实验三零极点分布对系统频率响应地影响(数字信号实验)
- 格式:doc
- 大小:372.50 KB
- 文档页数:11
电子科技大学实验报告学生姓名:xxx 学号:2901305032 指导教师:崔琳莉一、实验室名称:信号与系统实验室二、实验项目名称:离散系统的转移函数,零、极点分布和模拟三、实验原理:离散系统的时域方程为∑∑= =-= -Mm mNkkmnxbknya][][其变换域分析方法如下:系统的频率响应为ωωωωωωωjNNjjMMjjjjeaeaaebebbeAeBeH----++++++==......)()()(11Z域)()()(][][][][][zHzXzYmnhmxnhnxnym=⇔-=*=∑∞-∞=系统的转移函数为NNMMzazaazbzbbzAzBzH----++++++==......)()()(1111分解因式∏∏∑∑=-=-=-=---==NiiMiiNiikMiikzzKzazbzH1111)1()1()(λξ,其中iξ和iλ称为零、极点。
在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。
四、实验目的:1、加深对离散系统转移函数、零极点概念的理解;2、根据系统转移函数求系统零极点分布。
五、实验内容:MATLAB 仿真六、实验器材(设备、元器件):计算机、MATLAB 软件。
七、实验步骤:对系统系统2181.09.011)(--+-=z z z H1、 编程实现系统的参数输入,绘出幅度频率响应曲线和零、极点分布图。
2、 根据系统的零极点计算系统频率响应的幅值和相位。
定义omega=[0:511]*pi/256和unitcirc=exp(j*omega)得到在单位圆上512个等分点,在这些点上将要对频率响应)(jw e H 求值。
(a )定义polevectors1是一个2×512的矩阵,其中每一行包含这样一些复数,这些复数是由unitcirc 的相应列减去一个极点位置得到的。
实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。
二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。
三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。
如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。
格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。
其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。
zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。
②roots 函数。
用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。
2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。
实验三零极点分布对系统频率响应的影响
一.实验目的
学习用分析零极点分布的几何方法分析研究信号和系统频率响应
. 二. 实验原理
1. 对(序列)信号x(n)进行ZT, 得X(z), 从而得到它的零极点分布
. 2. 对(离散)系统, 求出它的系统函数
H(z) , 也可得到它的零极点分布. 3. 按教材(3.6.13)式, 信号或系统的幅度特性由零点至单位圆周上的矢量长度和极点至单位圆周上的矢量长度之比
. 4. 极点影响频率特性的峰值
, 零点影响频率特性的谷值. 零极逾靠近单位圆
, 这些特征越明显. 如有极点410.9j z e , 则频率特性曲线在4
处出现峰值. 5. 本实验借助于计算机分析信号或系统的频率响应
, 目的是掌握用极、零点分布的几何分析法分析频率响应, 实验时需并j z e 代入相应的X(z) 或H(z) 中, 再在0~2中等
间隔的取点. 如100等分:w=[0:2*pi/100:2*pi], 再用plot 等函数作出|()|j H e 图形.
三. 实验内容
1. 设系统为()()(1)y n x n ay n , 试就0.7,0.8,0.9a , 分别在三种情况下分析系统的频率特性, 并作出幅度特性曲线
., 并作出高, 低通等判断.
2. 假设系统为: ()
1.273(1)0.81(2)()(1)y n y n y n x n x n 试分析它的频率特性
, 作出它的幅-频曲线, 估计其峰值频率和谷值频率
. 四. 实验报告要求1. 总结零、极点分布对频率响应的影响;
2. 总结零、极点分布对系统的高通、低通的影响.。
数字信号处理实验报告姓 名: 班 级: 13电信2 学 号: 2013302 2013302 2013302 指导老师: 日期: 2016.6.6~华南农业大学电子工程学院电子信息工程系实验一 常见离散信号的MATLAB 产生和图形显示一、实验目的加深对常用离散信号的理解; 二.实验原理 1. 单位抽样序列在MATLAB 中可以利用zeros()函数实现。
如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:2. 单位阶越序列在MATLAB 中可以利用ones()函数实现。
3. 正弦序列在MATLAB 中 4. 复正弦序列在MATLAB 中 5. 指数序列在MATLAB 中6.卷积分析conv.m 用来实现两个离散序列的线性卷积。
其调用格式是:y=conv(x,h)若x 的长度为N ,h 的长度为M ,则y 的长度L=N+M-1。
三.实验内容1.画出信号x (n) = 1.5*δ(n+1) - δ(n-3)的波形。
2.求序列x(n)和h(n)的线性卷积y(n)=x(n)*h(n)。
x(n) = {3,-3,7,0,-1,5,2} , h(n) = {2,3,0,-5,2,1}. 画出x(n),h(n),y(n)与n的离散序列图形四.实验要求1)画出信号x(n) = 1.5*δ(n+1) - δ(n-3)的波形。
①MATLAB程序如下:n3 = [-3:3];x3 = [(n3+1)==0];subplot(1,3,1);stem(n3,x3);n4 = [-3:3];x4 = [(n4-3)==0];subplot(1,3,2);stem(n4,x4);n5 = [-3:3];x5 = 1.5*x3 - x4;subplot(1,3,3);stem(n5,x5);②理论计算:x(n)=③程序运行结果:图(1)从图(1)左侧起第一幅图是信号δ(n+1)的波形,第二幅图是信号δ(n-3)的波形,最后一幅图是信号x(n) = 1.5*δ(n+1) - δ(n-3)的波形。
实验3 离散时间系统的频域分析一、实验目的(1)了解DFS 、DFT 与DTFT 的联系;加深对FFT 基本理论的理解;掌握用MATLB 语言进行傅里叶变换时常用的子函数;(2)了解离散系统的零极点与系统因果性和稳定性的关系;加深对离散系统的频率响应特性基本概念的理解;熟悉MATLAB 中进行离散系统零极点分析的常用子函数;掌握离散系统幅频响应和相频响应的求解方法。
二、实验内容1. 已知离散时间系统函数为 用matlab 中的函数()432143213.07.05.11.112.01.03.01.02.0--------+-+-++++=zz z z z z z z z H 求该系统的零极点及零极点分布图,并判断系统的因果稳定性。
方法一:利用tf3zp 函数b=[0.2 0.1 0.3 0.1 0.2]; a=[1 -1.1 1.5 -0.7 0.3]; [z,p,k]=tf2zp(b,a); c1=abs(z);c2=angle(z); c3=abs(p);c4=angle(p); polar(c4,c3,'bx') hold onpolar(c2,c1,'ro') disp(z) disp(p)disp(abs(z)) disp(abs(p))90270方法二:利用zplaneb=[0.2 0.1 0.3 0.1 0.2];a=[1 -1.1 1.5 -0.7 0.3];z=roots(b);p=roots(a);zplane(b,a)disp(z)disp(p)disp(abs(z))disp(abs(p))-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t由于极点都在单位圆内,故该系统稳定。
若其收敛域为圆外区域,则系统是因果系统。
2. 已知离散时间系统的系统函数为()432143213.07.05.11.112.01.03.01.02.0--------+-+-++++=z z z z z z z z z H求该系统在π~0频率范围内的绝对幅频响应、相频响应。
增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应和频率响应会造成很大影响。
以下对于零极点的分布研究均是对于开环传递函数。
零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。
在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。
在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。
从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。
在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。
因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。
对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90º。
非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。
在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。
当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。
实验一 常见离散信号的MATLAB 产生和图形显示1、实验目的:(1)熟悉MATLAB 应用环境,常用窗口的功能和使用方法。
(2)加深对常用离散时间信号的理解。
(3)掌握简单的绘图命令。
(4)掌握线性卷积的计算机编程方法。
2、实验原理:(1)单位抽样序列⎩⎨⎧=01)(n δ0≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ≠=n k n(2)单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n(3)矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N n(4)正弦序列)sin()(ϕ+=wn A n x(5)复正弦序列jwnen x =)((6)指数序列na n x =)((7)线性时不变系统的响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(3、实验内容及步骤:(1)复习常用离散时间信号的有关内容。
(2)编制程序产生上述6种序列(长度可输入确定,对(4) (5) (6)中的参数可自行选择),并绘出其图形。
(3)已知系统的单位脉冲响应),(9.0)(n u n h n=输入信号)()(10n R n x =,试用卷积法求解系统的输出)(n y ,并绘出n n x ~)(、n n h ~)(及n n y ~)(图形。
4、实验用MATLAB 函数介绍(1)数字信号处理中常用到的绘图指令(只给出函数名,具体调用格式参看help)figure(); plot(); stem(); axis(); grid on; title(); xlabel(); ylabel(); text(); hold on; subplot()(2)离散时间信号产生可能涉及的函数zeros(); ones(); exp(); sin(); cos(); abs(); angle(); real(); imag(); (3)卷积计算可能涉及的函数conv(); length()注:实验过程中也可以使用自己编制的自定义函数,如impseq()、stepseq()等。
实验3离散系统地频率响应分析和零、极点分布一、 实验目地(1) 熟悉对离散系统地频率响应分析方法; (2) 加深对零、极点分布地概念理解. 二、 实验原理 离散系统地时域方程为∑∑==-=-Mk kNk kk n x pk n y d)()(其变换域分析方法如下: 频域)()()(][][][][][ΩΩ=Ω⇔-=*=∑∞-∞=H X Y m n h m x n h n x n y m系统地频率响应为 Ω-Ω-Ω-Ω-++++++=ΩΩ=ΩjN N j jM M j ed e d d e p e p p D p H ......)()()(1010 Z 域)()()(][][][][][z H z X z Y m n h m x n h n x n y m =⇔-=*=∑∞-∞=系统地转移函数为 NN M M zd z d d z p z p p z D z p z H ----++++++==......)()()(110110分解因式 ∏-∏-=∑∑==-=-=-=-Ni i Mi i Ni ik Mi ik z z Kzd z p z H 11110)1()1()(λξ,其中,i ξ和i λ称为零、极点. 三、 预习要求在MATLAB 中,熟悉函数tf2zp 、zplane 、freqz 、residuez 、zp2sos 地使用,其中:[z ,p ,K]=tf2zp (num ,den )求得有理分式形式地系统转移函数地零、极点;zplane (z ,p )绘制零、极点分布图; h=freqz(num,den,w )求系统地单位频率响应;[r ,p ,k]=residuez (num ,den )完成部分分式展开计算; sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统地串联.(2)阅读附录中地实例,学习频率分析法在MATLAB 中地实现; (3)编程实现系统参数输入,绘出幅度频率响应和相位响应曲线和零、极点分布图.四、 实验内容 求系统54321543212336.09537.08801.14947.28107.110528.0797.01295.01295.00797.00528.0)(-----------+-+-+++++=zz z z z z z z z z z H 地零、极点和幅度频率响应和相位响应. 附录:例1求下列直接型系统函数地零、极点,并将它转换成二阶节形式解 用MATLAB 计算程序如下: num=[1 -0.1 -0.3 -0.3 -0.2]; den=[1 0.1 0.2 0.2 0.5];[z,p,k]=tf2zp(num,den);m=abs(p);disp('零点');disp(z);disp('极点');disp(p);disp('增益系数');disp(k);sos=zp2sos(z,p,k);disp('二阶节');disp(real(sos));zplane(num,den)输入到“num”和“den”地分别为分子和分母多项式地系数.计算求得零、极点增益系数和二阶节地系数:零点0.9615-0.5730-0.1443 + 0.5850i-0.1443 - 0.5850i极点0.5276 + 0.6997i0.5276 - 0.6997i-0.5776 + 0.5635i-0.5776 - 0.5635i增益系数1二阶节1.0000 -0.3885 -0.5509 1.0000 1.1552 0.65111.0000 0.2885 0.3630 1.0000 -1.0552 0.7679 系统函数地二阶节形式为:极点图见图.例2 差分方程所对应地系统地频率响应.解差分方程所对应地系统函数为:3213216.045.07.0102.036.044.08.0)(--------+++-=zz z z z z z H 用MATLAB 计算地程序如下:k=256;num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi;h=freqz(num,den,w);subplot(2,2,1);plot(w/pi,real(h));gridtitle('实部')xlabel('\omega/\pi');ylabel('幅度')subplot(2,2,2);plot(w/pi,imag(h));gridtitle('虚部')xlabel('\omega/\pi');ylabel('Amplitude')subplot(2,2,3);plot(w/pi,abs(h));gridtitle('幅度谱')xlabel('\omega/\pi');ylabel('幅值')subplot(2,2,4);plot(w/pi,angle(h));gridtitle('相位谱')xlabel('\omega/\pi');ylabel('弧度')版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.RTCrp。
数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc)后,实验室统一刻盘留档。
实验三零极点分布对系统频率响应的影响一、实验目的学习用分析零极点分布的几何方法分析研究信号和系统频率响应。
二、实验原理如果知道信号的Z变换以及系统的系统函数H(z),可以得到它们的零极点分布,由零极点分布可以很方便地对它们的频率响应进行定性分析。
信号的幅度特性由零点矢量长度之积除以极点矢量的长度之积,当频率ω从0变化到2π时,观察零点矢量长度和极点矢量长度的变化,重点观察那些矢量长度较短的情况。
另外, 由分析知道, 极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,如果零点在单位圆上,那么频率特性为零。
根据这些规律可以定性画出频率响应的幅度特性。
峰值频率和谷值频率可以近似用响应的极点和零点的相角表示,例如极点z1=0.9ejπ/4,峰值频率近似为π/4,极点愈靠近单位圆,估计法结果愈准确。
本实验借助计算机分析信号和系统的频率响应,目的是掌握用极、零点分布的几何分析法分析频率响应,实验时需要将z=ejω代入信号的Z变换和系统函数中,再在0~2π之间,等间隔选择若干点,并计算它的频率响应。
三、实验内容(包括代码与产生的图形)要求:不仅打印幅度特性曲线,而且要有系统频率特性的文字分析。
1. 假设系统用下面差分方程描述:y(n)=x(n)+ay(n-1)假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
a=0.7代码:B=1;a=0.7A=[1,-a];subplot(3,1,3);zplane(B,A);xlabel('ʵ²¿Re');ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼');grid on[H,w]=freqz(B,A,'whole');subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('·ùƵÏìÓ¦ÌØÐÔ');axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性a=0.8代码:B=1;a=0.8A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-6-4-20246实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.61.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a=0.9代码:B=1;a=0.9A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性分析:由y (n )=x (n )+ay (n -1)可知:H[z]=B[z]/A[z]=1/(1-az^(-1))系统极点z=a ,零点z=0,当B 点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a 越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi 点形成波谷;z=0处零点不影响幅频响应。
2. 假设系统用下面差分方程描述: y (n ) = x (n ) +ax (n -1)假设a =0.7, 0.8, 0.9 , 分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
a =0.7代码:A=1;a=0.7B=[1,a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ax(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ');图像:-6-4-20246实部Re虚部I my(n)=x(n)-ax(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a=0.8代码:A=1;a=0.8B=[1,a];subplot(3,1,3);zplane(B,A);xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ax(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ'); 图像:-6-4-20246实部Re虚部I my(n)=x(n)-ax(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.61.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a =0.9代码:A=1;a=0.9B=[1,a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ax(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàÆµÏìÓ¦ÌØÐÔ'); 图像:实部Re虚部I my(n)=x(n)-ax(n-1)传输函数零、极点分布5ω/π|H (e j ω)|幅频响应特性-202ω/πφ(ω)相频响应特性分析:由y (n )=x (n )+ax (n -1)可知:H[z]=B[z]/A[z]= (1-az^(-1)) /1系统极点z=0,零点z=a ,当B 点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。