三.平稳随机过程
- 格式:ppt
- 大小:2.11 MB
- 文档页数:79
随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。
2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。
离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。
连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。
3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。
均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。
自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。
4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。
弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。
强平稳随机过程的概率分布在时间上是不变的。
5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。
高斯随机过程的均值函数和自相关函数可以唯一确定该过程。
6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。
马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。
7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。
泊松过程的重要性质是独立增量和平稳增量。
8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。
例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。
t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。
复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。
协方差函数和相关函数也可以类似地计算得到。
复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。
平稳随机过程⏹严格平稳随机过程⏹广义平稳随机过程⏹平稳随机过程自相关函数性质⏹各态历经过程1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。
1111(,,,,,)(,,,,,)X N N X N N p x x t t t t p x x t t +∆+∆=如果X (t ) 是严格平稳的,则与t 无关。
(,)()X X p x t p x =即X(t)与X(t+∆t)具有相同的统计特性。
二维概率密度只依赖于τ,与t 1和t 2的具体取值无关。
12121212121221212(,,,)(,,,)(,,,0)(,,)X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+∆+∆=-∆=-=ττ=-如果X (t )是严格平稳随机过程, 则121212121212(,)(,,,)()X X X R t t x x p x x t t dx dx R t t ∞-∞==ττ=-⎰()()X X Xm t xp x dx m ∞-∞==⎰222()()()XX X Xt x m p x dx ∞-∞σ=-=σ⎰100200300400500-4-3-2-101234Stationay Gaussian Noise0100200300400500-4-3-2-101234Non-stationay Gaussian Noise可以证明:独立同分布(IID)的随机序列是严格平稳的。
IID: Independent and Identical Distribution即对于任意的n ,X [n ]具有相同的一维概率密度,且对任意n 1和n 2(n 1≠n 2 ), X [n 1]和X [n 2]相互独立。
121111(,,...,,,...,)(,)(,)()NX N N X i i i NX i i i NX i i p x x x n n n n p x n n p x n p x ===+∆+∆=+∆==∏∏∏利用同分布利用独立性与n 无关例1:随机幅度信号0()cos X t Y t=ω0ω是常数~(0,1)Y N 判断X (t )是否严平稳。