插补的基本概念、脉冲增量插补与数据采样插补的特点和区别共32页文档
- 格式:ppt
- 大小:2.92 MB
- 文档页数:32
插补的基本概念脉冲增量插补与数据采样插补的特点和区别逐点比较法的基本原理直线插补和圆弧插补
脉冲增量插补和数据采样插补是实现插补的两种不同方法。
脉冲增量插补是将连续的运动轨迹离散化,以一定的脉冲数来表示,通过控制脉冲信号的频率和方向来控制机床的运动方向和速度。
而数据采样插补则是将预先生成的轨迹数据存储在内存中,通过对数据进行采样来得到机床的控制指令。
脉冲增量插补的特点是运算简单,系统响应速度较快,适合于高速运动控制;但由于其离散化的特点,可能会引入累积误差。
数据采样插补的特点是能够精确控制机床的运动轨迹,减小累积误差,但需要占用较大的内存空间。
逐点比较法是一种用于校正控制系统误差的方法。
其基本原理是通过对实际运动轨迹数据和预期轨迹数据进行逐点比较,根据比较结果来调整机床的控制指令,使实际运动轨迹尽可能地与预期轨迹一致。
逐点比较法的关键是选择合适的比较误差补偿算法,以实现高效准确的校正。
直线插补是指在机床坐标系下,按照直线轨迹进行插补运动。
直线插补的计算相对简单,只需要对坐标进行线性插值即可。
圆弧插补是指在机床坐标系下,按照圆弧轨迹进行插补运动。
圆弧插补的计算相对复杂,需要考虑起点、终点和半径等参数,通过数学运算得出插补指令。
总之,插补是机床运动控制的基础,脉冲增量插补和数据采样插补是两种常见的实现方式,逐点比较法是一种用于校正误差的方法,直线插补和圆弧插补则是两种常见的插补方式。
CNC系统的基本概念
如何掌握刀具或工件的运动是机床数字掌握的核心问题。
插补程序的运行时间和计算精度影响着整个CNC系统的性能指标,可以说插补是整个CNC系统掌握软件的核心。
1、插补的基本概念
所谓插补是指数据密化的过程。
对于轮廓掌握系统来说,插补是最重要的计算任务,插补程序的运行时间和计算精度影响着整个CNC系统的性能指标,可以说插补是整个CNC系统掌握软件的核心。
人们始终在努力探求一种简洁而有效的插补算法。
2、插补的方法
目前普遍应用的算法可分为两大类:一类是脉冲增量插补;另一类是数据采样插补。
3、脉冲增量插补(又称基准脉冲插补)
定义:每插补运算一次,最多给每一个运动坐标轴送出一个脉冲。
每个脉冲代表一个最小位移量,脉冲系列的频率代表坐标运动的速度,脉冲数量表示其位移量。
最高进给速度取决于插补软件一次插补所需的时间,这类方法简洁易实现,通常只要做加法和位移即可。
方法:最常用是逐点比较法、数字积分法。
逐点比较法和数字积分法又分为直线插补和圆弧插补。
4、逐点比较法的基本思想
计算机在数控加工过程中,逐点计算和判别加工偏差,并与规定的运动轨迹进行比较,依据比较结果决策下步的移动方向,亦称走一步算一步。
用此方法插补掌握机床每走一步需要四个节拍(步骤),偏差判别、进给加工、偏差计算和终点判别,未到终点时,连续重复上述四个节拍(步骤)的循环过程。
其特点是:运算直观、插补误差小于一个脉冲当量,输出脉冲匀称,输出脉冲的速度变化小,调整便利,在两坐标联动的数控机床中应用较为广泛。
数控加工中两种插补原理及对应算法数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要按照进给速度的要求,在轮廓起点和终点之间计算出若干中间控制点的坐标值。
由于每个中间点计算的时间直接影响数控装置的控制速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置控制软件的核心是插补。
插补的方法和原理很多,根据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲分配计算的基本单位,根据加工的精度选择,普通机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm。
插补误差不得大于一个脉冲当量。
这种方法控制精度和进给速度低,主要运用于以步进电动机为驱动装置的开环控制系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L与进给速度F和插补T周期有关,即△L=FT。
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
数控原理与应用姓名:闫超学号:20092427班级:数控09-2插补原理插补的基本概念数控系统根据零件轮廓线型的有限信息,计算出刀具的一系列加工点、完成所谓的数据“密化”工作。
插补有二层意思:一是用小线段逼近产生基本线型<如直线、圆弧等);二是用基本线型拟和其它轮廓曲线。
插补运算具有实时性,直接影响刀具的运动。
插补运算的速度和精度是数控装置的重要指标。
插补原理也叫轨迹控制原理。
五坐标插补加工仍是国外对我国封锁的技术。
下面以基本线型直线、圆弧生成为例,论述插补原理插补方法的分类硬件插补器完成插补运算的装置或程序称为插补器软件插补器软硬件结合插补器1.基准脉冲插补每次插补结束仅向各运动坐标轴输出一个控制脉冲,各坐标仅产生一个脉冲当量或行程的增量。
脉冲序列的频率代表坐标运动的速度,而脉冲的数量代表运动位移的大小。
基准脉冲插补的方法很多,如逐点比较法、数字积分法、脉冲乘法器等。
2.数据采样插补采用时间分割思想,根据编程的进给速度将轮廓曲线分割为每个插补周期的进给直线段<又称轮廓步长)进行数据密化,以此来逼近轮廓曲线。
然后再将轮廓步长分解为各个坐标轴的进给量<一个插补周期的近给量),作为指令发给伺服驱动装置。
该装置按伺服检测采样周期采集实际位移,并反馈给插补器与指令比较,有误差运动,误差为零停止,从而完成闭环控制。
数据采样插补方法有:直线函数法、扩展DDA、二阶递归算法等逐点比较法早期数控机床广泛采用的方法,又称代数法,适用于开环系统。
1.插补原理及特点原理:每次仅向一个坐标轴输出一个进给脉冲,而每走一步都要通过偏差函数计算,判断偏差点的瞬时坐标同规定加工轨迹之间的偏差,然后决定下一步的进给方向。
每个插补循环由偏差判别、进给、偏差函数计算和终点判别四个步骤组成。
逐点比较法可以实现直线插补、圆弧插补及其它曲安插补。
特点:运算直观,插补误差不大于一个脉冲当量,脉冲输出均匀,调节方便。
逐点比较法直线插补<1)偏差函数构造对于第一象限直线OA上任一点(X,Y>:X/Y = Xe/Ye 若刀具加工点为Pi<Xi,Yi),则该点的偏差函数Fi可表示为若Fi= 0,表示加工点位于直线上;若Fi> 0,表示加工点位于直线上方;若Fi< 0,表示加工点位于直线下方。