旋转机械动力学特性
- 格式:ppt
- 大小:898.00 KB
- 文档页数:37
转子-轴承系统动力学特性研究的开题报告一、选题背景和意义转子-轴承系统是旋转机械的重要组成部分,其动力学特性对机械的性能和寿命具有重要影响。
因此,对转子-轴承系统的动力学特性进行研究具有重要的理论和应用价值,可以为旋转机械的设计、制造、维护等工作提供科学依据。
二、研究目的和内容本文旨在研究转子-轴承系统的动力学特性,主要包括以下目标和内容:(一)研究转子-轴承系统的运动学和动力学特性,包括旋转、振动、摩擦等方面的特性;(二)通过建立合适的数学模型,对转子-轴承系统的动力学特性进行模拟和仿真,验证模型的准确性并探讨其应用价值;(三)研究转子-轴承系统的稳定性和自振特性,包括转子的临界转速和共振等问题;(四)探讨转子-轴承系统的优化设计方法,包括轴承参数、转子质量分布、减振措施等方面的优化。
三、研究方法本文将采用理论分析、数值模拟、实验测试等方法,综合研究转子-轴承系统的动力学特性。
具体方法包括:(一)建立转子-轴承系统的数学模型,包括运动学模型、动力学模型、摩擦模型等;(二)通过数值计算、仿真和实验测试等方法,验证模型的准确性并探讨其应用价值;(三)利用数学工具和分析方法,分析转子-轴承系统的稳定性和自振特性,包括临界转速、共振等问题;(四)通过对转子-轴承系统参数的优化设计,提高系统的稳定性和性能。
四、研究计划和进度安排本文的研究计划和进度安排如下:阶段一:文献调研和理论分析(1-2个月)主要任务为收集文献资料,了解转子-轴承系统的研究现状和前沿,掌握系统的基本理论和分析方法。
阶段二:数学模型的建立和仿真分析(3-4个月)主要任务为建立转子-轴承系统的数学模型,并通过数值计算和仿真等方法,对系统的动力学特性进行分析和研究。
阶段三:实验测试及数据处理(2-3个月)主要任务为进行实验测试,获得实验数据,通过数据处理和分析,验证数学模型的准确性。
阶段四:优化设计和方案提出(2-3个月)主要任务为根据研究结果,提出转子-轴承系统的优化设计方案,提高系统的稳定性和性能。
超高速旋转机械的动力学性能分析超高速旋转机械在现代工业中扮演着重要的角色,如飞机涡轮发动机、离心压缩机等。
它们的功能与性能直接影响到机械设备的运行效果。
为了确保这些机械的安全可靠运行,对其动力学性能进行全面分析是必要的。
首先,超高速旋转机械的静不平衡问题是一个关键因素。
静不平衡是指质量分布不均匀,使得机械在旋转过程中产生和传播振动力的现象。
静不平衡会导致旋转机械的振动加剧,进而削弱结构强度,甚至引发机械的故障。
因此,要保证机械的动力学性能,必须对其静不平衡问题进行定位和校正。
其次,超高速旋转机械在高速运动过程中,会产生离心力和惯性力,对机械的结构和工作性能造成影响。
离心力会使机械产生变形和应力集中的问题,从而降低机械的强度和耐久性。
而惯性力则会对机械的运动状态产生冲击和扰动,进一步影响机械的稳定性和可靠性。
因此,在超高速旋转机械的设计和优化过程中,考虑离心力和惯性力对机械的影响是十分重要的。
此外,超高速旋转机械的动力学性能还受到气体动力学效应的影响。
由于机械的高速旋转,会产生较大的气体动压力和气动力矩,这对机械的稳定性和运行效果造成一定的挑战。
因此,在设计和制造超高速旋转机械时,需考虑气体动力学效应对机械的影响,并通过合理的结构和控制手段予以解决。
另外,超高速旋转机械的动力学性能也涉及到机械的轴承和润滑系统。
在高速旋转过程中,轴承要承受较大的径向力和轴向力,其摩擦、磨损和热量产生会导致机械的能量损耗和系统效率的降低。
同时,润滑系统的设计和运行状态对机械的摩擦、冷却和清洁起着至关重要的作用。
因此,对超高速旋转机械的轴承和润滑系统进行动力学性能分析,并进行有效的设计与优化,对提高机械的工作效率和可靠性具有重要意义。
综上所述,超高速旋转机械的动力学性能分析是现代工业中的一个重要研究方向。
通过对静不平衡问题、离心力和惯性力、气体动力学效应以及轴承和润滑系统的分析,可以有效提高机械的工作效率和可靠性,确保其安全稳定地运行。
旋转机械动力学研究旋转机械是工业生产中常用的一种机械设备,例如电机、汽轮机、风机、离心泵等,其主要特点是由旋转部件构成。
旋转机械的负载是多变的,例如转速、轴向、径向和温度等参数的变化都可能对其产生影响,因此了解和研究旋转机械动力学成为了至关重要的任务。
旋转机械动力学是研究旋转机械运动和振动的学科,其目的是探讨各种载荷条件下旋转机械系统的性能、稳定性和可靠性。
旋转机械动力学研究包括旋转轴系统的振动、磨损、噪音、疲劳和机械失效等问题,可用于预测和改进旋转机械的性能。
旋转机械动力学中的重要参数旋转机械动力学中的重要参数包括转速、质量、距离和时间等。
转速是旋转机械最基本的参数之一,其大小决定了机械设备的工作效率和加工能力。
质量是指机械设备包括各种组成部分的总重量,其大小直接影响到机械的运动和振动状况。
距离是旋转机械动力学中的一个重要参数,它影响着旋转体的动态特性和运动稳定性。
时间是旋转机械动力学的基本量,时间的概念与旋转机械的运动过程密切相关。
在旋转机械的运动过程中,时间是确定旋转速度、加速度和位移等物理量的基本参数之一。
旋转机械动力学研究的目的和意义旋转机械动力学研究旨在解决旋转机械的振动、噪声、磨损和故障等问题,提高旋转机械的性能和可靠性。
经过艰苦的研究,我们可以对旋转机械的工作原理、运动特性和振动行为有更深入的认识,并且可以开发出更先进、更稳定和更安全的机械设备。
在工业领域中,旋转机械设备的发展已经变得越来越快速。
各类制造厂商在竞争过程中追求高速、精密、环保和稳定的机械设备,对于旋转机械动力学研究提出了高要求。
通过深入了解旋转机械动力学,我们可以设计出更加高效和经济的机械设备,提高其安全性和可靠性。
此外,旋转机械动力学研究的成果在军事和民用领域中也具有重要意义,例如拉练器、机翼伺服系统、空气动力学和导弹控制等。
旋转机械动力学研究常见的方法旋转机械动力学研究通常采用数值计算和实验方法,如有限元分析、模态试验和频响函数试验等。
旋转机械应该防止由于转子质量不平衡、弯曲或转速与结构固有频率一致产生共振所产生的受迫或自激振动产生的破坏,另外对于高速旋转的涡轮机械,应力和疲劳分析对设计者而言也非常重要。
这一切都取决于对旋转机械动力学行为的准确掌控。
旋转机械范围很广,包括喷气发动机、汽轮机、燃气轮机、离心压缩机、离心风机、离心泵、工业风扇、涡轮泵、水轮机、涡轮增压器、船用推进器等,这些都是Samcef Rotors 的应用范畴旋转机械特殊的地方在于,一旦转速达到一定程度或者具有较高的极惯性矩时,陀螺效应的作用就变得很明显。
首先旋转轴会有偏离原始位置的趋势,但更重要的是特征频率不再是一个常量,而会随着转速的不同而发生变化。
有时会随着转速的提高而提高,也有时会随着转速的提高而降低。
这容易导致由于转速所引起的自激振动,从而对结构产生破坏。
采用Campbell图可以检查旋转机械的临界转速。
另外旋转机械特殊的地方还在于其非线性效应,主要是轴承,会带来包含间隙、油膜及其它复杂的非线性效应。
(液体动压滑动轴承、摩擦)在进行转子动力学分析时,不但要分析旋转部件,而且要分析包含转子、静子、轴承的整个系统。
另外还有一些会包含多个转子由齿轮箱连接的机械系统,这些都是Samcef Rotors的研究范围。
可能导致旋转机械不稳定的因素:• 质量不平衡(例如制造加工误差等)• 叶片损失(例如航空发动机鸟撞之后)• 系统内部阻尼(例如系统中负阻尼引起不稳定响应)• 碰摩问题(多载荷工况下转子静子间距)需要在时域和频域范畴内对以上因素的影响进行分析。
LMS-SAMTECH开发的Samcef Rotors专业的转子动力学解决方案是由LMS—SAMTECH不同的软件模块构成,包含:(1)Samcef Field前后处理(2)Rotor模块进行临界转速分析和谐波响应分析(3)RotorT模块进行瞬态分析还包含Samcef系列的两个线性求解器:(1)用于超单元创建和恢复的Dynam求解器(2)用于初始静力学分析的Asef求解器----用于考虑预应力和计算几何刚度矩阵,为后续分析确定初始条件所有的求解分析都在统一友好的Samcef Field用户图形化界面下进行。
转子动力学研究方向综述(上海大学机电工程与自动化学院,上海200072)摘要:旋转机械被广泛地应用于包括燃气轮机,航空发动机,工业压缩机及各种电动机等机械装置中。
转子动力学是研究所有与旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。
本文回顾了转子动力学的发展历史,分析了研究转子动力学面临的几个主要问题。
总结了国内外在转子平衡技术方面、转子系统振动控制技术方面、转子动力学设计方面、转子振动噪声和参数识别方面、转子的动力学特性方面研究的情况。
最后讨论了我国转子动力学面临的主要问题。
关键词:转子;动力学;旋转机械Review of Researches Direction on Rotor DynamicsGAO hai-zhou(School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: Rotating machinery is widely applied to include gas turbine, aviation engine, industrial compressor and all kinds of motor and other machinery. Rotor dynamics is the study of all to the rotor of the rotating machinery and its components and structure dynamic characteristics, including dynamic response, vibration, strength, fatigue, stability, reliability and condition monitoring, fault diagnosis and control subjects. This paper reviews the development history of rotor dynamics, analyses several main problems in the study of rotor dynamics. In rotor balancing technology at home and abroad are summarized, the rotor system vibration control technology, the rotor dynamics design, rotor vibration noise and parameter identification, rotor dynamic aspects of the research. Finally discusses the major problems of rotor dynamics in ChinaKey words: rotor; dynamics; rotary machine引言旋转机械[1]被广泛地应用于包括燃气轮机,航空发动机,工业压缩机及各种电动机等机械装置中。
转子动力学是什么?转子动力学是研究所有与旋转机械转子及其部件和结构有关的动力学特性的学科,同时与流体力学中轴承与密封的润滑密切相关,有着极强的工程应用背景,它广泛应用于航空发动机、燃气轮机、汽轮机、压缩机、水轮机、涡轮泵、增压器、柴油机、泵、电机等各种旋转机械领域,研究范围包括振动、动态响应、稳定性、动平衡、轴承特性、密封特性、强度、疲劳、可靠性、状态监测、故障诊断和控制等方面,尤其是研究接近或超过临界转速运转状态下转子的各种动力学问题。
一、振动形式,按转子-轴承系统的输入,即振动原因可分为:1. 强迫振动——系统受外界持续激扰作用下所产生的振动,比如转子不平衡产生的周期性的激振力下的转子振动。
特点:振动的频率与激振频率相关,一般由不平衡量引起的振动为1X振动,即振动频率与转速频率一致。
2. 自激振动——由系统自身的交叉耦合刚度引起的振动形式,当有一个初始振动,不需要外界向振动系统输送能量,振动即能保持下去。
这种振动与外界激励无关,完全是自己激励自己,故称为自激振动。
比如轴瓦自激振动(半速涡动,油膜振荡),大容量汽轮机高压转子上的间隙自激振动。
其特征是:振动的频率与转速无关,而与其自然频率有关二、按转子—轴承系统的动力学参数的特性可分为:线性转子动力学分析——通过线性化处理系统,包括轴承的刚度与阻尼等,分析系统的稳态响应,能用常系数线性微分方程描述的振动。
非线性转子动力学分析——系数的阻尼力或弹性恢复力具有非线性性质,只能用非线性微分方程来描述。
比如,所有的轴承作用力均为非线性力,严格来讲,与滑动轴承油膜力相关的转子动力学问题均为非线性转子动力学;还有裂纹转子的动力学分析等也属于非线性领域。
三、按振动位移的特征可分为:横向振动—转子只作垂直轴线方向的振动。
扭转振动—转子绕其纵轴产生扭转变形的振动。
纵向振动—转子只作沿轴线方向的振动。
转子动力学的平衡和稳定性转子动力学是研究旋转机械系统的运动平衡和稳定性的学科。
在工程领域中,转子动力学的研究对于提高转子系统的运行可靠性和性能至关重要。
本文将从转子动力学平衡和稳定性两个方面展开论述。
1. 转子动力学的平衡转子动力学平衡是指转子在旋转过程中各部分的力和力矩之和为零的状态。
转子平衡的主要目标是消除不平衡力和不平衡力矩,以减小振动和噪声,并提高转子系统的工作效率和寿命。
1.1 静不平衡静不平衡是指转子在其自然运行速度下,由于质量分布不均匀而产生的力和力矩不平衡。
产生静不平衡的原因可能是转子制造过程中的质量分布不均匀或者装配过程中的安装偏差等。
通过在转子上增加补偿质量,可以减小或消除静不平衡。
1.2 动不平衡动不平衡是指转子在旋转过程中由于质心与转轴中心线之间有径向距离而产生的力和力矩不平衡。
动不平衡主要是由于转子密度分布不均匀或者转轴弯曲引起的。
通过动平衡技术,可以通过在转子上添加动平衡质量来消除动不平衡。
2. 转子动力学的稳定性转子动力学稳定性是指在特定的工作条件下,转子系统的运动是否保持平衡、稳定并趋向于原始位置。
转子动力学稳定性的研究对于预防转子系统的不稳定振动和失稳现象具有重要意义。
2.1 刚性转子的稳定性刚性转子是指转子在旋转过程中不发生弯曲、挠曲和撞击等现象。
刚性转子的稳定性分析主要涉及到转子的临界转速、共振、失稳等问题。
通过对刚性转子进行固有频率和模态分析,可以预测和避免转子系统的失稳现象。
2.2 弹性转子的稳定性弹性转子是指转子在旋转过程中会发生弯曲、挠曲和撞击等现象。
弹性转子的稳定性分析需要考虑转子的刚度、扭转刚度、挠曲刚度和阻尼等因素。
通过弹性转子的模态分析和振动响应分析,可以评估和改善转子系统的稳定性。
3. 转子动力学的优化为了提高转子系统的平衡和稳定性,有必要进行转子动力学的优化设计。
3.1 材料优化选择适当的材料和加工工艺对于提高转子的平衡和稳定性至关重要。