平稳随机过程的概念
- 格式:ppt
- 大小:319.50 KB
- 文档页数:20
平稳随机过程的概念引言在随机过程中,平稳随机过程是一个非常重要的概念。
它是随机过程中的一种特殊情况,具有统计性质保持不变的特点。
本文将对平稳随机过程的概念进行全面、详细、完整且深入地探讨。
什么是随机过程?随机过程是一种随时间变化的随机现象。
它可以用数学模型来描述,在数学上通常用随机函数的集合来表示。
随机过程通常包括一个样本空间、一个时间索引集和一组定义在样本空间上的随机变量。
平稳随机过程的定义平稳随机过程是指在统计平均意义下不随时间变化的随机过程。
也就是说,对于平稳随机过程的任意时刻,其统计性质都保持不变。
具体而言,平稳随机过程要求满足以下两个条件:1.均值稳定性:随机过程的均值在时间上保持不变。
2.自相关性稳定性:随机过程的自相关函数在时间上保持不变。
平稳随机过程的类型根据时间独立性和样本独立性的条件,平稳随机过程可以分为以下几种类型:宽平稳随机过程宽平稳随机过程是指在任意时间点上,随机过程的统计性质都保持不变,并且在不同时刻的随机变量之间是独立的。
宽平稳随机过程是最理想的平稳随机过程,但在实际中很难满足宽平稳的条件。
严平稳随机过程严平稳随机过程是指在任意时间点上,随机过程的统计性质都保持不变,但随机变量之间不一定是独立的。
严平稳随机过程是宽平稳随机过程的一种特殊情况。
近似平稳随机过程近似平稳随机过程是指在短时间尺度上,随机过程的统计性质是平稳的,但在长时间尺度上可能出现变化。
近似平稳随机过程在实际中比较常见。
平稳随机过程的性质平稳随机过程具有一些独特的性质,下面是其中一些重要的性质:平均值稳定性平稳随机过程的均值不随时间变化,这意味着随机过程的平均水平保持不变。
自相关性稳定性平稳随机过程的自相关函数不随时间变化,这意味着随机过程的相关性保持不变。
谱密度稳定性平稳随机过程的谱密度函数不随时间变化,这意味着随机过程的频谱特性保持不变。
时不变性平稳随机过程在时间上是不变的,这意味着随机过程的统计性质与时间无关。
平稳随机过程⏹严格平稳随机过程⏹广义平稳随机过程⏹平稳随机过程自相关函数性质⏹各态历经过程1. 严格平稳(Strict Sense Stationary, SSS)随机过程定义: 随机过程X (t )的任意N 维统计特性与时间起点无关。
1111(,,,,,)(,,,,,)X N N X N N p x x t t t t p x x t t +∆+∆=如果X (t ) 是严格平稳的,则与t 无关。
(,)()X X p x t p x =即X(t)与X(t+∆t)具有相同的统计特性。
二维概率密度只依赖于τ,与t 1和t 2的具体取值无关。
12121212121221212(,,,)(,,,)(,,,0)(,,)X X X X p x x t t p x x t t t t p x x t t t t p x x t t =+∆+∆=-∆=-=ττ=-如果X (t )是严格平稳随机过程, 则121212121212(,)(,,,)()X X X R t t x x p x x t t dx dx R t t ∞-∞==ττ=-⎰()()X X Xm t xp x dx m ∞-∞==⎰222()()()XX X Xt x m p x dx ∞-∞σ=-=σ⎰100200300400500-4-3-2-101234Stationay Gaussian Noise0100200300400500-4-3-2-101234Non-stationay Gaussian Noise可以证明:独立同分布(IID)的随机序列是严格平稳的。
IID: Independent and Identical Distribution即对于任意的n ,X [n ]具有相同的一维概率密度,且对任意n 1和n 2(n 1≠n 2 ), X [n 1]和X [n 2]相互独立。
121111(,,...,,,...,)(,)(,)()NX N N X i i i NX i i i NX i i p x x x n n n n p x n n p x n p x ===+∆+∆=+∆==∏∏∏利用同分布利用独立性与n 无关例1:随机幅度信号0()cos X t Y t=ω0ω是常数~(0,1)Y N 判断X (t )是否严平稳。
平稳随机过程的概念
平稳随机过程是指具有固定统计特性的随机过程。
具体而言,平稳随机过程在时间上的统计性质不随时间变化而变化,即其概率密度函数、平均值、自相关函数等都不受时间起点的影响。
平稳随机过程分为弱平稳和强平稳两种类型。
弱平稳是指随机过程的均值和自相关函数不随时间变化而变化,而强平稳还要求联合分布函数不随时间变化而变化。
对于弱平稳随机过程,其特点是平均值和自相关函数只与时间差有关,与时间起点无关。
具体来说,对于平稳随机过程X(t),其平均值为E[X(t)],自相关函数为R(t1,t2):
1. 平稳随机过程的平均值不随时间变化而变化,即对于任意t,有E[X(t)]= E[X(0)]。
2. 平稳随机过程的自相关函数只与时间差有关,即对于任意
t1,t2,有R(t1,t2) = R(t1-t2)。
强平稳过程除了满足弱平稳条件外,还要求联合分布函数不随时间变化而变化,即对于任意t1,t2和任意k1,k2,有联合分布
函数F(x1,x2,t1,t2) = F(x1,x2,t1+k,t2+k)。
这意味着在时间上的
任意平移,联合分布函数都保持不变。
平稳随机过程在实际应用中具有广泛的应用,例如信号处理、通信系统、金融市场等领域。
由于其统计特性不随时间变化而变化,使得对时间序列进行建模和预测更加稳定、可靠。