CRH5列车网络控制系统
- 格式:ppt
- 大小:776.00 KB
- 文档页数:132
试论基于TCN下CRH5型动车组网络控制系统摘要:动车组上的网络系统,起到了对动车组的整体控制、检测以及故障的诊断作用,是一种车载分布式的计算机网络系统。
在动车组的运行过程中,系统能够对牵引以及制动控制等各种命令进行信息的传输,是动车组运行的中央构件。
基于TCN作为动车组控制和管理的关键技术,网络控制对动车组的安全运行至关重要,本文在阐述CRH5型动车组网络拓扑结构基础上,主要分析和说明了TCMS系统的信息传输方式和冗余功能的设计。
关键字:TCN;动车组;网络控制;冗余功能;0引言在动车组运行的过程中,需要在车载系统中进行信息的传输,其中利用网络的形式可以有效减少硬件的数量,进而保障降低车的自身重量,同时也能提供一个具有较高可靠性的系统平台。
并且这样的系统可以帮助司乘人员进行高效率的工作,在维修人员方面为维修人员提供出良好的技术支持。
CRH5型动车组网络控制与监控系统(TCMS)基于IEC61375—1的列车通信网络(TCN)平台,通过列车总线(WTB)和多功能车辆总线(MVB)实现对动车组的运行控制、信息监测、故障诊断以及多车重联的控制和管理功能。
一、网络拓扑结构CRH5型动车组TCMS分为两个单元,每个单元由微处理单元(MPU)、网关(GW)、远程I/O模块(RIOM)、中继器(REP)、人机接口设备(HMI)、主监视器(TS)、诊断监视器(TD)以及本地监视器(LT)等组成。
两个动力单元通过网关进行的信息传输,为了提高设备数量或线路长度,采用中继器来增加车辆总线的长短。
TCMS应用了两种微处理器单元,MPU-LT和MPU-LC,MPU-LT用于牵引和信号子系统的控制、诊断和监视,而MPU-LC应用于空调、塞拉门等其他辅助系统的控制、诊断和监视。
MVB总线分为三类,MVB-A为信号总线,用于微处理单元以及司机室、监视屏网关间的通讯;MVB-B为牵引性总线,主要链接诸如牵引控制单元、主制动控制单元、辅助控制单元等设备;MVB-C为舒适性总线,用于如空调、外门系统等辅助设备的通讯;此外,在车辆级总线中还应用CAN总线执行与充电机、卫生间和热轴检测等子系统的通信。
第16章列车运行控制系统车载设备16.1系统概述CRH5动车组上设有列车运行控制系统车载设备。
这些车载设备包括列车自动防护系统(ATP)车载设备、列车运行监控记录装置(LKJ2000)、机车综合无线通信设备(CIR)及查询应答器(CXY)等。
200km/h速度等级线路上设置CTCS-2级列车运行控制系统(简称列控系统),其由地面设备和车载设备构成。
地面设备包括列控中心、轨道电路、应答器等;动车组上安装有车载设备。
ATP车载设备为采用CTCS2-200C型。
根据地面设备提供的信号动态信息、线路静态参数、临时限速信息及有关动车组数据,生成控制速度和目标距离模式曲线,控制列车运行。
同时,记录单元对列控系统有关数据及操作状态信息进行实时动态记录。
人机界面对速度信息、制动信息、距离信息等进行实时显示,并对故障信息进行报警提示。
LKJ2000实时监测运行速度,对速度进行监控,防止超速;记录列车实时运行情况和乘务员操作情况;显示机车实际速度、时间、公里标等信息。
为了满足目前国内既有铁路线路状态,200km/h动车组同时装备ATP车载设备与列车运行监控记录装置(简称LKJ)。
在CTCS2级区段,通过ATP车载设备控车;在CTCS0级、1级区段或在2级区段ATP车载设备特定故障下,LKJ结合ATP车载设备提供的机车信号或主体机车信号功能,控制列车运行,最高速度不超过160Km/h。
正常情况下,两种控车模式通过特殊应答器自动转换(无需停车转换);故障情况下,停车手动转换。
两种控车模式的转换通过ATP车载设备实现。
上述两种控车模式下,LKJ通过ATP车载设备接收或记录有关列控状态数据(含进路参数、列车位置等)及其对应的操作状态信息。
CIR由主机、操作显示终端(简称MMI)、送(受)话器、扬声器、打印终端、连接电缆、天线、馈线等构成。
根据实际运用需求,机车综合无线通信设备的功能包括450MHz调度通信系统、800MHz列尾和列车安全预警系统、GSM-R数字移动通信系统、高速数据传输等。
CRH5型动车组网络控制系统TCMS功能浅析发布时间:2021-06-30T08:24:41.082Z 来源:《中国科技人才》2021年第10期作者:韩东宁罗昭强张德龙陈政良[导读] 动车组列车总线(WTB)能够实现各个中央控制单元间传递列车级数据及实现数据交换;多功能车辆总线通过总线管理器或I/O接口与各子系统连接,传递过程数据、消息数据等,控制各子系统执行相应的功能。
长春客车股份有限公司高速动车组制造中心吉林长春 130062摘要:CRH5动车组的列车网络控制系统由网关GW、微处理器单元MPU、远程输入输出模块RIOM、中继器REP、TS/TD/LT监视器等硬件构成。
列车网络控制系统分为列车总线WTB和多功能车辆总线MVB两级总线,而MVB总线根据功能性又分为MVB-A信号总线、MVB-B牵引总线和MVB-C服务设施总线,实现与牵引、制动、空调、塞拉门等各个子系统之间的通信,。
关键词:中央控制单元;网关;RIOM;WTB;MVB引言:动车组列车总线(WTB)能够实现各个中央控制单元间传递列车级数据及实现数据交换;多功能车辆总线通过总线管理器或I/O接口与各子系统连接,传递过程数据、消息数据等,控制各子系统执行相应的功能。
一、概述CRH5动车组根据功能性将列车分为两个牵引单元,每个单元包括4节车辆,前一个牵引单元由Mc2、M2S、TP、M2车构成,后半个牵引单元由T2、TPB、MH、Mc1车构成。
列车网络控制系统TCMS将两个冗余的UIC网关分别应用于两个牵引单元。
其中列车总线(WTB)能够实现各个中央控制单元间传递列车级数据及实现数据交换;多功能车辆总线通过总线管理器或I/O接口与各子系统连接,传递过程数据、消息数据等,控制各子系统执行相应的功能。
1.WTB列车总线WTB在给定时间内由单一主设备控制。
在主设备控制下,WTB周期性广播用于诸如牵引、控制列车的过程数据。
它也按需求传送可能较长但不太紧急的用于旅客信息、列车诊断和维护的消息数据。
第六章动车组信息网络动车组网络控制系统是一个安装在列车上的计算机局域网络系统,负责对整列车各部分信息的采集与传递,对整列车进行控制、监测、诊断以及为旅客提供信息服务。
列车通信网络是面向控制的一种连接车载设备的数据通信系统,是分布式列车控制系统的核心组成部分。
它以计算机网络为核心,把计算机技术、控制技术、设备故障诊断技术、网络通信技术紧密结合起来;将整个列车微机控制系统的各层次及各层次各单元之间相连接,作为系统信息交换和共享的渠道,实现全列车环境下的信息交换。
列车通信网络的应用,使得列车控制系统真正成为一个分布式控制系统,并为列车系统的信息化打下了基础。
本章主要介绍CRH5型动车组通信与网络系统的基本原理及功能。
第一节信息及网络系统CRH5动车组的高压、牵引、辅助等子系统的控制是通过列车网络控制系统TCMS执行的,TCMS是一个智能单元,通过采集和传输信息和命令管理着列车上大多数的主要设备。
CRH5动车组根据功能性将列车分为两个牵引单元,每个单元包括4节车辆,前一个牵引单元由Mc2、M2S、TP、M2车构成,后一个牵引单元由T2、TPB、MH、Mc1车构成。
列车网络控制系统TCMS将两个冗余的UIC网关分别应用于两个牵引单元。
考虑到高压、牵引以及行车安全等因素,重要的子系统都设有硬线保护电路,例如,高压系统设置了DJ回路,控制主断路器DJ的合断,保护高压设备的安全;牵引系统通过牵引就绪回路保证施加牵引的可靠性;制动系统设定了紧急制动电磁阀硬线电路、制动安全回路、乘客紧急手柄回路保证行车的可靠性;门系统通过全列门关闭信号线检测所有门关闭的状态,保证旅客行车的安全性。
另外,充电机蓄电池的低压供电控制是依靠硬线执行的。
一、网络控制系统TCMS的任务和功能1.TCMS主要任务实现专用于列车任务的具有要求的性能级别(包括可靠性级别),将列车布线复杂性最小化的操作功能;为乘务员提供列车操作的帮助;为维修任务提供集中支持。
动车组运行故障信息远程智能分析判断系统<TIDS)研究与实践ooo列车网络控制系统采购意向主要简介CRH5型动车组列车网络控制系统<TCMS)可实现列车牵引、制动、供电、空调、门控、转向架等子系统和设备的实时监视和控制,并能自动识别列车编组。
支持列车实时诊断技术,可实现车地间的数据交换。
结合地面专家系统能对车载设备应用情况进行统计分析,提高维护作业效率,优化车辆布线,有利于减轻车辆自重。
b5E2RGbCAP动车组运行故障信息远程智能分析判断系统<TIDS)技术评审鉴定意见2018年12月19日,郑州铁路局科委组织专家对郑州铁路局车辆处和北京康拓红外技术股份有限公司合作研制的动车组运行故障信息远程智能分析判断系统<TIDS)进行了技术评审。
鉴定委员会审查了该系统的研制报告、技术报告、测试报告、运用报告,并对安装在郑州车辆段CRH5型动车组上的TIDS设备样机进行了现场测试。
经鉴定委员会讨论,形成以下评审意见:p1EanqFDPw1、该系统由车载终端设备和地面数据中心两部分构成,可采集动车组运行信息,并利用无线GPRS模块,远程传输至地面数据中心,终端软件通过对采集数据进行分析、判断,实现数据智能处理、自动报警等功能。
DXDiTa9E3d2、 TIDS车载终端设备实行模块化设计,机械设计合理,便于安装拆卸,应用方便,易于维护。
3、 TIDS系统软件可对动车组运行故障数据进行分类存储、智能分析、判断、报警,可实现动车组运行状态信息和故障信息的实时显示,并自动生成各类报表,系统软件设计易于数据挖掘研究和历史数据管理。
RTCrpUDGiT综上,TIDS系统采用GPRS和Internet网络技术,实现CRH5型动车组运行数据传输的及时性、准确性、完整性,可有效提高动车组运用故障的处置效率。
该系统设计合理,功能符合现场需要,技术达到国内先进水平,填补了CRH5型动车组远程数据传输监控的空白。
CRH型动车组网络控制系统研究摘要:网络控制系统对动车组运行安全性以及可靠性有着至关重要的影响,尤其是故障诊断作为关键部分,必须要保证其基础功能的完善性,可以完成故障模拟、故障检测、故障显示以及记录等多项操作,确保列车故障后可以在最短时间内定位、检测以及排除,避免影响动车的正常运行。
本文对CRH型动车组网络控制系统构成和功能进行了简单分析,并确定故障诊断策略,争取为动车运行维护提供更多支持。
关键词:动车组;网络控制;故障诊断网络控制系统可以说是动车组的核心,其是否能够稳定可靠的运行,直接影响着动车组的安全性,一直都是研究管理的要点。
针对动车组网络控制系统进行分析,确定系统结构特征,明确故障诊断功能要求与优化策略,排除各种常见故障的发生,为列车的安全稳定运行提供保障。
一、动车组网络控制系统概述动车组网络控制系统由中央装置、终端装置、显示控制装置以及通讯设备组成,控制系统为分布式结构。
中央装置与终端装置分别安装在列车车头与车厢位置,确保控制系统具有较高的安全性与实用性。
动车组网络控制系统的功能性可以从三个方面来分析,即传输、故障与状态信息监控及故障信息跟踪记录。
二、动车组网络控制系统功能1.系统控制功能一方面是牵引控制,主要就是将中央控制单元所读取到的司机控制器牵引指令传输给牵引变流器;另一方面辅助控制,完成受电弓、牵引变流器与辅助变流器的有效切除,以辅助供电系统的实际工况为依据对负载进行管理,按照优先级别实现各负载的顺序启动、恒速控制[1]。
2.系统监视功能2.1状态显示端车司机驾驶台共安装有2台显示器,分别用以显示不同信息。
左侧用以显示牵引变流器、主断路器、受电弓等装置的状态信息、故障诊断信息以及检查功能信息等;右侧用以显示制动系统相关信息。
图1为端车左侧显示器主界面。
图1 端车左侧显示器主界面2.2故障诊断故障诊断也是动车组网络控制系统的重要功能,发生的故障全部可以存储在故障一览表内,包括故障时间、地点以及故障车辆号、故障设备名称与故障是否复位等信息。
《装备维修技术》2020年第4期— 23 —CRH 型动车组网络控制系统研究朱 博 张洪波 吴 喆(中车长春轨道客车股份有限公司 吉林 长春 130062)摘 要:对于CRH 型动车组而言,网络控制系统十分重要,不仅与列车安全运行有关,还影响着检修工作的有序开展。
对此,笔者从CRH 型动车组网络总线出发,就其网络控制系统作了比较分析,以供参考。
关键词:CRH 型动车组;网络控制系统;节能措施CRH 型动车组的投运极大的促进了我国高铁行业的发展,但因其应用的是动力分散方式,使得列车信息传递与实时控制变得愈加重要。
考虑到通信网络作为达成这一目标的主要途径,所以在此就CRH 型动车组网络控制系统展开研究,以期为列车的运营和检修提供有力支持。
1 CRH 型动车组网络总线分析我国当下的CRH 型动车组包括CRH1、CRH2、CRH3、CRH5等系列,由于系统设计与制造厂家不同,致使其网络总线形式与网络控制系统有所差异,加之通信网络的作用在于对列车制动、牵引、辅助系统等车载设备进行集中监控,经数据收集和传输与地面实时通信,进而服务于列车的使用和检修,故网络总线的选用也是不容忽视的。
具体而言,我国CRH 型动车组采用的通信网络总线包括TCN 、ARC-NET 以及CAN 三种类型,而且各有各的工作特性。
如CRH1、CRH3、CRH5网络控制系统采用的是TCN 标准(分层结构见图1),通常每节车辆设置一个节点,经节点实现车辆总线与列车总线的连接,并分别经TCN 中的MVB 和WTB 传输信息,不过两者均是基于集中控制与周期性预分配的主从方式访问控制总线介质。
TCN 总线一般采用光纤、双绞线等传输介质,实时响应一般,且数据传输时间会受到介质电气长度、数据长度、中继器数量等的影响[1]。
CRH2动车组网络控制系统则是以ARC-NET 为基础, 该现场总线采用的是令牌传递协议,因通过节点对网络加以轮流之配,所以总线站是平等的。