因式分解(2)
- 格式:docx
- 大小:107.98 KB
- 文档页数:5
课题:2.2.3因式分解法(二)教学目标:1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、会用因式分解法解某些一元二次方程。
3、进一步让学生体会“降次”化归的思想。
教学重点:用因式分解法解一元二次方程.教学难点:将方程化为一般形式后,对左侧二次三项式的因式分解.教学过程:一、知识回顾(出示ppt课件)1、因式分解法:当方程的一边能够分解成两个一次因式而另一边等于0时,即可解之.这种方法叫做因式分解法.(1)用因式分解法的条件是:方程左边能够因式分解,而右边等于零;(2)因式分解法的依据: A ·B=0 ⇔A=0或B=0(3)因式分解法解一元二次方程的一般步骤:一移:移项,使方程右边化为。
二分:将方程左边分解成两个的乘积。
三化:“两个因式的积等于零,至少因式为零”,得到两个一元一次方程。
四解:解两个,所得的解就是原方程的解。
二、课前练习(出示ppt课件)1、一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?2、快速回答:下列各方程的根分别是多少?(1) .x(x-2)=0 ;(2) (x+2)(x-3)=0;(3) x2=x;(4) (3x+2)(2x-3)=0;根据性质:A ·B=0 ⇔A=0或B=0,快速说出结果。
3、解下列方程:(1)(x-2) 2=(2x+3) 2(2)(2x+3) 2=4(2x+3)x1=-13,x2=-5 x1=-32,x2=12(3)2(x-3) 2=x2-9(4)(2a-3) 2=(a-2)(3a-4)x1=3,x2=9 a1=a2=1分组练习,交流学习经验。
三、探究学习(出示ppt课件)例:解下列方程:1、x2-10x+24=0【解析】①用配方法解:配方,得:x2-10x+52-52+24=0,得:(x-5) 2-1=0 因式分解,得:(x-5+1)(x-5-1)=0,即:(x-4)(x-6)=0得方程:x-4=0或x-6=0,解得:x1=4,x2=6,②用公式:x2+(a+b)x+ab=(x+a)(x+b)来因式分解。
因式分解方法大全(二)因式分解四个注意:因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
多项式因式分解的一般步骤:①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;④分解因式,必须进行到每一个多项式因式都不能再分解为止。
用一句话来概括:“先看有无公因式,再看能否套公式。
十字相乘试一试,分组分解要合适。
”⑸拆项、添项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。
要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)⑹配方法对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。
属于拆项、补项法的一种特殊情况。
也要注意必须在与原多项式相等的原则下进行变形。
例如:x²+3x-40⑺应用因式定理对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a.例如:f(x)=x x²+5x+6,f(-2)=0,则可确定x+2是x²+5x+6的一个因式。
(事实上,x²+5x+6 =(x+2)(x+3).)注意:1、对于系数全部是整数的多项式,若X=q/p (p,q 为互质整数时)该多项式值为零,则q 为常数项约数,p 最高次项系数约数;2、对于多项式f(a)=0,b 为最高次项系数,c 为常数项,则有a 为c/b 约数⑻换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。
注意:换元后勿忘还元.例如在分解(x²+x+1)( x²+x+2)-12时,⑼求根法令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x -xn) .⑽图象法令y=f(x),做出函数y=f(x)的图象,找到函数图像与X 轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x -xn).与方法⑼相比,能避开解方程的繁琐,但是不够准确。
因 式 分 解(2) 利用公式法一、利用公式分解因式:1、利用平方差公式因式分解:()()b a b a b a -+=-22 注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。
例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x 典型例题:1、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9; (2)9x 2-6x+1。
2、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5; (2)4x 3y+4x 2y 2+xy 3。
3、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2; (2)4x 2-12xy 2+9y 4.4、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4; (2)16x 4-72x 2y 2+81y 4.5、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
因式分解(二)一、分组分解法(一)分组后能直接提公因式例题1 分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题2 分解因式:bx by ay ax -+-5102对应练习题 分解因式:1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例题3 分解因式:ay ax y x ++-22 例题4 分解因式:2222c b ab a -+-对应练习题 分解因式:3、y y x x 3922---4、yz z y x 2222---综合练习题 分解因式:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-二、十字相乘法(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和. 例题1 分解因式:652++x x 例题2 分解因式:672+-x x对应练习题 分解因式:(1)24142++x x (2)36152+-a a (3)542-+x x(二)二次项系数不为1的二次三项式——2ax bx c ++条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c(3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题3 分解因式:101132+-x x对应练习题 分解因式:(1)6752-+x x (2)101162++-y y(三)二次项系数为1的齐次多项式例题4 分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解. 1 8b1 -16b8b +(-16b )= -8b对应练习题 分解因式:(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例题5 分解因式:22672y xy x +- 例题6 分解因式:2322+-xy y x对应练习题 分解因式:(1)224715y xy x -+(2)8622+-ax x a综合练习题 分解因式:(1)17836--x x(2)22151112y xy x --(3)10)(3)(2-+-+y x y x(4)344)(2+--+b a b a(5)222265x y x y x --(6)2634422++-+-n m n mn m。
因式分解方法(2)____________________________________________________________________________________________________________________________________________________________________1.能熟练的运用多种方法分解因式;2.掌握十字交叉相乘的方法分解因式.1.二次三项式(1)多项式,称为字母x的二次三项式,其中称为二次项,为一次项,为常数项.例如:和都是关于x的二次三项式.(2)在多项式中,如果把看作常数,就是关于的二次三项式;如果把看作常数,就是关于的二次三项式.(3)在多项式中,看作一个整体,即,就是关于的二次三项式.同样,多项式,把看作一个整体,就是关于的二次三项式.2.十字相乘法的依据和具体内容(1)对于二次项系数为1的二次三项式方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式它的特征是“拆两头,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母.1.利用十字相乘法分解因式【例1】(2014安徽省中考)分解因式:【解析】将y看作常数,转化为关于x的二次三项式,常数项可分为(-2y)(-3y),而(-2y)+(-3y)=(-5y)恰为一次项系数.【答案】解:练习1.(2014四川凉山一中月考);练习2.(2014贵州黔南三中周测)__________.2.二次项系数不为1的十字相乘【例2】把下列各式分解因式:(1);(2).【解析】我们要把多项式分解成形如的形式,这里,而.另外,二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.【答案】解:(1);(2).练习3. (x-3)(__________).练习4.练习5.练习6.3.把其中一个量看成一个整体【例3】分解因式:【解析】把看作一整体,从而转化为关于的二次三项式;注意,要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止.【答案】解:=(x+1)(x-1)(x+3)(x-3).练习7.(2014湖北恩施中考)练习8.(2014青海西宁中考)分解因式:.练习9.(2014内蒙古呼和浩特一中期中);4. 换元法分解因式【例4】分解因式:.【解析】把看作一个变量,利用换元法解之.【答案】解:设,则原式=(y-3)(y-24)+90=(y-18)(y-9).注意:本题中将视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,一步,我们用了“十字相乘法”进行分解.练习10.分解因式.练习11..练习12.;5.重新分组分解因式【例5】分解因式:ca(c-a)+bc(b-c)+ab(a-b).【解析】先将前面的两个括号展开,再将展开的部分重新分组.【答案】解:ca(c-a)+bc(b-c)+ab(a-b)=(a-b)(c-a)(c-b).练习13.;练习14. 分解因式:(x2+3x+2)(4x2+8x+3)-90.6.因式分解的综合题【例6】.【解析】仔细观察式子,把这个式子变形为(x2+xy+y2)(x2+xy+y2+y2)-12y4,再把式子乘开,把x2+xy+y2看成一个整体即可因式分解。
初中数学竞赛专题培训第二讲:因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3; (2)x2-xy+2x+y-3;=(x-5y+3)(x-3y-1) =(x-1)(x-y+3) (3)3x2-11xy+6y2-xz-4yz-2z2.=(3x-2y+2z)(x-3y-z)2.用求根法分解因式:(1)x3+x2-10x-6; (2)x4+3x3-3x2-12x-4;=(x-3)(x^2+4x+2) =(x+2)(x-2)(x^2+3x+1)(3)4x4+4x3-9x2-x+2.=(x-1)(2x+1)(2x-1)(x+2)3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20; (2)x4+5x3+15x-9.= (2x-3y+4)(x+3y+5) =(x^2+3)(x^2+5x-3)。
4.2—因式分解(2)
学习目标
1.会用完全平方公式(直接用公式不超过两次)进行因式分解。
2.经历通过整式乘法逆向得出因式分解的方法的过程,发展学生逆向思维的能力和推理能力。
学习重点
运用完全平方公式分解因式。
学习难点
灵活运用完全平方公式分解因式
学习过程
一、 探索新知
复习引入
_______________________)(2=+b a
_______________________)(2=-b a
_______________________)4(2=+a
你能将多项式1682++a a 分解因式吗?
(1)解答以上问题,并说说解答上述问题的依据。
(2)你还能提出类似的问题并解决这些问题吗?写一写,议一议。
(3)归纳、小结、提出“完全平方公式”。
归纳
(1)完全平方公式: ()2222b a b ab a +=++;()2222b a b ab a -=+-.
(2)平方差公式的特点;
(3)完全平方公式的应用,提出“完全平方式”概念。
二、范例点睛
练习1、判断下列各式哪些式子可以写成一个整式平方的形式:
(1)1x 4x 42-+ (2)2x 4x 41-- (3)1x 4x 42++- (4)1x 2x 42++
(5)1x x 2++ (6)41
x x 2-+- (7)41
x x 2++- (8)
xy y 41
x 22-+
例1、把下列各式分解因式:
(1)1x 2x 2++;(2)22b 9ab 12a 4+-(3)1x 10x 2524++;(4)xy 4y 4x 22+--(5)22y 9xy 30x 25---
练习2、把下列各式分解因式:(板演)
(1)22y xy 2
116x +-;(2)22b 9ab 48a 64+-;(3)()()1y x 4y x 42+-+-;(4)222c 16abc 8b a +-;
例2、把下列各式分解因式:
(1)22363y xy x ++
(2)()xy y x 42+- (3)()()122++++y x y x (4)()()y x 2025y x 42+-++ (5)9222-+-b ab a (6)42242b b a a +-
三、随堂演练(选)
1、下列多项式能写成一个整式平方的形式吗?如果能,可以分解成什么式子?如果不能,说明为什么.
(1)442+-x x (2)2161a +
(3)1442-+x x (4)22y xy x ++
2、把下列各式分解因式:
(1)122++x x (2)1442++a a (3)2961y y +-
(4)412m m ++ (5)2216121b ab a ++(6)229124y xy x +- (7)221025q pq p ++ (8)22329n mn m ++ (9)224914b ab a +-
(10)25)(10)(2++-+y x y x (11)222y x xy ---(12)181624+-m m
四、课堂小结
通过本节课的学习,同学们关键要理解完全平方公式的意义,弄清完全平方公式的形式和特点,并会运用完全平方公式分解因式
作业设计
一、 填空:
(1)如果22y 49k xy x 100++可以分解成()2y 7x 10-,则k 的值为。
(2)如果16mx x 2++是一个完全平方式,则m 的值为。
(3)如果0b 16ab 8a 22=+-,且5.2b =,那么a=。
(4)当44y ,56x ==时,则代数式22y 2
1xy x 21++的值为。
(5)已知2ab ,32b a -==+,则22b a +=()2b a -=3223ab b a 2b a +-=.
(6)已知:4425b ,7522a ==,则()()22b a b a --+的值为。
二.把下列各式分解因式:
(1)x 41x 2-+ (2)
1n 329n 2+- (3)22244c 4c b a 4b a ++ (4)10ab 16b 25a 22-+
(5)ab 6b 9a 22+-- (6)242n m 64n m 16-- (7)()()22c b 9c b a 6a -+--
(8)442224y x 161y x a 21a +
- (9)a 41a a 23+- (10)()()22228a 2a 8a 2a 3----+
(11)()()y x 2025y x 42+-++ (12)()22222y x 4y x -+ (13)222c 16abc 8b a +-;
(14)22y 9xy 30x 25--- (15)8844y x y x 2--; (16)()()161c c 21c c 222+-+-;
三.利用因式分解计算:
(1)2216323434+⨯+(2)229.489.489.3829.38+⨯⨯- (3)225.435.16305.54+⨯-
四.已知x 、y 为任意有理数,若M=22y x +,N=xy 2你能确定M 、N 的大小吗?为什么?
五.若a 、b 、c 为△ABC 的三边长,试判断代数式()2222224b a c b a --+的值是正数,还是负数。
六.若211x =,化简并计算:()()()()2222x 23x 231x 2x 21-+-+-.。