鸡兔同笼教案
- 格式:docx
- 大小:30.12 KB
- 文档页数:30
鸡兔同笼教学设计8篇鸡兔同笼教案篇一鸡兔同笼问题最早出现在我国古代的一本数学书《孙子算经》中,原题是:“今有雉、兔同笼,上有三十五头,下有九十四足。
问雉、兔各几何?”该书给出了一种典型的解法,即:兔数=腿数÷2—头数(94÷2—35=12),鸡数=头数—兔数(35—12=23);也就是教材中介绍的抬脚法。
鸡兔同笼问题,二、三年级的学生奥数学过,五、六年级的学生教材中安排在数学广角中学,到了初中还要学。
我也曾不禁想过:鸡兔同笼问题怎么有这么大的魅力,让不同年龄层次的孩子们都争相去学,其中蕴含了怎样的数学思想呢?可今天自己就要上这一课了,于是就带着问题研究本课教材,收集有关本课的材料,认真设计并实践了本课。
真是功夫不负有心人,我参考了几位专家的教法,结合自己班孩子的实际情况设计的教案在实践中得到良好的教学实效,现反思如下:一、关注每位孩子的成长是成功的前提鸡兔同笼问题既然作为奥数的内容,那它的思维含量必然很高,然而鸡兔同笼问题又作为六年级数学广角的内容,势必让每个孩子对这类问题都应有各自能够理解的方式去掌握,而不能一味地追求最优化的方式。
课堂上从列表的枚举法入手,接着利用尝试法再到假设的算术法,不仅从思维上层层递进,更关注每个孩子的学习起点和成长体验,是本课收到良好教学效果的前提。
二、关注课堂的互动、生成是取得良好效果的基础课堂是师生双边的交换活动,是教师与学生交流的活动。
课上,教师与孩子们交流不耐烦,很是专制的强调哪些事可以做,哪些事不可以做,会限制学生的能动性和思维的发展,从课堂上来看,我与学生的交流是非常融洽的。
从课前谈话,故事到入、铺垫,到鸡兔同笼原型的展开,再到生活实例的引申,我们的交流都是在无负担的、轻松的氛围中进行的,在无形中,孩子们放开了思绪,生成了很多意想不到的、让人回味的结论和问题。
再则,从心理学的角度我们可以知道:正面的强化作用,对学生的知识、能力、情感和思维都有积极的作用。
《鸡兔同笼》教案(优秀10篇)《鸡兔同笼》教案篇一教学内容:人教版实验教材六年级上册112页——114页。
教学目标:1、了解“鸡兔同笼”问题,尝试用不同的方法解决“鸡兔同笼”问题。
并使学生体会到假设法和方程法的一般性,并能运用这两种方法解决“鸡兔同笼”问题。
2、在解决问题的过程中培养学生的逻辑推理能力,感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心。
3、感受古代数学问题的趣味性,感受祖国优秀数学文化的熏陶和感染。
教学过程:课前:教师采用简笔画形式画鸡和兔,激发学生学习兴趣。
一:铺垫练习,导入新课。
如果把鸡和兔关在一个笼子里,会发生哪些有趣的事情呢?1、铺垫练习:(1)现在笼子里有3只鸡和2只兔,算一算一共有多少条腿?说一说你是怎么算的?(2)兔子很羡慕鸡用两条腿走路,它也想试试用2条腿走路,怎么办呢?兔子腿就可以看成几条了?(2条)它既然两条腿了,我们可以暂时把它当成鸡,这时一共就有5只鸡,这时地上有几条腿?(10条),少的4条去哪儿了?如果地上少了8条腿,是几只兔子在学鸡?(3)鸡也很佩服兔子用4条腿走路,它决定用翅膀支在地上来当腿,鸡也有4条腿了,我们可以暂时把鸡看成兔子,这时就有5只兔子了。
这时地上有几条腿了?(20条)为什么会多6条呢?(因为有了3只鸡在学兔子)如果地上多了10条腿,是几只鸡在学兔子呢?2、如果只告诉你鸡兔一共几个头、一共几条腿,让你求鸡兔各有几只,这样的问题就是我国古代著名的数学趣题——鸡兔同笼问题(板书课题)。
二、探究新知1、出示题目(例1):笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?(1)列表法:你能不能猜测一下鸡兔可能各有几只?(找两名学生先猜一猜)(2)请同学们按顺序113页的表格填完整。
(3)找到答案了吗?鸡兔各有几只?(4)像这样一种一种试,最后找出答案,我们称为“列表法”,对“列表法”你有什么想说的?(鸡兔的只数再多些就太麻烦了。
鸡兔同笼教案(优秀5篇)鸡兔同笼教学设计篇一教学目标:1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。
教学重点:明确鸡兔同笼问题数量关系。
教学难点:初步形成解决此类问题的一般性。
教学过程一、历史激趣,导入新课(3分)导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉” (读成“zhì” ),就是野鸡。
)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。
问有多少只野鸡、多少只兔子。
)师:古代人对这样的题目有着自己独道的'见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。
今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。
(板书课题:鸡兔同笼)2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。
【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。
】二、合作探究,构建新知(15分)1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?2、先猜一猜,可能只有一种动物吗,为什么?学生猜测,汇报。
不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。
鸡兔同笼教案优秀7篇作为一无名无私奉献的教育工作者,总归要编写教案,教案有助于学生理解并掌握系统的知识。
那么大家知道正规的教案是怎么写的吗?为了让大家更好的写作鸡兔同笼相关内容,作者精心整理了7篇鸡兔同笼教案,欢迎查阅与参考。
《鸡兔同笼》教案篇一一、教学目标:1、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力;3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。
二、教材分析本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。
学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
三、学校及学生状况分析五年级学生在三年级时已初步学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一列表法解决问题,还有一些学生在校外的奥数班中已经学习了相关的内容。
因此,教学在这一内容时,学生的程度参差不齐。
本班的学生思维活跃,敢想,敢说,有一定的小组合组经验。
四、教学设计(一)创设情境师:今天这一节课,我们要共同研究鸡兔同笼问题。
(板书:鸡兔同笼)你们知道鸡兔同笼是什么意思?生:鸡兔同笼就是鸡兔在一个笼子里。
(媒体出示课本第80页的情景图)师:请你猜一猜,图中大约有几只兔子,几只鸡?生1:我猜大约是7只,兔子5只鸡。
生2:不一定。
因为有一棵树把鸡和兔子挡住了,所以我不知道各有几只。
(二)探求新知师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(媒体出示题目的条件)师:想一想,要解决这个问题可以用什么方法?想好了,可以写在作业纸上。
鸡兔同笼教案〔精选20篇〕鸡兔同笼教案〔精选20篇〕鸡兔同笼教案篇1教学目的1、通过学生对一些日常生活中的现象的观察与考虑,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进展数学文化的熏陶和感染。
教学过程一、故事引入老师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。
这个问题早在1500多年前人们就已经开场讨论了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?〔笼子里有假设干只鸡和兔。
上面数,有35个头,下面数,有94只脚。
鸡和兔各有几只?〕二、探究新知1、教学例1:笼子里假设干只鸡和兔。
从上面数有8个头,从下面数有26只脚。
鸡和兔各有几只?让学生以两人为一组讨论。
汇报讨论的结果。
〔1〕、列表:鸡876543兔012345脚161820222426〔2〕、假设法:假设笼子里都是鸡,那么就是82=16〔只〕脚,这样就比题目多26-16=10〔只〕脚。
因为刚刚是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5〔只〕兔子。
因此,鸡就有:8-5=3〔只〕〔3〕、用方程解:解:设鸡有x只,那么兔就有〔8-x〕只。
根据鸡____有26只脚来列方程式2x+(8-x)4=262x+84-4x=2632-26=4x-2x2x=6x=38-3=5(只)2、小结解题方法:老师:以上三种解法,哪一种更方便?小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。
用方程解更直接。
3、独立解决书中的趣题。
〔1〕、方程解:解:设鸡有x只,那么兔就有〔35-x〕只。
根据鸡____有94只脚来列方程式2x+(35-x)4=942x+354-4x=94140-94=4x-2x2x=46x=2335-23=12(只)答:鸡有23只,兔有12只。
〔2〕、算术解:假设都是鸡。
235=70〔只〕94-70=24〔只〕24〔4-2〕=12〔只〕35-12=23〔只〕答:鸡有23只,兔有12只。
《鸡兔同笼》教案《鸡兔同笼》教案1时间:5分钟方法:边看书边完成下面要求:1、“鸡兔同笼”这四个字是什么意思?2、书上用了()种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?生理解:(1)鸡和兔共8只;(2)鸡和兔共有26只脚;(3)鸡有2只脚;(4)兔有4只脚;(5)兔比鸡多2只脚。
(课件演示)师:那问题是什么?生:鸡和兔各有多少只?3、猜一猜:师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?4、介绍列表法:师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。
(学生活动)5、观察发现,列式计算三、合作交流:5分钟假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟解决鸡兔同笼这类问题,有几种假设的方法?五、小结检测:20分钟1、小结方法:同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:a、问答:(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)(2)如果一定要你用列表法解答你有什么办法?学生讨论。
(教师引导列表折半调整。
)(注:如果前面出现了折半列表,就把这个环节提前讲。
)(3)其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的`方法去解决,下面请同学们用自己喜欢的方法做一些题目?b、解决问题(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?(2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。
问大船和小船各多少条?(3)新星小学”环保卫士”小分队12人参加植树活动。
男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。
小学数学《鸡兔同笼》教案优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!小学数学《鸡兔同笼》教案优秀7篇1、鸡兔同笼,共有头30个,足86只,求鸡兔各有多少只?这次本店铺为您整理了小学数学《鸡兔同笼》教案优秀7篇,在大家参照的同时,也可以分享一下本店铺给您最好的朋友。
《鸡兔同笼》教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《鸡兔同笼》教案【优秀6篇】作为一名教职工,编写教案是必不可少的,借助教案可以更好地组织教学活动。
小学四年级数学下册《数学广角--鸡兔同笼》教案(精选13篇)小学四年级数学下册《数学广角--鸡兔同笼》篇1一、教材分析:“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。
解决这类问题时,教材展示了学生逐步解决问题的过程。
“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。
因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
二、学情分析:(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。
(2)列方程解答此类问题数量关系直观易懂,要加以提倡。
(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
三、教学目标:1.知识与技能使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。
2.过程与方法通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性,渗透化繁为简的思想。
3.情感态度与价值观使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:尝试用不同的方法解决“鸡兔同笼”问题,体会用假设法解决问题的优越性。
五、教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
六、教学过程:(一)创设情景,提出问题。
1.同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?指生回答(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。
鸡和兔各有几只?2.有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。
鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年。
鸡兔同笼教案优秀10篇《鸡兔同笼》教案篇一复习目标:通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。
并能用不同的方法解决与鸡兔同笼有关的问题。
复习重点:尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
复习难点:在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导学法:自主探究课前准备:多媒体。
教学过程:一、定向导学:2分钟1、板书课题2、复习目标:掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。
并能用不同的方法解决与鸡兔同笼有关的问题。
二、方法归类:8分1、填空:一只公鸡()条腿,两只公鸡()条腿,五只公鸡()条腿。
一只兔子()条腿,两只兔子()条腿,五只兔子()条腿。
鸡兔共五只,腿有()条。
2、谁记得解决这类问题的方法呢?学生回答3、了解抬脚法笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有几只?古人的算法可以用下图表示:头… 35 脚减半35 下减上35 上减下23 …鸡脚… 94 47 12 12 …兔三、解决问题:10分(1)、鸡兔同笼,有20个头,56条腿,鸡、兔各有多少只?(2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?(3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多()分。
(4)数学竞赛,答对一题得10分,答错一题扣6分。
小明抢答了16道题,最后得分16分,他答对了几道题?四、小结检测:20分钟1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?2、检测:a、问答:(1)解答鸡兔同笼问题要弄清()多少只,还要弄清()多少只。
b、解决问题(1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。
问大船和小船各多少条?(2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。
求大、小和尚各有多少个人?(3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)(4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?鸡兔同笼教案篇二【教学目标】1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
鸡兔同笼教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!鸡兔同笼教案鸡兔同笼教案七篇作为一位杰出的教职工,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
那要怎么写好教案呢?以下是本店铺帮大家整理的鸡兔同笼教案7篇,欢迎阅读与收藏。
鸡兔同笼教案篇1教学目标:1.认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。
2.经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。
在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。
3.让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。
教学重点:会用假设法和方程法解答“鸡兔同笼”问题。
教学难点:明白用假设法解决“鸡兔同笼”问题的算理。
教学用具:多媒体课件。
教学过程:一、创设情境,引入新课。
1、引入:同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。
你们想看一看吗?今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。
鸡和兔共有35个头,94只脚。
鸡和兔各有多少只?这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。
板书课题:“鸡兔同笼”。
为便于研究,我们先从简单的生活问题入手,请看下面问题。
●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。
两种票各买来了多少张?【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。
二、自主学习、小组探究对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。
温馨提示:①用列举法怎样解决问题?②你能用画图的方法解答吗?③如果把这些票都看成学生票或都看成成人票如何解答?④回顾列方程解决问题的经验,怎样用方程解决问题?学生自己根据提示用自己喜欢的方法解决问题。
先把自己的想法在小组内说一说,再共同协商解决。
教师巡视,要注意发现学生的不同解法,同时参与小组的指导。
三、汇报交流,评价质疑对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。
1.列举法。
可以有目的的先展示这种方法。
(多媒体展示。
)学生票数(张)成人票数(张)钱数(元)252525024262522327254222825621292582030260质疑:有50张票,是否有必要一一列举,你是如何列举的?(引导学生通常先从总数的中间数列举。
)质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?(引导学生根据数据特点确定调整方向、调整幅度。
)师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。
(板书:枚举法)2.假设法(1)假设全是成人票:①为了便于学生理解,展示假设为成人票,学生试画的分析图。
(图略)②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。
(学生试着列算式,请两个学生到黑板上去板演。
)预设板演:50×6=300(元)300-260=40(元)40÷(6-4)=20(张) 50-20=30(张)③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的?预设回答:假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。
而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。
(2)假设全是学生票:如果假设成全是学生票该如何解答?(学生根据刚才的经验独立解答,交流时重点说清推理思路。
)总结方法归纳抽象出这类问题的模型。
学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价).成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价).3、方程法:除了以上两种方法,还有别的计算方法了吗?学生汇报列方程的方法。
(1)找出相等的数量关系。
(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260元)(2)根据等量关系列式:设成人票有x张,则学生票有(50-x)张。
列方程为:6x+4(50-x)=260(解略)4.学生比较以上几种方法解题方法。
四、抽象概括,总结提升。
让学生结合自己解决问题的经验,用自己的语言进行总结。
列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。
画图法:操作简单,比较直观。
但数字大的时候,画图也是比较麻烦的。
假设法:适合所有的这类问题,但比较抽象,不好理解。
方程法:适用面广,便捷,容易理解。
师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。
只不过列举法对于数据较大时比较麻烦。
一般我们采用假设法和解方程的方法比较简便。
【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。
五、巩固应用,拓展提高1.今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?(回应开课时的问题。
)温馨提示:A.先让学生认真读题,(同桌讨论)。
B.然后自己解决,汇报交流。
交流时同时让学生感受中华民族悠久的数学文化。
2.王丽有20张5元和2元的人民币,一共是82元。
5元和2元的人民币各有多少张?处理方法:①学生认真读题,引导学生对比“鸡兔同笼”问题模型,分析数量关系,然后选择合适的方法独立解答。
②小组内交流算法。
③全班交流。
【设计意图】本题是“鸡兔同笼”问题模型,在现实生活中的应用,鼓励学生用自己喜欢的方法解答。
进一步巩固“鸡兔同笼”问题的各种解法,培养学生的实践应用能力。
3、巩固练习:回应解决例题,引导学生用合适的方法计算。
然后说一说在我们的生活中有类似鸡兔同笼的问题吗?(龟鹤问题、乘船问题、合作植树问题等)【设计意图】让学生寻找生活中的鸡兔同笼问题,使学生感受到“鸡兔同笼”问题在生活中的广泛应用。
3、全课小结:回顾总结,引发思考本节课,我们在解决“鸡兔同笼”问题时,采用了几种策略,在这节课中,我发现同学们还有其他的解决方法,下课后相互交流一下,并尝试一下。
师总结:这节课大家共同探究,解决了生活中类似“鸡兔同笼”问题的实际问题。
只要我们善于动脑,好多问题都可以归为一类问题,抽象出一个总的模型进行解决。
鸡兔同笼教案篇2教学目标:1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。
2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。
3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点:能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。
教学难点:能用不同的策略解决相关的实际问题。
教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。
教具:多媒体课件教学过程:一、联系现实,激趣导入1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。
生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;师:接下来的歌谣不完整,谁能把它填完整呢?两只鸡个头,条腿,两只兔子,个头,条腿,三只鸡三只兔子一共个头,条腿...…师:你是怎么知道的?生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。
[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。
]2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。
二、自主探索,尝试解决1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?(1)、指名读题(2)、理解题意:师:20个头表示什么?生:20个头表示鸡与兔的总头数。
师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。
(3)、同桌说一说:(4)、学生汇报,教师填表生1:我猜鸡有3只,兔子有17只。
生2:我猜鸡有5只,兔子有15只。
生3:我猜鸡有16只,兔子有4只。
……师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?生:鸡兔的总只数没有变。
强调鸡兔的总只数不变[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。