三角形一腰上的中线把周长分成15和11两部分,则它的底边长等于小结解分类讨论问题的步骤:3、(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A .6B .7C .8D .9 变式: 如图,已知点A 的坐标为(2,2),O 为坐标原点,在x 轴上找一点P ,使△AOP 为等腰三角形,请直接写出符合条件的点P 的坐标。
题后反思(注意点):4、如图,已知△ABC 中,∠B=90 º,AB=8cm ,BC=6cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ 的长;(2)当点Q 在边BC 上运动时,通过计算说明PQ 能否把△ABC 的周长平分?(3)当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.题后反思(注意点):【巩固练习】1、一个等腰三角形的三边长分别为3x-2 ,4x-3 ,6-2x ,求等腰三角形的周长。
小专题:等腰三角形中的分类讨论贵阳二十三中冉昆一、教学任务分析1.教材分析,本节课是缘自人教版八年级上册第十三章《轴对称》第三节《等腰三角形》,是轴对称图形的核心承载,等腰三角形是一种特殊的三角形,根据构成的不唯一的特点,在问题中大多蕴含着分类讨论的数学思想,因此其下启三角形、等腰三角形的进一步认识,上承分类讨论、数形结合等数学思想的运用,旨在让学生掌握分类方法,领会其实质的重要学习素材。
2.具体学习任务,围绕“分类讨论”数学思想方法在等腰三角形中的应用设计了本节专题课,提高学生运用数学思想来解决实际问题的能力,突出方法的灵活性,从而提高学生运用数学思想来解决实际问题的能力。
二、学情分析学生的知识技能基础:在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。
学生学习了等腰三角形之后,对等腰三角形的特征、性质及判定方法己有了一定的握,但遇到等腰三角形中有关分类讨论的问题时,大部分学生因分类不当,甚至不考虑分类而导致错解或漏解。
学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力和总结提炼的能力,大多数学生对尺规作图已熟练掌握,为合作探究提供了可靠的经验基础。
三、教学目标1.设计具体的问题情境引导学生探究理解“分类讨论”的数学思想方法,并用此方法指导解决涉及等腰三角形的各类分类问题的计算及作图.2.通过引导,积极自主地参与课堂自主探究和合作交流,并在其中运用、体验“分类讨论”的数学思想,学会提炼,感受知识的形成过程.3.感受知识的严谨性、条理性,发展学生几何直观、推理能力的数学核心素养;培养学生“观察、实践、推理、交流、总结”并有条理地表述活动过程等严谨的学习品质。
四、教学重难点分析教学重点:通过独立思考,合作交流,形成“分类讨论”的数学思想并分析解决等腰三角形中的有关问题。
教学难点:层层递进,总结出分类的方法,并应用于其他问题之中,训练熟练而准确的解决问题的能力。
专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。
【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。
建议时间5分钟左右。
等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。
【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。
1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。
等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。
2、培养学生进行独立思考,提高了独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。
新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。
(三)、证明结论,得出性质1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。
(2)引导学生寻找辅助线、如何添加辅助线。
(3)电脑显示证明过程。
(4)说明“等边对等角”的作用。
2、推论1的证明。
(1)进一步启发学生得到“等腰三角形三线合一”的性质。
(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
探索篇•方法展示关于等腰三角形的分类讨论教学管甜甜(江苏省南京市第二十九中学致远初级中学,江苏南京)摘要:分类讨论是初中数学的重要思想方法,在等腰三角形、函数、方程等内容当中都有所应用,用这种方法的关键是分类的依据要清晰,另一个关键是要对结论进行验证,验证的标准是得出的这个结论能不能满足已知条件。
关键词:等腰三角形;分类讨论;教学实践等腰三角形是一种特殊的三角形,它的性质比较多,恰当地分类可以提高学生分析问题和解答问题的能力。
以下笔者总结了等腰三角形问题中常见的几种需要分类讨论的情况,希望给予学生一定的帮助。
一、关于等腰三角形边的分类当题目当中给出了三角形的边长,但是没有明确地说哪个边是腰、哪个边是底时,这个时候就需要进行分类了,可以分为两种情况进行讨论:第一种情况是设这个边为腰;第二种情况是设这个边为底。
这只是理论上的假设,而实际上这样求出来的两组边长能否组成一个三角形,还要进行验证,而进行验证的标准就是三角形的性质:三角形的任意两边之和大于第三边,两边之差小于第三边。
例如,已知等腰三角形的周长为15,其中一个边长为6,那么它的底边长多少?在解答这个问题的时候,题目当中的关键信息是边长为6的边不确定是腰还是底,这时分类讨论的两种情况分别是:第一种情况是设长为6的边为腰,则另两条边为6,3;第二种情况是设长为6的边为底,则另两条边是4.5,4.5。
这时,要验证这样两组边长能不能组成一个三角形,也就是满不满足三角形的任意两边之和大于第三边,两边之差小于第三边。
经验证满足三角形的三边关系定理,所以等腰三角形的底边为6或4.5。
例如,当已知等腰三角形的两个边的边长:一边长是6,另一边长是17,求这个三角形的周长时。
很多学生会想到应该分类讨论:第一种情况是设腰为6,底为17时,则三角形的三个边分别是6,6,17,这时要根据三角形的性质进行验证,因为6+6小于17,不符合三角形的性质,这样的三个边组不成三角形,所以这种假设是不成立的。
浅探等腰三角形中分类讨论问题南陵县弋江蒲桥初中张一中摘要:在解答数学问题时,会遇到多解情况,需要我们对各种情况进行分析并加以讨论,就是我们通常说的分类讨论思想。
所谓分类讨论思想,就是在解答数学题时有时无法用同一种形式去解决,而需要选定一个标准,根据这个标准将问题划分成几个能用不同形式去解决的小问题,将这些小问题一一解决,从而使问题得到解决,这就是分类讨论的思想。
关键词:等腰三角形分类讨论思想在日常教学练习及中考中经常会出现关于等腰三角形的题,此类题学生得分通常较低,学生没有分类思想,造成漏解情况。
下面就关于等腰三角形的各种分需类题型进行分析和讲解。
一、当已知边不能确定是腰还是底边时,需讨论例1、(1)已知等腰三角形的两边长分别为5cm和7cm,求周长。
(2)等腰三角形的两边长分别为5cm和11cm,求周长。
简析:已知条件中并没有指明5和7谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。
当5是等腰三角形的腰长时,这个等腰三角形的底边长就是7,则此时等腰三角形的周长等于17;当7是腰长时,这个三角形的底边长就是5,则此时周长等于19。
故这个等腰三角形的周长等于17cm或19cm。
解(2)当腰长为5时,因为5+5<11,所以此时不能构成三角形;当腰长为11时,因为11+11>5,所以此时能构成三角形,因此三角形周长为:11+11+5=27;故这个三角形的周长为27cm。
说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应分类讨论,但必须运用三角形的三边关系来验证是否能构成三角形。
二、当已知角不能确定是顶角或底角时,需讨论例2. 已知等腰三角形的一个内角为75°则其顶角为()A. 30°B. 75°C. 105°D. 30°或75°简析:75°角可能是顶角,也可能是底角。
当75°是底角时,则顶角的度数为180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。
§等腰三角形的性质(第1课时)
教学流程安排
教学过程设计D
[ 活动2 ]问题
(1)如图,把一张长方形的纸片按图中虚线对折,并剪下阴影部分,再把它展开看看得到的三角形有什么特点?
→
↓
教师利用多媒体演示剪法。
学生观看后动手剪纸、观察。
教师在学生观察的同时提
出问题。
学生观察思考后发现,上述过
程中剪刀剪过的两边是相等的,即
△ABC中,AB=AC。
展示学生作品。
提问:象
这样的三角形叫做什么三角形?
学生回忆等腰三角形的概念。
师利用多媒体出示概念,介
绍腰、底边、顶角、底角等概念。
本次活动中,教师应重点关
注学生是否积极参加到数学活
动中来。
为学生提供
参与数学活动的
时间和空间,让
学生动手剪纸,
获得图形的直观
感受,调动学生
的主观能动性,
激发学生的好奇
心和求知欲,并
为下面的折纸操
作做好铺垫。
同
时复习等腰三角
形的概念及其相
关的概念,加深
印象。
B
D
C A。
初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。
)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。
想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。
)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的。
判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。
等腰三角形教学设计一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义和性质。
掌握等腰三角形的判定方法,并能运用其解决相关问题。
能够熟练运用等腰三角形的性质和判定进行计算和证明。
2、过程与方法目标通过观察、操作、猜想、论证等活动,培养学生的逻辑思维能力和推理能力。
经历探索等腰三角形性质和判定的过程,体会转化、分类讨论等数学思想方法。
3、情感态度与价值观目标让学生在探索活动中感受数学的严谨性,激发学生对数学的兴趣和热爱。
通过合作交流,培养学生的团队合作精神和创新意识。
二、教学重难点1、教学重点等腰三角形的性质和判定。
等腰三角形性质和判定的应用。
2、教学难点等腰三角形性质的证明。
等腰三角形中分类讨论思想的应用。
三、教学方法讲授法、探究法、讨论法、练习法相结合。
四、教学过程(一)导入新课通过展示一些等腰三角形的实物图片,如等腰三角形的建筑、饰品等,让学生观察并思考这些图形的共同特点,从而引出本节课的主题——等腰三角形。
(二)新课讲授1、等腰三角形的定义让学生自己动手制作一个等腰三角形,然后引导学生观察并总结等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
2、等腰三角形的性质(1)让学生把自己制作的等腰三角形沿对称轴对折,观察重合的部分,引导学生发现等腰三角形的性质。
(2)性质 1:等腰三角形的两腰相等。
(3)性质2:等腰三角形的两个底角相等(简写成“等边对等角”)。
(4)性质 3:等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)。
(5)证明性质 2已知:在△ABC 中,AB = AC。
求证:∠B =∠C。
证明:作底边 BC 的中线 AD。
因为 AD 是中线,所以 BD = CD。
在△ABD 和△ACD 中,AB = AC(已知)AD = AD(公共边)BD = CD(已证)所以△ABD ≌△ACD(SSS)所以∠B =∠C(全等三角形的对应角相等)3、等腰三角形的判定(1)引导学生思考:如果一个三角形的两个角相等,那么这两个角所对的边是否相等?(2)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。