转子动力学——旋转机械的动力学特性
- 格式:ppt
- 大小:1.04 MB
- 文档页数:46
固体力学的分支。
本文主要研究转子轴承系统在旋转状态下的振动,平衡和稳定性,特别是在接近或超过临界速度的运行状态下转子的横向振动。
转子是旋转机械(例如涡轮机和电动机)中的主要旋转部件。
工程和科学界一直关注转子振动已有200多年的历史了。
1869年英国W.J.M Rankin撰写的有关离心力的论文以及法国C.G.P.de Laval于1889年对挠性轴进行的测试是研究此问题的先驱者。
随着现代工业的发展,高速细长转子逐渐出现。
由于它们通常在柔性状态下工作,因此振动和稳定性问题变得越来越重要。
转子动力学的主要研究内容如下:由于制造误差,转子的每个微段的质心通常会略微偏离旋转轴。
当转子旋转时,由上述偏差引起的离心力将导致转子横向振动。
在某些转速(称为临界转速)下,这种振动非常强烈。
为了确保机器不会在工作速度范围内产生共振,临界速度应偏离工作速度超过10%。
临界速度与转子的弹性和质量分布有关。
对于具有有限集中质量的离散旋转系统,临界速度的数量等于集中质量的数量。
对于具有连续质量分布的弹性旋转系统,存在无限的临界速度。
用于计算大型转子支撑系统的临界转速的最常用数值方法是传递矩阵法。
要点如下:首先,将转子分成几个部分,每个部分左右两端的四个部分参数(挠度,挠度角,弯矩和剪切力)之间的关系可以用下式描述:本节的转移矩阵。
以此方式,可以获得系统的左端面和右端面的截面参数之间的总传递矩阵。
然后,根据边界条件和自然振动中存在非零解的条件,通过试错法求出各阶的临界速度,然后得到相应的振动模式。
由于Jeffcott转子的特殊性,唯一的轮盘位于两个刚性支撑之间,因此可以忽略陀螺力矩对临界转速的影响。
Jeffcott转子在无阻尼状态下的临界速度可以看作是其固有频率,但是对于其他类型的转子,陀螺力矩对临界速度的影响是不能忽略的,这是与结构动力学的差异之一。
和振动力学。
就转子动力学而言,在存在外部阻尼的情况下,Jeffcott转子的临界速度高于其在非阻尼状态下的固有频率,该结论也适用于其他类型的转子。
旋转机械应该防止由于转子质量不平衡、弯曲或转速与结构固有频率一致产生共振所产生的受迫或自激振动产生的破坏,另外对于高速旋转的涡轮机械,应力和疲劳分析对设计者而言也非常重要。
这一切都取决于对旋转机械动力学行为的准确掌控。
旋转机械范围很广,包括喷气发动机、汽轮机、燃气轮机、离心压缩机、离心风机、离心泵、工业风扇、涡轮泵、水轮机、涡轮增压器、船用推进器等,这些都是Samcef Rotors 的应用范畴旋转机械特殊的地方在于,一旦转速达到一定程度或者具有较高的极惯性矩时,陀螺效应的作用就变得很明显。
首先旋转轴会有偏离原始位置的趋势,但更重要的是特征频率不再是一个常量,而会随着转速的不同而发生变化。
有时会随着转速的提高而提高,也有时会随着转速的提高而降低。
这容易导致由于转速所引起的自激振动,从而对结构产生破坏。
采用Campbell图可以检查旋转机械的临界转速。
另外旋转机械特殊的地方还在于其非线性效应,主要是轴承,会带来包含间隙、油膜及其它复杂的非线性效应。
(液体动压滑动轴承、摩擦)在进行转子动力学分析时,不但要分析旋转部件,而且要分析包含转子、静子、轴承的整个系统。
另外还有一些会包含多个转子由齿轮箱连接的机械系统,这些都是Samcef Rotors的研究范围。
可能导致旋转机械不稳定的因素:• 质量不平衡(例如制造加工误差等)• 叶片损失(例如航空发动机鸟撞之后)• 系统内部阻尼(例如系统中负阻尼引起不稳定响应)• 碰摩问题(多载荷工况下转子静子间距)需要在时域和频域范畴内对以上因素的影响进行分析。
LMS-SAMTECH开发的Samcef Rotors专业的转子动力学解决方案是由LMS—SAMTECH不同的软件模块构成,包含:(1)Samcef Field前后处理(2)Rotor模块进行临界转速分析和谐波响应分析(3)RotorT模块进行瞬态分析还包含Samcef系列的两个线性求解器:(1)用于超单元创建和恢复的Dynam求解器(2)用于初始静力学分析的Asef求解器----用于考虑预应力和计算几何刚度矩阵,为后续分析确定初始条件所有的求解分析都在统一友好的Samcef Field用户图形化界面下进行。
转子动力学研究方向综述(上海大学机电工程与自动化学院,上海200072)摘要:旋转机械被广泛地应用于包括燃气轮机,航空发动机,工业压缩机及各种电动机等机械装置中。
转子动力学是研究所有与旋转机械转子及其部件和结构有关的动力学特性,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断和控制的学科。
本文回顾了转子动力学的发展历史,分析了研究转子动力学面临的几个主要问题。
总结了国内外在转子平衡技术方面、转子系统振动控制技术方面、转子动力学设计方面、转子振动噪声和参数识别方面、转子的动力学特性方面研究的情况。
最后讨论了我国转子动力学面临的主要问题。
关键词:转子;动力学;旋转机械Review of Researches Direction on Rotor DynamicsGAO hai-zhou(School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: Rotating machinery is widely applied to include gas turbine, aviation engine, industrial compressor and all kinds of motor and other machinery. Rotor dynamics is the study of all to the rotor of the rotating machinery and its components and structure dynamic characteristics, including dynamic response, vibration, strength, fatigue, stability, reliability and condition monitoring, fault diagnosis and control subjects. This paper reviews the development history of rotor dynamics, analyses several main problems in the study of rotor dynamics. In rotor balancing technology at home and abroad are summarized, the rotor system vibration control technology, the rotor dynamics design, rotor vibration noise and parameter identification, rotor dynamic aspects of the research. Finally discusses the major problems of rotor dynamics in ChinaKey words: rotor; dynamics; rotary machine引言旋转机械[1]被广泛地应用于包括燃气轮机,航空发动机,工业压缩机及各种电动机等机械装置中。
课程名称转子动力学专业机械工程姓名谭玉良学号1320190064教师王彪日期2014.6转子动力学有限元分析1.转子动力学简介1.1背景及意义目前转子动力学在实际机组中的应用正处于需要全面深入研究的阶段,其研究具有重大的实际工程意义。
虽然国内外学者对于大型旋转机械故障诊断问题进行了大量的研究,但大多集中在单一故障问题上。
而在大型旋转机械复杂的工作环境中,系统中产生多故障也是不可忽视的情况之一。
并且与单一故障相比,多故障具有更加复杂的产生原因及动力学特性。
解决旋转机械的振动问题,寻找机械故障的诊断方法,不外乎理论分析与实验研究,而且二者是相辅相成的。
基于模型的方法就是基于这一思路,它首先通过理论分析建立转子系统的有限元模型,然后通过试验方法,利用布置的传感器采集振动信号,最后通过比较计算数据和实测数据,并采用高效算法识别故障的有无、具体位置和严重程度。
旋转机械是工业部门中应用最为广泛的一类机械设备,如汽轮机、压缩机、风机、扎机、机床等诸多机械都属于这一类,转子一轴承系统作为旋转机械的核心部件,在电力、能源、交通、国防以及石油化工等领域中发挥着无可替代的作用。
转子连同它的轴承和支座等统称为转子系统。
机器运转时,转子系统常常发生振动。
振动的害处是产生噪声,减低机器的工作效率,严重的振动会使元件断裂,造成事故。
如何减少转子系统的振动是设计制造旋转机器的重要课题。
转子动力学是分析和研究旋转机械的运转情况,对旋转机械及其部件和结构的动力学特性进行分析和研究的科学,包括动态响应、振动、强度、疲劳、稳定性、可靠性、状态监测、故障诊断等。
因此对于转子系统进行振动分析是十分必要的。
1.2有限单元分析方法有限单元法是在当今技术科学发展和工程分析中获得最广泛应用的数值方法。
由于他的通用性和有效性,受到工程技术界的高度重视。
有限单元法在20世纪50年代起源于航空工程中飞机结构的矩阵分析。
它是在矩阵位移法基础上发展起来的一种结构分析方法。
转轴转子动力学全文共四篇示例,供读者参考第一篇示例:转轴转子动力学是研究转动系统中转轴和转子的运动规律和性能特点的一个重要领域。
在机械工程、航空航天、能源等领域中都有广泛的应用。
转轴转子动力学主要研究转轴和转子在受力作用下的运动和振动特性,以及其对系统性能的影响。
转轴是连接机械设备上旋转部件的轴,它负责传递动力和承受转子的重量。
转子是连接在转轴上旋转的部件,它通常是机械设备的旋转部件,如风力发电机的叶片、汽车发动机的曲轴等。
转轴和转子的运动规律和性能特点直接影响机械设备的安全性、稳定性和效率。
转轴转子动力学研究的内容主要包括以下几个方面:一、转轴和转子的运动规律。
转轴和转子在受力作用下的运动规律是转轴转子动力学研究的基础。
通过建立动力学模型和方程,可以分析转轴和转子的旋转速度、加速度、角位移等参数变化规律,为系统设计和性能优化提供理论基础。
二、转轴和转子的振动特性。
转轴和转子在高速运转时会产生振动现象,这种振动会影响机械设备的运行效果和寿命。
转轴转子动力学研究可以分析转轴和转子的振动模态、幅值、频率等特性,帮助设计者避免共振现象,并提高系统稳定性。
三、转轴和转子的受力分析。
转轴和转子在运转过程中会受到各种外力和扭矩的作用,这些力和扭矩会影响转轴和转子的运动状态。
转轴转子动力学研究可以对转轴和转子的受力分布、应力分布等进行分析,为结构强度和耐久性评估提供依据。
四、转轴和转子的性能优化。
通过对转轴和转子的运动规律、振动特性和受力分析的研究,可以优化转轴和转子的设计参数,提高系统的运行效率和寿命。
通过改变转子的重心位置或增加阻尼器来降低振动幅值,通过优化转轴的材料和结构设计来增加承载能力等。
转轴转子动力学的研究对于提高机械设备的性能和可靠性具有重要意义。
随着科学技术的不断发展和进步,转轴转子动力学研究将在未来得到更加深入和广泛的应用,为新型机械设备和系统的设计与开发提供理论依据和技术支持。
第二篇示例:转轴转子动力学是一门研究转子在旋转轴上运动规律的学科,是机械工程领域的重要分支之一。
转子动力学是什么?转子动力学是研究所有与旋转机械转子及其部件和结构有关的动力学特性的学科,同时与流体力学中轴承与密封的润滑密切相关,有着极强的工程应用背景,它广泛应用于航空发动机、燃气轮机、汽轮机、压缩机、水轮机、涡轮泵、增压器、柴油机、泵、电机等各种旋转机械领域,研究范围包括振动、动态响应、稳定性、动平衡、轴承特性、密封特性、强度、疲劳、可靠性、状态监测、故障诊断和控制等方面,尤其是研究接近或超过临界转速运转状态下转子的各种动力学问题。
一、振动形式,按转子-轴承系统的输入,即振动原因可分为:1. 强迫振动——系统受外界持续激扰作用下所产生的振动,比如转子不平衡产生的周期性的激振力下的转子振动。
特点:振动的频率与激振频率相关,一般由不平衡量引起的振动为1X振动,即振动频率与转速频率一致。
2. 自激振动——由系统自身的交叉耦合刚度引起的振动形式,当有一个初始振动,不需要外界向振动系统输送能量,振动即能保持下去。
这种振动与外界激励无关,完全是自己激励自己,故称为自激振动。
比如轴瓦自激振动(半速涡动,油膜振荡),大容量汽轮机高压转子上的间隙自激振动。
其特征是:振动的频率与转速无关,而与其自然频率有关二、按转子—轴承系统的动力学参数的特性可分为:线性转子动力学分析——通过线性化处理系统,包括轴承的刚度与阻尼等,分析系统的稳态响应,能用常系数线性微分方程描述的振动。
非线性转子动力学分析——系数的阻尼力或弹性恢复力具有非线性性质,只能用非线性微分方程来描述。
比如,所有的轴承作用力均为非线性力,严格来讲,与滑动轴承油膜力相关的转子动力学问题均为非线性转子动力学;还有裂纹转子的动力学分析等也属于非线性领域。
三、按振动位移的特征可分为:横向振动—转子只作垂直轴线方向的振动。
扭转振动—转子绕其纵轴产生扭转变形的振动。
纵向振动—转子只作沿轴线方向的振动。