热点02 整式与因式分解(解析版)
- 格式:doc
- 大小:336.59 KB
- 文档页数:10
考点02 整式与因式分解中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。
因式分解作为整式乘法的逆运算,在数学中考中占比不大,但是依然属于必考题,常以简单选择、填空题的形式出现,而且一般只考察因式分解的前两步,拓展延伸部分基本不考,所以学生在复习这部分内容时,除了要扎实掌握好基础,更需要甄别好主次,合理安排复习方向。
考向一、整式的加减;考向二、幂的运算考向三、整式的乘除考向四、因式分解考向一:整式的加减1.整式的概念及注意事项:【易错警示】1.(2022秋•泉州期中)单项式﹣2πr3的系数和次数分别是()A.﹣2,4B.﹣2,3C.﹣2π,3D.2π,32.(2022秋•包河区期中)已知单项式2x3y m与单项式﹣9x n y2是同类项,则m﹣n的值为()A.﹣1B.7C.1D.113.(2022秋•陇县期中)下列说法中,错误的是()A.数字1也是单项式B.单项式﹣5x3y的系数是﹣5C.多项式﹣x3+2x﹣1的常数项是1D.3x2y2xy+2y3是四次三项式4.(2022秋•高邮市期中)已知代数式3a﹣b2的值为3,则8﹣6a+2b2的值为.5.(2022秋•鄂州期中)若多项式a(a﹣1)x2+(a﹣1)x+2是关于x的一次多项式,则a的值为()A.0B.1C.0或1D.不能确定2.整式的加减【易错警示】1.(2022秋•黄石期中)下列计算正确的是()A.6a﹣5a=1B.a+2a2=3aC.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b2.(2022秋•老河口市期中)一个长方形的周长为6a+8b,其中一边长为2a﹣b,则与其相邻的一边长为()A.a+5b B.a+b C.4a+9b D.a+3b3.(2022秋•江都区期中)如图,长方形ABCD是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙).其中②③两块小长方形的长均为a,宽均为b,若BC=2,则①④两块长方形的周长之和为()幂的运算A .8B .2a +2bC .2a +2b +4D .164.(2022秋•沈北新区期中)化简:6x 2﹣[4x 2﹣(x 2+5)]= .5.(2022秋•北碚区校级期中)若关于x 的多项式3ax +7x 3﹣bx 2+x 不含二次项和一次项,则a +b 等于( )A .﹣B .C .3D .﹣36.(2022秋•扬州期中)化简:(1)x 2﹣3x ﹣4x 2+5x ﹣6;(2)3(2x 2﹣xy )﹣(x 2+xy ﹣6).7.(2022秋•黔东南州期中)阅读材料:“如果代数式5a +3b 的值为﹣4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =﹣4两边同乘以2.得10a +6b =﹣8.仿照上面的解题方法,完成下面的问题:(1)已知a 2+a =0,求a 2+a +2022的值;(2)已知a ﹣b =﹣3.求3(a ﹣b )﹣a +b +5的值;(3)已知a 2+2ab =﹣2,ab ﹣b 2=﹣4,求2a 2+5ab ﹣b 2的值.考向二:幂的运算1.(2022秋•朝阳区校级期中)下列运算正确的是( )A .a 3+a 6=a 9B .a 6•a 2=a 12()()是正整数)且)>且都是正整数为正整数)都是正整数)都是正整数)p a a a a a n m n m a a a a n b a ab n m a a n m a a a p p n m n m n n n mn n m n m n m ,0(1)0(1,,,0((,(,(0≠=≠=≠=÷===•--+C.(a3)2=a5D.a4•a2+(a3)2=2a62.(2022秋•浦东新区校级期中)计算(﹣)2021•(﹣)2022的结果是()A.B.C.D.3.(2022秋•闵行区校级期中)已知a m=2,a2n=3,求a m+2n=.4.(2022秋•永春县期中)若a m=2,a n=3,a p=5,则a m+n﹣p=.5.(2022秋•朝阳区校级期中)(1)计算:(a4)3+a8•a4;(2)计算:[(x+y)m+n]2;(3)已知2x+3y﹣2=0,求9x•27y的值.6.(2022秋•浦东新区期中)阅读下列材料:一般地,n个相同的因数a相乘a•a…,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)写出(1)log24、log216、log264之间满足的关系式.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=(a>0且a≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.考向三:整式的乘除➢两个乘法公式可以从左到右应用,也可以从右到左应用;1.(2022春•南海区校级月考)下列各式中,计算正确的是()A.2a2•3a3=5a6B.﹣3a2(﹣2a)=﹣6a3C.2a3•5a2=10a5D.(﹣a)2•(﹣a)3=a52.(2022秋•阳信县期中)下列计算中,能用平方差公式计算的是()A.(x﹣2)(2﹣x)B.(﹣1﹣3x)(1+3x)C.(a2+b)(a2﹣b)D.(3x+2)(2x﹣3)3.(2022秋•铁西区校级月考)若(x+3)(2x﹣m)=2x2+nx﹣15,则()A.m=﹣5,n=1B.m=﹣5,n=﹣1C.m=5,n=1D.m=5,n=﹣14.(2022秋•思明区校级期中)设M=(x﹣1)(x﹣2),N=(2x﹣3)(x﹣2),则M与N的大小关系为()A.MN B.M≥N C.M=N D.M≤N5.(2022•雁塔区校级开学)如图,一块矩形土地的面积是x2+5xy+6y2(x>0,y>0),长为x+3y,则宽是()A.x﹣y B.x+y C.x﹣2y D.x+2y6.(2022秋•东城区校级期中)若(s﹣t)2=4,(s+t)2=16,则st=.7.(2022秋•阳信县期中)(1)先化简,再求值:x(x﹣4y)+(2x+y)(2x﹣y)﹣(2x﹣y)2,其中x=﹣2,y=﹣1.(2)利用乘法公式简算:20212﹣2020×2022.8.(2022秋•西湖区校级期中)如图,有三张正方形纸片A,B,C,它们的边长分别为a,b,c,将三张纸片按图1,图2两种不同方式放置于同一长方形中,记图1中阴影部分周长为l1,图2中阴影部分周长为l2.(1)若a=7,b=5,c=3,则长方形的周长为;(2)若b=7,c=4,①求l1﹣l2的值;②记图1中阴影部分面积为S1,图2中阴影部分面积为S2,求S2﹣S1的值.考向四:因式分解基本概念公因式多项式各项都含有的相同因式因式分解把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解一般步骤“一提”【即:提取公因式】“二套”【即:套用乘法公式】222222)())((babababababa+±=±-=-+完全平方公式:平方差公式:“三分组”【即:分组分解因式】基本不考,如果考,多项式项数一般在四个及以上“二次三项想十字”【即:十字相乘法】()()()qxpxqpxqpx++=•+++2➢由定义可知,因式分解与整式乘法互为逆运算;➢公因式是各项系数的最大公约数与相同字母的最低次幂的积;单独的公因数也是公因式;➢将多项式除以它的公因式从而得到多项式的另一个因式;➢乘法公式里的字母,可以是单独的数字,也可以是一个单项式或者多项式;➢分解因式必须分解彻底,即分解到每一个多项式都不能再分解为止;1.(2022春•三水区校级期中)若二次三项式x2+mx﹣8可分解为(x﹣4)(x+2),则m的值为()A.1B.﹣1C.﹣2D.22.(2022秋•张店区期中)将几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,例如,由图1可得等式:x2+(p+q)x+pq=(x+p)(x+q).将图2所示的卡片若干张进行拼图,可以将二次三项式a2+3ab+2b2分解因式为()A.(a+b)(2a+b)B.(a+b)(3a+b)C.(a+b)(a+2b)D.(a+b)(a+3b)3.(2022秋•南安市期中)已知a=2020x+2020,b=2020x+2021,c=2020x+2022,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.34.(2022春•顺德区校级月考)三角形三边长分别是a,b,c,且满足a2﹣b2+ac﹣bc=0,则这个三角形是()A.等腰三角形B.直角三角形C.等边三角形D.形状不确定5.(2022秋•长宁区校级期中)因式分解:=.6.(2022秋•肇源县期中)因式分解:(1)15a3+10a2;(2)﹣3ax2﹣6axy+3ay2.7.(2022秋•巴南区校级期中)对于一个三位数,若其各个数位上的数字都不为0且互不相等,并满足十位数字最大,个位数字最小,且以各个数位上的数字为三边可以构成三角形,则称这样的三位数为“三角数”.将“三角数”m任意两个数位上的数字取出组成两位数,则一共可以得到6个两位数,其中十位数字大于个位数字的两位数叫“全数”,十位数字小于个位数字的两位数叫“善数”,将所有“全数”的和记为Q(m),所有“善数”的和记为S(m),例如:Q(562)=62+52+65=179,S(562)=26+25+56=107;(1)判断:342 (填“是”或“不是”)“三角数”,572 (填“是”或“不是”)“三角数”,若是,请分别求出其“全数”和“善数”之和.(2)若一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若“三角数”n满足Q(n)﹣S(n)和都是完全平方数,请求出所有满足条件的n.1.(2022•攀枝花)下列各式不是单项式的为()A.3B.a C.D.x2y2.(2022•巴中)下列运算正确的是()A.=﹣2B.()﹣1=﹣C.(a2)3=a6D.a8÷a4=a2(a≠0)3.(2022•淄博)计算(﹣2a3b)2﹣3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b24.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b25.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x6.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)27.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.128.(2022•广州)分解因式:3a2﹣21ab=.9.(2022•宜宾)分解因式:x3﹣4x=.10.(2022•巴中)因式分解:﹣a3+2a2﹣a=.11.(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.12.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.13.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.14.(2022•六盘水)如图,学校劳动实践基地有两块边长分别为a,b的正方形秧田A,B,其中不能使用的面积为M.(1)用含a,M的代数式表示A中能使用的面积;(2)若a+b=10,a﹣b=5,求A比B多出的使用面积.15.(2022•常州)第十四届国际数学教育大会(ICME﹣14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3×83+7×82+4×81+5×80=2021,表示ICME﹣14的举办年份.(1)八进制数3746换算成十进制数是;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.1.(2022•徐州)下列计算正确的是()A.a2•a6=a8B.a8÷a4=a2C.2a2+3a2=6a4D.(﹣3a)2=﹣9a2 2.(2022•黔西南州)计算(﹣3x)2•2x正确的是()A.6x3B.12x3C.18x3D.﹣12x33.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)4.(2022•南通)已知实数m,n满足m2+n2=2+mn,则(2m﹣3n)2+(m+2n)(m﹣2n)的最大值为()A.24B.C.D.﹣45.(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+16.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.37.(2022•绵阳)因式分解:3x3﹣12xy2=.8.(2022•丹东)因式分解:2a2+4a+2=.9.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.10.(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.11.(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.12.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣.(2)先化简,再求值:(x+3)2+(x+3)(x﹣3)﹣2x(x+1),其中x=.13.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.14.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.15.(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.1.(2022•肥东县校级模拟)下列各式中计算结果为x2的是()A.x2•x B.x+x C.x8÷x4D.(﹣x)22.(2022•雁塔区模拟)下列计算正确的是()A.(12a4﹣3a2)÷3a2=4a2B.(﹣3a+b)(b﹣a)=﹣2ab﹣3a2+b2C.(a﹣b)2=a2﹣b2D.(b+2a)(2a﹣b)=﹣b2+4a23.(2022•环江县模拟)如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x 的值是()A.3米B.3.2米C.4米D.4.2米4.(2022•路南区三模)在化简3(a2b+ab)﹣2(a2b+ab)◆2ab题中,◆表示+,﹣,×,÷四个运算符号中的某一个.当a=﹣2,b=1时,3(a2b+ab)﹣2(a2b+ab)◆2ab的值为22,则◆所表示的符号为()A.÷B.×C.+D.﹣5.(2022•蓬江区一模)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.a2﹣4b2C.a2﹣2ab+b2D.﹣a2﹣b26.(2022•峨眉山市模拟)若把多项式x2+mx﹣12分解因式后含有因式x﹣6,则m的值为()A.2B.﹣2C.4D.﹣47.(2022•五华区校级模拟)观察后面一组单项式:﹣4,7a,﹣10a2,13a3,…,根据你发现的规律,则第7个单项式是()A.﹣19a7B.19a7C.﹣22a6D.22a68.(2022•张店区二模)如图,在矩形ABCD中放入正方形AEFG,正方形MNRH,正方形CPQN,点E在AB上,点M、N在BC上,若AE=4,MN=3,CN=2,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.89.(2022•邯郸二模)若20222022﹣20222020=2023×2022n×2021,则n的值是()A.2020B.2021C.2022D.202310.(2022•碑林区模拟)计算:(2x+1)(2x﹣1)(4x2+1)=.11.(2022•玉树市校级一模)分解因式:a2﹣16=.12.(2022•五华区校级模拟)已知x+y=2,xy=﹣3,则x2y+xy2=.13.(2022•丽水二模)如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.14.(2022•潮安区模拟)一个长方形的面积为10,设长方形的边长为a和b,且a2+b2=29,则长方形的周长为.15.(2022•雁塔区校级模拟)化简:(x﹣3)2﹣(x+1)(x﹣4).16.(2022•南关区校级模拟)已知a2+2a﹣2=0,求代数式(a﹣1)(a+1)+2(a﹣3)的值.17.(2022•安徽模拟)某学习小组在研究两数的和与这两数的积相等的等式时,有下面一些有趣的发现:①由等式3+=3×发现:(3﹣1)×(﹣1)=1;②由等式+(﹣2)=×(﹣2)发现:(﹣1)×(﹣2﹣1)=1;③由等式﹣3+=﹣3×发现:(﹣3﹣1)×(﹣1)=1;…按照以上规律,解决下列问题:(1)由等式a+b=ab猜想:,并证明你的猜想;(2)若等式a+b=ab中,a,b都是整数,试求a,b的值.18.(2022•万州区校级一模)如果一个自然数M的个位数字不为0,且能分解成A×B,其中A与B都是两位数,A与B的十位数字相同,个位数字之和为8,则称数M为“团圆数”,并把数M分解成M=A×B 的过程,称为“欢乐分解”.例如:∵572=22×26,22和26的十位数字相同,个位数字之和为8,∴572是“团圆数”.又如:∵334=18×13,18和13的十位数字相同,但个位数字之和不等于8,∴234不是“团圆数”.(1)判断195,621是否是“团圆数”?并说明理由.(2)把一个“团圆数”M进行“欢乐分解”,即M=A×B,A与B之和记为P(M),A与B差的绝对值记为Q(M),令G(M)=,当G(M)能被8整除时,求出所有满足条件的M的值.。
专题02整式(共37题)一、单选题1.(2022·云南·中考真题)下列运算正确的是()A.2+3=5B.30=0C.(―2a)3=―8a3D.a6÷a3=a2【答案】C【解析】【分析】根据合并同类二次根式判断A,根据零次幂判断B,根据积的乘方判断C,根据同底数幂的除法判断D.【详解】解:A.2,3不是同类二次根式,不能合并,此选项运算错误,不符合题意;B.30=1,此选项运算错误,不符合题意;C.(―2a)3=―8a3,此选项运算正确,符合题意;D.a6÷a3=a3,此选项运算错误,不符合题意;故选:C.【点睛】本题考查了二次根式的加法、零次幂、积的乘方、同底数幂相除,熟练掌握运算法则是解题的关键.2.(2022·浙江金华·中考真题)计算a3⋅a2的结果是()A.a B.a6C.6a D.a5【答案】D【解析】【分析】根据同底数幂的乘法法则计算判断即可.【详解】∵a3⋅a2=a5,故选D.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.3.(2022·安徽·中考真题)下列各式中,计算结果等于a9的是()A.a3+a6B.a3⋅a6C.a10―a D.a18÷a2【答案】B【解析】【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A.a3+a6,不是同类项,不能合并在一起,故选项A不合题意;B.a3⋅a6=a3+6=a9,符合题意;C.a10―a,不是同类项,不能合并在一起,故选项C不合题意;D.a18÷a2=a18―2=a16,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.4.(2022·四川成都·中考真题)下列计算正确的是()A.m+m=m2B.2(m―n)=2m―nC.(m+2n)2=m2+4n2D.(m+3)(m―3)=m2―9【答案】D【解析】【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.m+m=2m,故该选项错误,不符合题意;B.2(m―n)=2m―2n,故该选项错误,不符合题意;C.(m+2n)2=m2+4mn+4n2,故该选项错误,不符合题意;D.(m+3)(m―3)=m2―9,故该选项正确,符合题意;故选:D.【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.5.(2022·四川德阳·中考真题)下列计算正确的是()A.(a―b)2=a2―b2B.(―1)2=1C.a÷a⋅1a =a D.―12ab23=―16a3b6【答案】B【解析】【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.(a―b)2=a2―2ab+b2,故本选项错误;B.(―1)2=1=1,故本选项符合题意;C.a÷a⋅1a =1⋅1a=1a,故本选项错误;D.(―12ab2)3=(―12)3a3b2×3=―18a3b6,故本选项错误;故选:B.【点睛】本题考查了完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.6.(2022·四川遂宁·中考真题)下列计算中正确的是()A.a3⋅a3=a9B.(―2a)3=―8a3C.a10÷(―a2)3=a4D.(―a+2)(―a―2)=a2+4【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式逐一判断即可.【详解】A. a3⋅a3=a3+3=a6,故本选项错误;B. (―2a)3=(―2)3a3=―8a3,故本选项符合题意;C. a10÷(―a2)3=―a10―2×3=―a4,故本选项错误;D. (―a+2)(―a―2)=(―a)2―22=a2―4,故本选项错误;【点睛】本题主要考查了同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则、幂的乘方法则以及平方差公式,熟记相关运算法则是解答本题的关键.7.(2022·四川遂宁·中考真题)已知m为方程x2+3x―2022=0的根,那么m3+2m2―2025m+2022的值为()A.―2022B.0C.2022D.4044【答案】B【解析】【分析】根据题意有m2+3m―2022=0,即有m3+3m2―2022m=0,据此即可作答.【详解】∵m为x2+3x―2022=0的根据,∴m2+3m―2022=0,且m≠0,∴m3+3m2―2022m=0,则有原式=(m3+3m2―2022m)―(m2+3m―2022)=0―0=0,故选:B.【点睛】本题考查了利用未知数是一元二次方程的根求解代数式的值,由m为x2+3x―2022=0得到m2+3m―2022=0是解答本题的关键.8.(2022·重庆·中考真题)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C【解析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n―1),算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:1+2=3;第③个图案中菱形的个数:1+2×2=5;…第n个图案中菱形的个数:1+2(n―1),∴则第⑥个图案中菱形的个数为:1+2×(6―1)=11,故C正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.9.(2022·云南·中考真题)按一定规律排列的单项式:x,3x²,5x³,7x4,9x5,……,第n个单项式是()A.(2n-1)x n B.(2n+1)x n C.(n-1)x n D.(n+1)x n【答案】A【解析】【分析】系数的绝对值均为奇数,可用(2n-1)表示;字母和字母的指数可用xn表示.【详解】解:依题意,得第n项为(2n-1)xn,故选:A.【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.10.(2022·重庆·中考真题)对多项式x―y―z―m―n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x―y)―(z―m―n)=x―y―z+m+n,x―y―(z―m)―n=x―y―z+m ―n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【答案】D【解析】【分析】给x―y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵(x―y)―z―m―n=x―y―z―m―n∴①说法正确∵x―y―z―m―n―x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是(x―y)―z―m―n、x―(y―z)―m―n、x―y―(z―m )―n、x―y―z―(m―n);当括号中有三个字母,共有3分别是(x―y―z)―m―n、x―(y―z―m)―n、x―y―(z―m―n);当括号中有四个字母,共有1种情况,(x―y―z―m―n)∴共有8种情况∴③说法正确∴正确的个数为3故选D.【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.11.(2022·山东滨州·中考真题)下列计算结果,正确的是()A.(a2)3=a5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(a2)3=a2×3=a6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=3,该选项错误;2故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.12.(2022·四川南充·中考真题)下列计算结果正确的是()A.5a―3a=2B.6a÷2a=3a C.a6÷a3=a2D.(2a2b3)3=8a6b9【答案】D【解析】【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.【详解】解:A、5a-3a=2a,选项错误;B、6a÷2a=3,选项错误;C、a6÷a3=a3,选项错误;D、(2a2b3)3=8a6b9,选项正确;故选:D.【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.13.(2022·四川泸州·中考真题)下列运算正确的是()A.a2⋅a3=a6B.3a―2a=1C.(―2a2)3=―8a6D.a6÷a2=a3【答案】C【解析】【分析】根据整式的加减乘除运算法则逐个判断即可.【详解】解:选项A:a2⋅a3=a5,故选项A错误;选项B:3a―2a=a,故选项B错误;选项C:(―2a2)3=―8a6,故选项C正确;选项D:a6÷a2=a4,故选项D错误;故选:C.【点睛】本题考查了整式的加减乘除运算法则,属于基础题,熟练掌握运算法则即可求解.14.(2022·浙江丽水·中考真题)计算―a2⋅a的正确结果是()A.―a2B.a C.―a3D.a3【答案】C【解析】【分析】根据同底数幂的乘法法则进行运算,即可判定.【详解】解:―a2⋅a=―a3,故选:C.【点睛】本题考查了同底数幂的乘法法则,熟练掌握和运用同底数幂的乘法法则是解决本题的关键.15.(2022·四川南充·中考真题)下列计算结果为5的是()A.―(+5)B.+(―5)C.―(―5)D.―|―5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、―|―5|=―5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.16.(2022·四川自贡·中考真题)下列运算正确的是()A.(―1)2=―2B=1C.a6÷a3=a2D.=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.(―1)2=1,故A错误;―=―=1,故B正确;C.a6÷a3=a3,故C错误;D.―=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.17.(2022·重庆·中考真题)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【解析】【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.二、填空题18.(2022·浙江金华·中考真题)因式分解:x2―9=______.【答案】(x+3)(x―3)【解析】【分析】根据平方差公式a2―b2=(a+b)(a―b)直接进行因式分解即可.【详解】解:x2―9=x2―32=(x+3)(x―3),故答案为:(x+3)(x―3).【点睛】本题考查利用公式法分解因式,熟练掌握平方差公式是解决问题的关键.19.(2022·四川德阳·中考真题)分解因式:ax2―a=______.【答案】a(x+1)(x-1)【解析】【分析】先提公因式a,再运用平方差公式分解即可.【详解】解:ax2-a=a(x2-1)=a(x+1)(x-1)故答案为:a(x+1)(x-1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.20.(2022·江苏连云港·中考真题)计算:2a+3a=______.【答案】5a【解析】【分析】直接运用合并同类项法则进行计算即可得到答案.【详解】解:2a+3a=(2+3)a=5a.故答案为:5a.【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.21.(2022·山东滨州·中考真题)若m+n=10,mn=5,则m2+n2的值为_______.【答案】90【解析】【分析】将m2+n2变形得到(m+n)2―2mn,再把m+n=10,mn=5代入进行计算求解.【详解】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2―2mn=102―2×5=100―10=90.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.22.(2022·山东泰安·中考真题)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【解析】【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根;最后根据图形中的据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n个“○”的个数是n(n+1)2“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n =2时,“•”的个数是6=3×2;n =3时,“•”的个数是9=3×3;n =4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n ;又∵n =1时,“○”的个数是1=1×(1+1)2;n =2时,“○”的个数是3=2×(2+1)2,n =3时,“○”的个数是6=3×(3+1)2,n =4时,“○”的个数是10=4×(4+1)2,……∴第n 个“○”的个数是n (n +1)2,由图形中的“○”的个数和“.”个数差为2022∴3n ―n (n +1)2=2022①,n (n +1)2―3n =2022②解①得:无解解②得:n 1=5+162012,n 2=5―162012故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.23.(2022·江苏连云港·中考真题)若关于x 的一元二次方程mx 2+nx ―1=0(m ≠0)的一个解是x =1,则m +n 的值是___.【答案】1【解析】【分析】根据一元二次方程解的定义把x =1代入到mx 2+nx ―1=0(m ≠0)进行求解即可.【详解】解:∵关于x 的一元二次方程mx 2+nx ―1=0(m ≠0)的一个解是x =1,∴m +n ―1=0,∴m+n=1,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.24.(2022·四川德阳·中考真题)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是1+3=4,第三个正方形数是1+3+5=9,……由此类推,图④中第五个正六边形数是______.【答案】45【解析】【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:由上表可知第n 个M 边形数为:S =(1+2+⋯+n )+[1+2+⋯+(n ―1)](m ―3),整理得:S =(1+n )n2+n (n ―1)(m ―3)2,则有第5个正六边形中,n=5,m=6,代入可得:S =(1+n )n2+n (n ―1)(m ―3)2=(1+5)52+5(5―1)(6―3)2=45,故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.25.(2022·四川遂宁·中考真题)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【解析】【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.26.(2022·浙江丽水·中考真题)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是___________;(2)若代数式a2―2ab―b2的值为零,则S四边形ABCDS矩形PQMN的值是___________.【答案】a―b3+22【解析】【分析】(1)根据图象表示出PQ即可;(2)根据a2―2ab―b2=0分解因式可得(a―b+2b)(a―b―2b)=0,继而求得a=b+2b,根据这四个矩形的面积都是5,可得EP=5a ,EN=5b,再进行变形化简即可求解.【详解】(1)∵①和②能够重合,③和④能够重合,AE=a,DE=b,∴PQ=a―b,故答案为:a―b;(2)∵a2―2ab―b2=0,∴a2―2ab+b2―2b2=(a―b)2―2b2=(a―b+2b)(a―b―2b)=0,∴a―b+2b=0或a―b―2b=0,即a=b―2b(负舍)或a=b+2b ∵这四个矩形的面积都是5,∴EP=5a ,EN=5b,∴S四边形ABCD S矩形PQMN ==(a+b)⋅5(a+b)ab(a―b)⋅5(a―b)ab=(a+b)2(a―b)2,=a2+b2+2ab a2+b2―2ab =a2+b2+a2―b2a2+b2―a2+b2=a2b2,=(b+2b)2b2=3+22.【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.三、解答题27.(2022·浙江丽水·中考真题)先化简,再求值:(1+x)(1―x)+x(x+2),其中x=12.【答案】 1+2x;2【解析】【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入x=12即可求解.【详解】(1+x)(1―x)+x(x+2)=1―x2+x2+2x=1+2x当x=12时,原式=1+2x=1+2×12=2.【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.28.(2022·重庆·中考真题)计算:(1)(x+2)2+x(x―4);1÷a2―b22b.【答案】(1)2x2+4(2)2a+b【解析】【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解.(1)解:原式=x2+4x+4+x2―4x=2x2+4(2)解:原式=a―bb ×2b(a+b)(a―b)=2a+b【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.29.(2022·四川南充·中考真题)先化简,再求值:(x+2)(3x―2)―2x(x+2),其中x=3―1.【答案】x2―4;―23【解析】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=3x2―2x+6x―4―2x2―4x=x2―4;当x=3―1时,原式=(3―1)2―4=3+1-23―4=-23.【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.30.(2022·山东泰安·中考真题)(1)若单项式x m―n y14与单项式―12x3y3m―8n是一多项式中的同类项,求m、n的值;(2÷1x2―1,其中x=2―1.【答案】(1)m=2,n=-1;(2)x2+1,4―22【解析】【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m和n的值;(2)先通分算小括号里面的,然后算括号外面的,最后代入求值.【详解】解:(1)由题意可得m―n=3①3m―8n=14②,②―①×3,可得:―5n=5,解得:n=―1,把n=―1代入①,可得:m―(―=3,解得:m=2,∴m的值为2,n的值为―1;(2)原式=[x(x―1)+(x+1)(x+1)(x―1)]⋅(x+1)(x―1)=x2―x+x+1(x+1)(x―1)⋅(x+1)(x―1)=x2+1,当x=2―1时,原式=(2―1)2+1=2―22+1+1=4―22.【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.31.(2022·重庆·中考真题)计算:(1)(x+y)(x―y)+y(y―2);(2)1÷m2―4m+4m2―4.【答案】(1)x2―2y(2)2m―2【解析】【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可;(2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可.(1)解:(x+y)(x―y)+y(y―2)=x2―y2+y2―2y=x2―2y(2)解:1÷m2―4m+4m2―4=m+2―mm+2÷(m―2)2(m+2)(m―2)=2 m+2×(m+2)(m―2)(m―2)2=2m―2【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.32.(2022·浙江金华·中考真题)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?【答案】(1)a+3(2)36【解析】【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a的值代入即可.(1)×2a=a,解:∵直角三角形较短的直角边=12较长的直角边=2a+3,∴小正方形的边长=2a+3―a=a+3;(2)解:S小正方形=(a+3)2=a2+6a+9,当a=3时,S小正方形=(3+3)2=36.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.33.(2022·安徽·中考真题)某地区2020年进出口总额为520亿元.2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额度分别是多少亿元?【答案】(1)1.25x+1.3y(2)2021年进口额400亿元,出口额260亿元.【解析】【分析】(1)根据进出口总额=进口额+出口额计算即可;(2)根据2021年进出口总额比2020年增加了140亿元,列方程1.25x+1.3y=520+140,然后联立方程组x+y=5201.25x+1.3y=520+140,解方程组即可.(1)解:故答案为:1.25x+1.3y;(2)解:根据题意1.25x+1.3y=520+140,∴x+y=5201.25x+1.3y=520+140,解得:x=320y=200,2021年进口额1.25x=1.25×320=400亿元,2021年出口额是1.3y=1.3×200=260亿元.【点睛】本题考查列二元一次方程组解应用题,列代数式,掌握列二元一次方程组解应用题的方法与步骤是解题关键.34.(2022·安徽·中考真题)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2―(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2―(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2―(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2―(5×8)2,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)(2×5+1)2=(6×10+1)2―(6×10)2(2)(2n+1)2=[(n+1)⋅2n+1]2―[(n+1)⋅2n]2,证明见解析【解析】【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n个等式为(2n+1)2=[(n+1)⋅2n+1]2―[(n+1)⋅2n]2,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第45个等式为:(2×5+1)2=(6×10+1)2―(6×10)2,故答案为:(2×5+1)2=(6×10+1)2―(6×10)2;(2)解:第n个等式为(2n+1)2=[(n+1)⋅2n+1]2―[(n+1)⋅2n]2,证明如下:等式左边:(2n+1)2=4n2+4n+1,等式右边:[(n+1)⋅2n+1]2―[(n+1)⋅2n]2=[(n+1)⋅2n+1+(n+1)⋅2n]⋅[(n+1)⋅2n+1―(n+1)⋅2n]=[(n+1)⋅4n+1]×1=4n2+4n+1,故等式(2n+1)2=[(n+1)⋅2n+1]2―[(n+1)⋅2n]2成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.35.(2022·四川凉山·中考真题)阅读材料:材料1:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,则x 1+x 2=―ba ,x 1x 2=ca 材料2:已知一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,求m 2n +mn 2的值.解:∵一元二次方程x 2-x -1=0的两个实数根分别为m ,n ,∴m +n =1,mn =-1,则m 2n +mn 2=mn (m +n )=-1×1=-1根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,则x 1+x 2=;x 1x 2=.(2)类比应用:已知一元二次方程2x 2-3x -1=0的两根分别为m 、n ,求nm +mn 的值.(3)思维拓展:已知实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,且s ≠t ,求1s ―1t 的值.【答案】(1)32;―12(2)―132(3)17或―17【解析】【分析】(1)根据一元二次方程根与系数的关系直接进行计算即可;(2)根据根与系数的关系先求出m +n =32,mn =―12,然后将nm +mn 进行变形求解即可;(3)根据根与系数的关系先求出s +t =32,st =―12,然后求出s -t 的值,然后将1s ―1t 进行变形求解即可.(1)解:∵一元二次方程2x 2-3x -1=0的两个根为x 1,x 2,∴x 1+x 2=―ba =――32=32,x 1⋅x 2=c a =―12.故答案为:32;―12.(2)∵一元二次方程2x 2-3x -1=0的两根分别为m 、n ,∴m +n =―ba =――32=32,mn =c a =―12,∴nm +m n=m 2+n 2mn=(m +n )2―2mn mn =―12=―132(3)∵实数s 、t 满足2s 2-3s -1=0,2t 2-3t -1=0,∴s 、t 可以看作方程2x 2-3x -1=0的两个根,∴s +t =―ba =――32=32,st =c a =―12,∵(t ―s )2=(t +s )2―4st=―4×―=94+2=174∴t ―s =172或t ―s =―172,当t ―s =172时,1s ―1t=t ―s st=172―12=―17,当t ―s =―172时,1s ―1t =t ―s st=―172―12=17,综上分析可知,1s ―1t 的值为17或―17.【点睛】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形计算,根据根与系数的关系求出t ―s =172或t ―s =―172,是解答本题的关键.36.(2022·重庆·中考真题)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=c+d9,P(M)=|10(a―c)+(b―d)|3.当G(M),P(M)均是整数时,求出所有满足条件的M.【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析(2)8109或8190或4536或4563.【解析】【分析】(1)根据“勾股和数”的定义进行验证即可;(2)由“勾股和数”的定义可得10a+b=c2+d2,根据G(M),P(M)均是整数可得c+d=9,c2+d2=81―2 cd为3的倍数,据此得出符合条件的c,d的值,然后即可确定出M.(1)解:2022不是“勾股和数”,5055是“勾股和数”;理由:∵22+22=8,8≠20,∴1022不是“勾股和数”;∵52+52=50,∴5055是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)=c+d9为整数,∴c+d=9,∵P(M)=|10(a―c)+(b―d)|3=|10a+b―10c―d|3=|c2+d2―9c―9|3为整数,∴c2+d2=81―2cd为3的倍数,∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563,综上,M的值为8109或8190或4536或4563.【点睛】本题以新定义为背景考查了整式混合运算的应用以及学生应用知识的能力,解题关键是要理解新定义,能根据条件找出合适的“勾股和数”.37.(2022·重庆·中考真题)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中任为整数,求出满足选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b 最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)16=15―2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,∵F(A)+G(A)为整数,16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12―b,∵a>b>c,∴12―b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12―b代入5a+5c+b=8k得:5(12―b)+b=8k,整理得:b=15―2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12―3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12―5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题。
第9章整式乘法与因式分解全章热门考点专练(2个概念3个运算2个公式3个应用4个技巧3种思想)【知识导图】【知识清单】2个概念【例题1】(22-23八年级上·山东威海·期末)多项式2324223126x y x y x y --的公因式是()A .23x y B .233x y C .223x y D .3xy【答案】C【分析】本题考查了公因式的定义.确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.根据多项式的公因式的确定方法,即可求解.【详解】解:多项式2324223126x y x y x y --的公因式是223x y ,故选C【变式1】(23-24八年级下·山东济南·阶段练习)把多项式33128ab a b +分解因式,应提的公因式是()A .abB .4abC .2abD .24a b【答案】B【分析】本题主要考查了分解因式,观察可知两个单项式的公因式为4ab ,据此可得答案.【详解】解:()3322128432ab a b ab b a +=+,则多项式33128ab a b +分解因式,应提的公因式是4ab ,故选:B【变式2】(23-24七年级下·江苏徐州·期中)把多项式32612x x y -分解因式,应提取的公因式是.【答案】26x 【分析】本题考查了公因式,提公因式26x ,即可求解.【详解】解:把多项式32612x x y -分解因式,应提取的公因式是26x ,故答案为:26x 【变式3】(23-24八年级上·山东东营·阶段练习)()218b a b -与()312a b -的公因式是.【答案】()26a b -【分析】本题考查了公因式;根据公因式的定义,找出系数的最大公约数6,相同因式的最低指数次幂,即可确定公因式.【详解】解:∵18和12的最大公约数是6,∴()218b a b -与()312a b -的公因式是()26a b -,故答案为:()26a b -【例题2】(2023·江苏无锡·模拟预测)下列因式分解正确的是()A .2243(2)1x x x -+=--B .2232(2)()x xy y x y x y -+=--C .42224(2)(2)x x x x x x -=+-D .3244(2)x x x x ++=+【答案】B【分析】此题考查了十字相乘法因式分解,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.根据十字相乘因式分解,提公因式法与公式法因式分解逐项因式分解判断即可.【详解】解:A 、243(1)(3)x x x x -+=--,故本选项不符合题意;B 、2232(2)()x xy y x y x y -+=--,故本选项符合题意;C 、24222(4)(2(2)4)x x x x x x x =--=+-,故本选项不符合题意;D 、无法因式分解,故本选项不符合题意;故选:B【变式1】(2024·甘肃兰州·一模)因式分解:24a -=()A .()()44a a +-B .()()42a a +-C .()()24a a +-D .()()22a a +-【答案】D【分析】本题考查了因式分解的定义以及运用平方差公式进行因式分解,把一个多项式分解成几个整式的乘积的形式,据此即可作答.【详解】解:24a -=()()22a a +-故选:D【变式2】(23-24八年级下·四川成都·阶段练习)下列等式从左到右的变形,是因式分解的是()A .()22326x x x x-=-B .221234m n m n=⋅C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .()()22x y x y x y -=+-D 、()()22x y x y x y -=+-,是因式分解,故本选项符合题意;故选:D【变式3】(2024·广东中山·一模)下列各式从左到右的变形,因式分解正确的是()A .()2a ab a ab+=+B .()233a ab a a b +-=+-C .()222824ab a a b -=-D .()()22824a a a a --=+-【答案】D【分析】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式叫做因式分解,根据因式分解的定义逐项判断即可.【详解】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .()()()222824222ab a a b a b b -=-=+-,分解不彻底,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D3个运算1.单项式乘单项式【例题3】(2024年上海市普陀区中考二模数学试题)下列运算正确的是()A .234a a a +=B .32a a -=C .233a a a ⋅=D .32a a a÷=【答案】C【分析】本题主要考查合并同类项,单项式乘以单项式以及单项式除以单项式,运用相关运算法则求出各选项的结果,再进行判断即可【详解】解:A.34a a a +=,原选项计算错误,不符合题意;B.32a a a -=,原选项计算错误,不符合题意;C.233a a a ⋅=,计算正确,符合题意;D.33a a ÷=,原选项计算错误,不符合题意;故选:C【变式1】(23-24九年级下·甘肃庆阳·阶段练习)计算:()()326ab a --=.【答案】336a b 【分析】本题主要考查单项式乘单项式,直接根据运算法则进行计算即可.【详解】解:()()326ab a--()()()23=61a a b -⨯-⋅⋅⋅336a b =,故答案为:336a b 【变式2】(23-24七年级下·浙江·期中)计算:223a b a ⋅=.【答案】36a b【分析】本题主要考查了单项式乘单项式,直接利用单项式乘单项式运算法则计算得出答案.【详解】解:23236a b a a b ⋅=.故答案为:36a b【变式3】(2024·甘肃陇南·一模)计算:232x x ⋅=.【答案】52x 【分析】本题主要考查了单项式乘以单项式,熟知相关计算法则是解题的关键.【详解】解:23522x x x ⋅=,故答案为:52x2.单项式乘多项式【例题4】(2024·陕西汉中·一模)计算()()3221m m -⋅+的结果是()A .762m m --B .662m m -+C .752m m --D .652m m --【答案】A【分析】本题考查了幂的乘方以及单项式乘多项式,先算幂的乘方,再算单项式乘多项式,即可作答.【详解】解:()()3221m m -⋅+()626m m =-+6621m m m =-⋅-⋅762m m =--,故选:A【变式1】(22-23七年级下·广西崇左·期中)计算:()21x x -=()A .31x -B .3x x -C .3x x+D .2x x-【答案】B【分析】本题考查了单项式乘多项式,根据单项式乘多项式法则(单项式与多项式的每一项都相乘)计算即可.【详解】解:()231x x x x-=-故选:B【变式2】(23-24七年级下·江苏泰州·期中)计算()2323⋅-=x x .计算:()31x x -=.【答案】518x 233x x -/233x x -+【分析】此题考查了积的乘方和单项式乘以单项式运算,单项式乘以多项式运算,应用积的乘方和单项式乘以单项式运算法则进行计算;利用单项式乘以多项式运算法则求解即可.【详解】()2323x x ⋅-3229x x =⋅518x =;()31x x -233x x =-.故答案为:518x ,233x x-【变式3】(2024七年级下·江苏·专题练习)计算()()223235a ab ab =-⋅-.【答案】3233610a b a b -+【分析】根据单项式乘多项式的运算法则(把多项式的每一项都与单项式相乘),即可求解,本题考查了单项式与多项式的乘法,掌握计算法则是解题的关键.【详解】解:()()2233233235610a ab ab a b a b -⋅-=-+.故答案为:3233610a b a b -+.3.多项式乘多项式【例题5】(23-24七年级下·河南周口·阶段练习)定义()*1a b b a =+,例如()()()2*11121x x x x x x +=++=++.则()()2*2x x -+=()A .24x -B .244x x +-C .24x x +-D .22x x +-【答案】D【分析】本题考查新定义运算,多项式乘多项式,根据定义()*1a b b a =+将()()2*2x x -+变形为()()221x x +-+,再按照多项式乘多项式运算法则计算即可.【详解】解:()()()()2*2221x x x x -+=+-+()()21x x =+-222x x x =-+-22x x =+-,故选D【变式1】(23-24七年级下·江苏无锡·阶段练习)下列计算错误的是()A .()()21454x x x x ++=++B .()()2236m m m m -+=+-C .()()245920y y y y +-=+-D .()()236918x x x x -=--+【答案】C【分析】本题主要考查多项式乘法的运算,掌握多项式乘法的运算法则是解题的关键.根据运算法则,逐一对选项进行分析即可.【详解】解:A .2(1)(4)54x x x x ++=++,正确,故该选项不符合题意;B .()()2236m m m m -+=+-,正确,故该选项不符合题意;C .2(4)(5)20y y y y +-=--,错误,故该选项符合题意;D .()()236918x x x x --=-+,正确,故该选项不符合题意.故选:C【变式2】.(22-23七年级下·四川成都·期中)若()()221222x x x mx -+=+-,则m 的值是.【答案】3【分析】本题考查了多项式与多项式的乘法运算,根据多项式与多项式的乘法法则把等号左边化简,然后与右边比较即可求解.【详解】解:∵()()22221224223222x x x x x x x x mx -++--=+-=+-=,∴3m =.故答案为:3【变式3】(2024七年级下·江苏·专题练习)计算:()()34a b a b +-=.【答案】2212a ab b +-【分析】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加解答.【详解】解:2222(3)(342)1412a b a b a ab ab b a ab b +-=++=---故答案为:2212a ab b+-2个公式1.平方差公式【例题6】(22-23七年级下·四川成都·期中)下列多项式的乘法中,可以用平方差公式进行计算的是()A .()()22a b b a +-B .()()m n m n -+-C .()()22x y x y -+D .()()11n n ++【答案】A【分析】本题主要考查了平方差公式,解题的关键是根据平方差公式()()22a b a b a b +-=-,逐项进行判断即可.【详解】解:A .()()22224a b b a b a +-=-,则A 符合题意;B .()()m n m n -+-不能用平方差公式计算,则B 不符合题意;C .()()22x y x y -+不能用平方差公式计算,则C 不符合题意;D .()()11n n ++不能用平方差公式计算,则D 不符合题意;故选:A【变式1】(20-21七年级下·浙江杭州·期中)一个长方形的宽为2x y -,长为2x y +,则这个长方形的面积是()A .224x y -B .224x y +C .222x y -D .222x y +【答案】A【分析】本题主要考查平方差公式的应用,掌握平方差公式的结构特征是解题的关键.根据长方形的面积公式进行计算即可.【详解】解:由长方形的面积公式可得,22(2)(2)4x y x y x y +-=-.故选:A【变式2】(23-24七年级下·河南周口·阶段练习)如果一个数()()222121a n n =+--,那么我们称这个数a 为“奇差数”.下列数中为“奇差数”的是()A .56B .82C .94D .126【答案】A【分析】本题考查了平方差公式的应用,首先化简()()2221218a n n n =+--=,再看四个选项中,能够整除8的即为答案.理解“奇差数”的定义,正确化简是解题关键.【详解】解: ()()()()222121212121218a n n n n n n n =+--=++-+-+=,∴“奇差数”是8的倍数,A ,7856=÷,能够被8整除,因此56是“奇差数”;B ,828102÷= ,不能够被8整除,因此82不是“奇差数”;C ,948116÷= ,不能够被8整除,因此94不是“奇差数”;D ,1268156÷= ,不能够被8整除,因此126不是“奇差数”;故选:A【变式3】(23-24九年级下·山东聊城·阶段练习)下列计算正确的是()A .235a b ab +=B .()()22a b a b a b+-=-C .2236a b ab ⋅=D .()235a a =【答案】B【分析】本题考查整式的运算,根据合并同类项,平方差公式,单项式乘单项式,幂的乘方的法则,逐一进行计算,判断即可.【详解】解:A 、2,3a b ,不是同类项,不能合并,不符合题意;B 、()()22a b a b a b +-=-,符合题意;C 、22236a b a b ⋅=,不符合题意;D 、()236a a =,不符合题意;故选:B2.完全平方公式【例题7】(23-24七年级下·江苏徐州·期中)下列计算正确的是()A .236a a a ⋅=B .326()x x -=C .632a a a ÷=D .222()x y x y +=+【答案】B【分析】本题考查了同底数幂的乘除法,积的乘方,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.326()x x -=,故该选项正确,符合题意;C.633a a a ÷=,故该选项不正确,不符合题意;D.222()2x y x xy y +=++,故该选项不正确,不符合题意;故选:B【变式1】(23-24八年级下·山东威海·期中)不论x ,y 取何实数,代数式224614x x y y -+-+总是()A .非负数B .正数C .负数D .非正数【答案】B【分析】本题主要考查了完全平方公式的应用,利用完全平方公式把原式变形为()()22231x y -+-+,据此可得答案.【详解】解:224614x x y y -+-+()()2244691x x y y =-++-++()()22231x y =-+-+,∵()()222030x y -≥-≥,,∴()()222311x y -+-+≥,∴224614x x y y -+-+总是正数,故选:B【变式2】(23-24九年级下·河南郑州·期中)下列计算正确的是()A .321a a -=B .()2236m m -=C .2=D .()222244a b a ab b -=-+【答案】D【分析】本题考查了完全平方公式,合并同类项,积的乘方等运算法则,熟练掌握这些法则是解此题的关键.根据合并同类项的法则、积的乘方、完全平方公式进行计算即可.故选D【变式3】(2024·广西桂林·一模)下列运算正确的是()A .()22420x x -=B .()236x x x -⋅=C .()222x y x y +=+D 92=故选:A 3个应用1.应用因式分解解决整除问题【例题8】(2024·浙江嘉兴·一模)若k 为任意整数,则()()222122k k +--的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】本题主要考查了因式分解的意义,利用平方差公式把()()222122k k +--因式分解为()341k -,据此可得答案.【详解】解:()()222122k k +--()()()()21222122k k k k =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()341k =-∵k 为任意整数,∴()341k -为整数,∴()341k -一定能被3整除,∴()()222122k k +--的值总能被3整除,故选:B【变式1】(23-24九年级下·河北邯郸·阶段练习)对于任何整数()0a a ≠,多项式()2354a +-都能()A .被9整除B .被a 整除C .被1a +整除D .被1a -整除【答案】C【分析】此题考查了因式分解,利用平方差公式分解,即可做出判断,熟练掌握平方差公式是解本题的关键.【详解】解:原式()()()()3523523371a a a a =+++-=++,则对于任何整数a ,多项式()2354a +-都能被1a +整除.故选:C【变式2】(2024·河南郑州·一模)对任意整数n ,2(21)25n +-都能()A .被3整除B .被4整除C .被5整除D .被6整除【答案】B【分析】根据平方差公式,分解因式后判断,熟练掌握公式法分解因式是解题的关键.【详解】∵()()()()()()2222125215215215432n n n n n n +-=+-=+++-=+-,∴故一定能被4整除,故选B【变式3】(2024·河北邯郸·模拟预测)已知()()844414141-=+-= ,则按此规律推算841-的结果一定能()A .被12整除B .被13整除C .被14整除D .被15整除【答案】D【分析】本题考查了因式分解,根据平方差公式进行因式分解,即可求解.【详解】解:()()()()()()()84442242414141414141414115-=+-=++-=++⨯,故选:D2.应用因式分解解决几何问题【例题9】(23-24七年级下·全国·假期作业)已知,,a b c 为三角形ABC 的三边长,且满足222244b c a c a b -=-,则三角形ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .锐角三角形【答案】A【详解】因为222244b c a c a b -=-,即()()()2222222c b a a b a b -=+-,所以()()()22222220a b a b c b a +---=,()()222220a b a b c -++=,()()()2220a b a b a b c +-++=.因为,,a b c 是三角形的三边长,所以2220,0a b a b c +>++>,所以0a b -=,即a b =,所以三角形ABC 为等腰三角形【变式1】(2024八年级·全国·竞赛)已知ABC 的三边为a 、b 、c ,且满足1111a b c a b c-+=-+,则ABC 的形状为.()()()0a b b c a c ∴--+=,∴a b =或b c =.故答案为:等腰三角形【变式2】(23-24八年级上·全国·课堂例题)(1)若a ,b ,c 是三角形的三边长,且满足关系式2222a bc c ab -=-,试判断这个三角形的形状.(2)若a ,b ,c 是ABC 的三边长,且满足2220a b c ab bc ac ++---=,则ABC 是什么形状?【答案】(1)三角形是等腰三角形;(2)ABC 是等边三角形【分析】本题考查因式分解的应用;(1)把2222a bc c ab -=-通过因式分解求值即可;(2)通过把2222222220a b c ab bc ac ++---=配方后根据非负数的性质判断即可.【详解】(1)∵2222a bc c ab -=-,∴()22220a c ab bc -+-=,∴()()()20a c a c b a c +-+-=,∴()()20a c a c b -++=.∵20a c b ++≠,∴0a c -=,即a c =,∴这个三角形是等腰三角形.(2)∵2220a b c ab bc ac ++---=,∴2222222220a b c ab bc ac ++---=.∴()()()2222222220a b ab b c bc c a ac +-++-++-=,即222()()()0a b b c a c -+-+-=.∴0a b -=,0b c -=,0a c -=,∴a b =,b c =,a c =,∴a b c ==,∴ABC 是等边三角形【变式3】(23-24八年级上·全国·课堂例题)(1)已知ABC 的三边长a ,b ,c 满足22661830a b a b c +--++-=,试判断ABC 的形状.(2)已知a ,b ,c 是ABC 的三边长,且满足2212852a b a b +=+-,求c 的取值范围.∴3.应用因式分解进行简便计算【例题10】(20-21八年级下·陕西汉中·期末)利用因式分解简便计算6999329999⨯+⨯-正确的是()A .()996932991019999⨯+=⨯=B .()9969321991009900⨯+-=⨯=C .()99693219910210098⨯++=⨯=D .()99693299992198⨯+-=⨯=【答案】B【分析】利用提公因式分法将99提公因式进行计算即可判断.【详解】解:69×99+32×99-99=99(69+32-1)=99×100=9900.故选:B .【点睛】本题考查了因式分解的应用,解决本题的关键是掌握因式分解【变式1】(22-23八年级下·贵州贵阳·期中)利用因式分解可以简便计算:5799449999⨯+⨯-分解正确的是()A .()995744⨯+B .()9957441⨯+-C .()9957441⨯++D .()99574499⨯+-【答案】B【分析】利用提取公因式法分解因式即可得.【详解】解:原式57994499199=⨯+⨯-⨯()9957441=⨯+-,故选:B .【点睛】本题考查了因式分解,熟练掌握提取公因式法是解题关键【变式2】(22-23九年级上·广东惠州·开学考试)利用因式分解简便运算:2252.847.2-=.【答案】560【分析】利用平方差法进行因式分解,再进行计算;【详解】原式=()()52.847.252.847.2+⨯-=100 5.6⨯=560.故答案为:560.【点睛】本题考查利用公式法因式分解进行简便运算.熟练掌握公式法因式分解是解题的关键【变式3】(22-23七年级下·湖南怀化·期中)利用因式分解进行简便运算:(1)443424.7 1.365555-⨯+⨯-⨯;(2)22899202899101+⨯+【答案】(1)24-(2)610【分析】(1)运用提公因式法进行因式分解即可求解;(2)运用公式法进行因式分解即可求解.【点睛】本题主要考查因式分解,懂得运用提公因式法和公式法进行因式分解来进行简便运算是解题的关键4个技巧1.巧用乘法公式计算【例题11】(22-23八年级下·河南平顶山·阶段练习)代数式22494610x y x y ++-+中x ,y 取何值时代数式值最小?最小值是多少?【点睛】此题考查了配方法求最值,原式可化为两个完全平方式和一个常数和的形式.利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值,熟练掌握配方法是解题的关键【变式】(22-23七年级下·江苏宿迁·期末)已知2610A x x =-+.(1)当2x =-、0、3时,分别求出A 的值;(2)证明:无论x 取什么值,A 的值都不小于1.【答案】(1)当2x =-时,26A =;当0x =时,10A =;当3x =时,1A =(2)见解析【分析】(1)根据题意可得()2261031A x x x =-+=-+,将2x =-、0、3,分别代入代数式,即可求解;(2)根据题意可得()2261031A x x x =-+=-+,根据平方的非负性,可得1A ≥,即可得证.【详解】(1)解:∵()2261031A x x x =-+=-+∴当2x =-时,()223125126A =--+=+=;当0x =时,()203110A =-+=;当3x =时,()23311A =-+=;(2)证明:∵()2261031A x x x =-+=-+,()230x -≥∴1A ≥,【点睛】本题考查了代数式求值,因式分解的应用,熟练掌握完全平方公式是解题的关键2.先分组在分解【例题12】(21-22八年级下·陕西咸阳·阶段练习)阅读材料:常用的分解因式方法有提公因式法、公式法等.但有的多项式只用上述方法就无法分解,如22424x y x y -+-,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:22424x y x y-+-()()22424x y x y =-+-…分组()()()2222x y x y x y =-++-…组内分解因式()()222x y x y =-++…整体思想提公因式这种分解因式的方法叫分组分解法.根据以上材料,解答下列问题:(1)按上述方法因式分解:①22428x y y x --+;②323927m m m --+;(2)已知a ,b ,c 为ABC 的三边,且2222b ab c ac +=+,试判断ABC 的形状并说明理由.【答案】(1)①()()()222y x x --+;②()2(3)3m m -+;(2)ABC 是等腰三角形,理由见解析;【分析】(1)①本题考查因式分解,根据例题分组提取公因式,再结合公式法因式分解即可得到答案;②本题考查因式分解,根据例题分组提取公因式,再结合公式法因式分解即可得到答案;(2)本题考查因式分解的应用,将2222b ab c ac +=+因式分解即可得到积等于0,即可得到答案;【详解】(1)解:①原式()()22424y x x =---()()()()22222y x x x x =-+--+()()()222y x x =--+;②原式()()2393m m m =---()()239m m =--()2(3)3m m =-+;(2)解:ABC 是等腰三角形,理由如下,2222b ab c ac +=+ ,22220b c ab ac ∴-+-=,()()()20b c b c a b c -++-=,()()20a b c b c ++-=,∵a ,b ,c 为ABC 的三边,0a ∴>,0b >,0c >,20a b c ∴++≠,0∴-=b c ,即b c =,ABC ∴ 是等腰三角形【变式1】(2024八年级下·全国·专题练习)因式分解:2221a ab b -+-.【答案】()()11a b a b -+--【分析】本题主要考查了因式分解,解题的关键是熟练掌握完全平方公式和平方差公式,先根据完全平方公式进行因式分解,然后再用平方差公式进行因式分解.【详解】解:2221a ab b -+-()21=--a b ()()11a b a b =-+--【变式2】(23-24八年级上·四川眉山·期中)因式分解(1)224x y -;(2)2291839x xy y x y -++-.【答案】(1)()()22x y x y +-(2)()()363x y x y -++【分析】本题考查了因式分解:(1)运用平方差公式进行因式分解,即可作答.(2)先分组分解,再进行提公因式,即可作答.【详解】(1)解:224x y -()()22x y x y =+-(2)解:2291839x xy y x y-++-222693939x xy y x y xy y =++--++()()()233333x y x y y x y=+-+++()()3333x y y x y =+-++()()363x y x y =-++【变式3】(23-24八年级上·四川眉山·期中)因式分解:(1)2321025xy y x y -++;(2)3223a a b ab b +--.【答案】(1)2(5)y x y -(2)2()()a b a b +-【分析】本题考查的因式分解,熟知分组分解法与提取公因式法、公式法分解因式是解题的关键.(1)先提取公因式,再利用完全平方公式进行因式分解即可;(2)利用分组分解法因式分解即可.【详解】(1)解:2321025xy y x y-++22(1025)y xy y x =-++2(5)y x y =-;(2)解:3223a ab ab b +--3223()()a ab ab b =+-+22()()a ab b a b =+-+22()()a b a b =+-2()()a b a b =+-3.拆项后用公式法【例题13】(22-23八年级上·贵州黔西·期末)我们已经学过将一个多项式分解因式的方法有提公因式法、运用公式法和十字相乘法,其实分解因式的方法还有分组分解法、拆项法,等等.①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.例如:()()()2222222424()222x xy y x xy y x y x y x y -+-=-+-=--=-+--.②拆项法,将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.例如:()()()()222223214(1)2121213x x x x x x x x x +-=++-=+-=+-++=-+(1)仿照以上方法,按照要求分解因式:①(分组分解法)22441x x y +-+;②(拆项法)268x x -+;(2)已知:a ,b ,c 为ABC 的三条边,222446170a b c a b c ++---+=,求ABC 的周长.【答案】(1)()()2121x y x y ++-+①;()()42x x --②(2)ABC 的周长为7【分析】本题主要考查公式法因式分解:(1)①将22441x x y +-+组成为()22441x x y ++-分解即可.②将268x x -+拆项为()2691x x -+-分解即可;(2)分组拆项配成完全平方式的和形式()()()2226944440a b a b c c ++--+++=-,利用非负性计算即可.【详解】(1)22441x x y +-+①()22441x x y =++-2221()x y =+-()()2121x y x y =++-+268x x -+②2691x x =-+-2(3)1x =--()()3131x x =---+()()42x x =--(2)222446170a b c a b c ++---+=Q ,()()()2224444690a a b b c c ∴-++-++-+=.222(2)(2)(3)0a b c ∴-+-+-=.2a ∴=,2b =,3c =.2237a b c ∴++=++=.ABC ∴ 的周长为7【变式1】(23-24八年级上·山东济宁·期末)观察下面因式分解的过程:432233x x x x +++-4322333x x x x x =+-++-()()222131x x x x x =+-++-()()2231x x x =++-上面因式分解过程的第一步把22x 拆成了223x x -+,这种因式分解的方法称为拆项法.请用上面的方法完成下列题目:(1)22268a b a b -++-;(2)42231x x -+.【答案】(1)()()24a b a b +--+(2)()()221515x x x x +++-【分析】本题考查因式分解,理解题中拆项法是解答的关键.(1)将8-拆成19-,然后重新组合,利用完全平方公式和平方差公式分解因式即可;(2)将223x -拆成22225x x -,然后重新组合,利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:22268a b a b -++-222619a b a b =-+++-()()222169a a b b =++--+()()2213a b =+--()()1313a b a b =++-+-+()()24a b a b =+--+;(2)解:42231x x -+2242251x x x =+-+()4222125x x x =++-()()22215x x =+-()()221515x x x x =+++-【变式2】(23-24八年级上·河北张家口·期末)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:()()()()2222222424222x xy y x xy y x y x y x y -+-=-+-=--=---+.②拆项法:例如:()()()()()22222321412121213x x x x x x x x x +-=++-=+-=+-++=-+.仿照以上方法分解因式:(1)22441x x y +-+;(2)2223x xy y +-.(3)解决问题:已知a 、b 、c 、为ABC 的三边长,2254210a b ab b +--+=,且ABC 为等腰三角形,求ABC的周长.【答案】(1)()()2121x y x y +++-(2)()()3x y x y +-(3)ABC 的周长是5【分析】本题考查因式分解及其应用,分组分解法,拆项法因式等知识,掌握完全平方公式和平方差公式是解题的关键.(1)运用分别分组分解法将2441x x ++看出一组,再用平方差公式因式分解即可;(2)运用拆项法将23y -拆成224y y -,再运用(1)的方法因式分解即可;(3)将2254210a b ab b +--+=化成平方和等于0的形式,从而求出a 、b ,再运用等腰三角形的定义分类讨论即可得解.【详解】(1)解:22441x x y +-+22441x x y =++-()2221x y =+-()()2121x y x y =+++-;(2)2223x xy y +-22224x xy y y =++-()224x y y =+-()()22x y y x y y =+++-()()3x y x y =+-;(3)2254210a b ab b +--+= ,22244210a ab b b b --∴+++=,22(2)(1)0a b b ∴-+-=,20a b ∴-=,10b -=,2a ∴=,1b =,ABC 是等腰三角形,c 2∴=或1c =(不符合三角形三边关系,舍去)ABC ∴ 的周长2215=++=【变式3】(2023八年级上·全国·专题练习)利用拆项法,解决下列问题:(1)分解因式:265x x -+;(2)分解因式:2245a ab b +-.【答案】(1)()()15x x --;(2)()()5a b a b +-.【分析】(1)将5拆解成94-,再根据完全平方公式得()2232x --,然后利用平方差公式进一步分解;(2)将25b -拆解成2249b b -,再根据完全平方公式得()2229a b b +-,然后利用平方差公式进一步分解.【详解】(1)原式2694x x =-+-,()2232x =--,()()3232x x =---+,()()15x x =--;(2)原式222449a ab b b =++-,()2229a b b =+-,()()2323b a b a b b =+++-,()()5a b a b =+-.【点睛】此题考查了因式分解的应用,解题时要注意在拆项变形的过程中不要改变式子的值4.换元法【例题14】(23-24八年级上·福建福州·期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小胡同学用换元法对多项式()()2221234x x x x ---++进行因式分解的过程.解:设22x x y -=,原式()()134y y =-++(第一步)221y y =++(第二步)()21y =+(第三步)()2221x x =-+(第四步)请根据上述材料回答下列问题:(1)小胡同学的解法中,第二步到第三步运用了因式分解的______;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小胡同学因式分解的结果不彻底,请你写出该因式分解的最后结果;(3)请你用换元法对多项式()()22661881x x x x ++++进行因式分解.【答案】(1)C(2)()41x -(3)()43x +【分析】(1)根据利用完全平方公式()2222a ab b a b ±+=±分解因式即可得;(2)括号里面可以再次用完全平方公式进行因式分解;(3)设26y x x =+,利用换元法和完全平方公式分解因式即可得.【详解】(1)解:()22211y y y ++=+,则第二步到第三步运用了因式分解的完全平方公式法,故选:C .(2)解:原式()2221x x =-+()221x ⎡=⎤⎣⎦-()41x =-,故答案为:()41x -;(3)解:设26y x x =+,()()22661881x x x x ++++则原式()1881y y =++21881y y =++()29y =+()2269x x =++()223x ⎡⎤=+⎣⎦()43x =+.【点睛】本题考查了因式分解——换元法和完全平方公式法,熟练掌握利用公式法分解因式是解题的关键【变式1】(23-24八年级上·全国·课时练习)因式分解:(1)(添项)44x +;(2)(拆项)3234x x -+;(3)(换元)()()2221224x y x y +-+-+.【答案】(1)()()222222x x x x ++-+(2)()()221x x -+(3)()()2268x y x y +-+-【分析】根据分解因式的方法求解即可.【详解】(1)原式()2222222222x x x =+⨯+-⨯()()22222x x =+-()()222222x x x x =++-+.(2)方法一:原式32224x x x =--+()()32224x x x =---()()()2222x x x x =--+-()()222x x x =---()()()221x x x =--+()()221x x =-+.方法二:原式32244x x x =+-+()()()21411x x x x =+--+()()2144x x x =+-+()()212x x =+-.(3)设2x y a +=,则原式()()21224a a =--+21448a a =-+()()68a a =--()()2268x y x y =+-+-.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等【变式2】(22-23七年级下·江苏镇江·阶段练习)【积累经验】小明在分解因式22(21)(23)4x x x x +-+++时,提出了如下的思路:小明:我发现223x x ++比221x x +-多4,若设221x x m +-=,那么223x x ++就可以表示为m +4.则222(21)(23)4(4)444x x x x m m m m +-+++=++=++=2(2)m +.因为221x x m +-=,所以原式=224(21)(1)x x x ++=+.在解决数学问题时,可以将某个式子看作一个整体,用一个字母去代替它,从而使问题得到简化,这样的方法叫做换元法.换元法的关键是设元.上述问题中,不仅能设221x x m +-=,也可以将22x x +或223x x ++或……设为n .请你任选一种设元的方法,分解因式;【灵活应用】(1)()()12320222342023A =+++⋯++++⋯+,()()1232023232022B =+++⋯+++⋯+,探究A 与B 的数量关系,并说明理由;(2)如图,一户人家有一块长方形土地ABCD ,30AB =,24AD =,其内部有一条宽度为a 的L 型种植区域①,其余部分(长方形)AEFG 为种植区域②,测量区域②的面积为340;阿凡提有两块正方形的土地AGHI 与AJKE 跟这户人家的种植区域②相邻,正方形土地的边长分别为AG 与AE .这户人家对阿凡提的两块地垂涎已久,提出要将自己的土地与阿凡提交换,阿凡提有没有损失呢?请你运用所学的数学知识进行解释.【答案】积累经验:4(1)x +;灵活运用:(1)2023A B -=;(2)没有损失,见解析【分析】积累经验:可以设22x x n +=,将原式中的22x x +全部用n 表示,然后分解因式即可;灵活运用:(1)设2342022a +++⋯+=,把A 、B 各部分用a 表示,然后作差,即可求出A 、B 的关系;(2)设AE x =,AG y =,用含a 的式子分别表示出AE 、AG ,然后根据()2222x y x y xy +=+-表示出交换之后土地的面积,在进行比较即可求解.【详解】积累经验:解:设22x x n +=,则2211x x n +-=-,那么2233x x n ++=+.原式()()134n n =-++=2234n n +-+=2(1)n +因为22x x n +=,所以原式224(21)(1)x x x =++=+灵活运用:解:(1)设2342022a +++⋯+=()()21202320242023A a a a a =++=++()2120232024B a a a a=++=+所以2023A B -=.(2)由题意得,设30AE a x =-=,24AG a y =-=,.则6x y =-,340.xy =所以()222236680716x y x y xy +=+=+=-,即阿凡提的两块土地面积之和为716,而四边形ABCD 的面积为3024720716⨯=>.所以交换土地对阿凡提来说没有损失.【点睛】本题考查了因式分解—换元法、完全平方公式的应用,看懂和理解题例是求解的关键【变式3】(22-23八年级下·山东济南·期末)阅读以下材料,并按要求完成相应任务:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式()()2241479x x x x +++++进行因式分解的过程.解:设24x x y +=,则原式()()179y y =+++(第一步)2816y y =++(第二步)()24y =+(第三步)()2244x x =++(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;请你用换元法对多项式()()229639614x x x x -+-+-进行因式分解.【答案】(1)C(2)()42x +,()431x -【分析】(1)根据利用完全平方公式()2222a ab b a b ±+=±分解因式即可得;(2)利用完全平方公式分解因式即可得出最后结果;设296x x y -=,利用换元法和完全平方公式分解因式即可得.【详解】(1)解:()228164y y y ++=+,则第二步到第三步运用了因式分解的完全平方公式法,故选:C .(2)解:设24x x y +=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =++()222x ⎡⎤=+⎣⎦()42x =+,故答案为:()42x +.对多项式()()229639614x x x x -+-+-,设296x x y -=,则原式()()314y y =+-+2234y y =+-+221y y =++()21y =+()22961x x -=+()2231x ⎡⎤=-⎣⎦()431x =-.【点睛】本题考查了因式分解——换元法和完全平方公式法,熟练掌握利用公式法分解因式是解题的关键3种思想1:整体思想【例题15】(22-23八年级下·贵州六盘水·期末)先阅读下列材料,再解答下列问题:材料:因式分解:()()221x y x y ++++.解:将“()x y +”看成整体,令()x y A +=,则原式()22211A A A =++=+.再将“A ”还原,得原式()21x y =++.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:因式分解:()()44a b a b ++-+.【答案】()22a b +-【分析】本题主要考查整体思想的方法进行因式分解,掌握乘法公式,整体思想的方法是解题的关键.根据材料提示,令a b M +=,再结合完全平方公式进行因式分解即可求解.【详解】解:()()44a b a b ++-+令a b M +=,∴原式()44M M =-+。
专题02 整式与因式分解一.选择题1.(2022·江苏宿迁)下列运算正确的是( )A .21m m -=B .236·m m a =C .()222mn m n =D .()235m m = 【答案】C【分析】由合并同类项可判断A ,由同底数幂的乘法可判断B ,由积的乘方运算可判断C ,由幂的乘方运算可判断D ,从而可得答案.【详解】解:2m m m -=, 故A 不符合题意;235m m m ⋅=, 故B 不符合题意;()222mn m n =, 故C 符合题意;()236m m =, 故D 不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.2.(2022·湖南株洲)下列运算正确的是( )A .235a a a ⋅=B .()235a a =C .22()ab ab = D .632(0)a a a a =≠ 【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解.【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意;B 、()236a a =,故本选项错误,不符合题意; C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A 【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.(2022·陕西)计算:()2323x x y ⋅-=( ) A .336x yB .236x y -C .336x y -D .3318x y【答案】C 【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:()()23233323236x x y x x y x y ⋅-=⨯-⨯=-⋅⨯.故选:C .【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a 2·a ( )A .aB .3aC .2a 2D .a 3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:23,a a a 故选D 【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是( )A .3515x x x ⋅=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ⋅-=- 【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意; 故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是( )A .236m m m ⋅=B .()m n m n --=-+C .2()m m n m n +=+D .222()m n m n +=+【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、2356m m m m ⋅=≠,故此选项不符合题意;B 、()m n m n --=-+,故此选项符合题意;C 、22()m m n m mn m n +=+≠+,故此选项不符合题意;D 、22222()2m m n m n m n n +=++≠+,故此选项不符合题意.故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和222()2a b a ab b +=++的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出( )A .正方形纸片的面积B .四边形EFGH 的面积C .BEF 的面积D .AEH △的面积【答案】C【分析】设正方形纸片边长为x ,小正方形EFGH 边长为y ,得到长方形的宽为x -y ,用x 、y 表达出阴影部分的面积并化简,即得到关于x 、y 的已知条件,分别用x 、y 列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH 是正方形,设正方形纸片边长为x ,正方形EFGH 边长为y ,则长方形的宽为x -y ,所以图中阴影部分的面积=S 正方形EFGH +2S △AEH +2S △DHG =2112()222y y x y xy +⨯-+⨯=2xy , 所以根据题意,已知条件为xy 的值,A.正方形纸片的面积=x 2,根据条件无法求出,不符合题意;B.四边形EFGH 的面积=y 2, 根据条件无法求出,不符合题意;C.BEF 的面积=12xy ,根据条件可以求出,符合题意; D.AEH △的面积=21()22xy y y x y --=,根据条件无法求出,不符合题意;故选 C . 【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简3()()a b -⋅-的结果是( )A .3ab -B .3abC .3a b -D .3a b【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:()()()333·a b a b a b -⋅-=--=,故选:D .【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A .9B .10C .11D .12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B .【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.10.(2022·浙江绍兴)下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a =【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x ,3x ²,5x ³,7x 4,9x 5,……,第n 个单项式是( )A .(2n -1)n xB .(2n +1)n xC .(n -1)n xD .(n +1)n x【答案】A【分析】系数的绝对值均为奇数,可用(2n -1)表示;字母和字母的指数可用xn 表示.【详解】解:依题意,得第n 项为(2n -1)xn ,故选:A .【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A .15B .13C .11D .9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∵则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C .【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于9a 的是( )A .36+a aB .36a a ⋅C .10a a -D .182÷a a【答案】B【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A .36+a a ,不是同类项,不能合并在一起,故选项A 不合题意;B .36369a a a a +⋅==,符合题意;C .10a a -,不是同类项,不能合并在一起,故选项C 不合题意;D .11816282a a a a -==÷,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=-【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是( )A .352()a a =B =C 2=D .1cos302︒= 【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A 、23236()a a a ⨯==,该选项错误;BC 2==,该选项正确;D 、cos30°C . 【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与2ab为同类项的是()A.2a b B.22ab-C.ab D.2ab c【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与2ab不是同类项,故选项不符合题意;B、a的指数是1,b的指数是2,与2ab是同类项,故选项符合题意;C、a的指数是1,b的指数是1,与2ab不是同类项,故选项不符合题意;D、a的指数是1,b的指数是2,c的指数是1,与2ab不是同类项,故选项不符合题意.故选:B.【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是()A7-B.2693÷=C.222a b ab+=D.235a b ab⋅=【答案】Ba =,判断A 选项不正确;C 选项中2a 、2b 不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A. 7=,故A 不正确; B. 2366932÷=⨯=,故B 正确; C. 222a b ab +≠,故C 不正确;D. 236a b ab ⋅=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确. 【详解】解:∵()x y z m n x y z m n ----=----∴①说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.二.填空题20.(2022·江苏苏州)已知4x y +=,6-=x y ,则22x y -=______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵4x y +=,6-=x y ,∴22()()4624x y x y x y -=+-=⨯=,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.【答案】5【分析】设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,分别求得b =13c ,c =35d ,由“优美矩形”ABCD 的周长得4d +2c =26,列式计算即可求解.【详解】解:设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,∵“优美矩形”ABCD 的周长为26,∴4d +2c =26,∵a =2b ,c =a +b ,d =a +c ,∴c =3b ,则b =13c , ∴d =2b +c =53c ,则c =35d ,∴4d +65d =26, ∴d =5,∴正方形d 的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知221062m n m n ++=-,则m n -=______.【答案】4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解. 【详解】解:221062m n m n ++=-,2210620m n m n +-+∴+=,即()()22310m n -++=, 3,1m n ∴==-,()314m n ∴-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知2310x x -+=,则2395x x -+=_________.【答案】2【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算7m m ⋅的结果等于___________.【答案】8m【分析】根据同底数幂的乘法即可求得答案.【详解】解:7178m m m m +⋅==,故答案为:8m .【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数)可得到, 当震级为8级的地震所释放的能量为: 1.58121010k k ⨯⨯=⨯,当震级为6级的地震所释放的能量为: 1.5691010k k ⨯⨯=⨯,12391010100010k k ⨯==⨯, ∴震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n =1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n =1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n =1时,“•”的个数是3=3×1; n =2时,“•”的个数是6=3×2; n =3时,“•”的个数是9=3×3; n =4时,“•”的个数是12=3×4; ……∴第n 个图形中“•”的个数是3n ; 又∵n =1时,“○”的个数是1=1(11)2⨯+; n =2时,“○”的个数是2(21)32⨯+=, n =3时,“○”的个数是3(31)62⨯+=, n =4时,“○”的个数是4(41)102⨯+=, ……∴第n 个“○”的个数是()12n n +, 由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=② 解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数. 【详解】解:∵第一代勾股树中正方形有1+2=3(个), 第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),...... ∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个), 故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律. 28.(2022·山东滨州)若10m n +=,5mn =,则22m n +的值为_______. 【答案】90【分析】将22m n +变形得到()22m n mn +-,再把10m n +=,5mn =代入进行计算求解. 【详解】解:∵10m n +=,5mn =,∴22m n + ()22m n mn =+- 21025=-⨯ 10010=- 90=.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字) 【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米, ∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7. 【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y )2=25,(x ﹣y )2=9,则xy=___. 【答案】4【分析】根据完全平方公式的运算即可. 【详解】∵()225x y +=,()29x y -= ∵()2x y ++()2x y -=4xy =16,∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 31.(2022·浙江嘉兴)分解因式:m 2-1=_____. 【答案】()()11m m +-【分析】利用平方差公式进行因式分解即可.【详解】解:m 2-1=11,m m 故答案为:()()11m m +-【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键. 32.(2022·湖南怀化)因式分解:24-=x x _____. 【答案】2(1)(1)+-x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:2x x + = ______. 【答案】(1)x x +【分析】利用提公因式法即可分解. 【详解】2(1)x x x x +=+, 故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x 2-2x +1=__________. 【答案】(x -1)2【详解】由完全平方公式可得:2221(1)x x x -+=- 故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,则m n +的值是___. 【答案】1【分析】根据一元二次方程解的定义把1x =代入到()2100mx nx m +-=≠进行求解即可. 【详解】∵关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,∴10m n +-=,∴1m n +=,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN ,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________; (2)若代数式222a ab b --的值为零,则ABCDPQMNS S 四边形矩形的值是___________.【答案】 -a b3+【分析】(1)根据图象表示出PQ 即可;(2)根据2220a ab b --=分解因式可得()()0a b a b --=,继而求得a b =,根据这四个矩形的面积都是5,可得55,EP EN a b==,再进行变形化简即可求解. 【详解】(1)①和②能够重合,③和④能够重合,,AE a DE b ==, PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=--=,0a b ∴-=或0a b -=,即a b =(负舍)或a b =+这四个矩形的面积都是5,55,EP EN a b∴==, ()()()()()()()()22555555ABCD PQMNa b a b a b a b S b a ab a b S a b a b a b b a ab ⎛⎫++⋅++⋅⎪+⎝⎭∴===-⎛⎫----⋅⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,3==+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45【分析】根据题意找到图形规律,即可求解. 【详解】根据图形,规律如下表:(3)1m ⎪-⎬⎪⎭1+2+3 12(3)12m +⎫⎪-⎬⎪+⎭1+2+3+4 23(23m ++⎫⎪-⎬⎪++⎭n+1n ++1(1)n ++-n +(1)n +-(1)n +-n + (1)n +-(1)n +-(1)n +-2n ++2(1)(1)n n ++-⎪⎬⎪+-⎭由上表可知第n 个边形数为:12)[12(1)](3n n m +++++++--,整理得:1)(1)(3)2(2n n n n m S --+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==,故答案为:45. 【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键. 38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列, 2 4 6 8 10 12 14 16 18 20 ……则第27行的第21个数是______. 【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n 行有n 个数,则前n 行共有(1)2n n +个数,再根据偶数的特征确定第几行第几个数是几. 【详解】解:由图可知, 第一行有1个数, 第二行有2个数, 第三行有3个数, •••••••第n 行有n 个数. ∴前n 行共有1+2+3+⋯+n =(1)2n n +个数. ∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数. ∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解. 三.解答题39.(2022·江苏苏州)已知23230x x --=,求()2213x x x ⎛⎫-++ ⎪⎝⎭的值.【答案】24213x x -+,3【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解.【详解】原式222213x x x x =-+++24213x x =-+. ∵23230x x --=, ∴2213x x -=.∴原式22213x x ⎛⎫=-+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键. 40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少? 【答案】(1)300,240(2)当040x <≤时,选择乙超市更优惠,当50x =时,两家超市的优惠一样,当4050x <<时,选择乙超市更优惠,当50x >时,选择甲超市更优惠. 【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x 件这种文化用品,所花费用为y 元, 可得当040x <≤时,10,y x 甲 100.88,y x x 乙 显然此时选择乙超市更优惠,当40x >时4000.610406100,y x x 甲 100.88,y x x 乙再分三种情况讨论即可.(1)解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为3010=300⨯(元), ∵乙超市全部按标价的8折售卖,∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为30100.8240(元), 故答案为:300,240(2)设单位购买x 件这种文化用品,所花费用为y 元,又当10x =400时,可得40,x = 当040x <≤时,10,y x 甲 100.88,y x x 乙 显然此时选择乙超市更优惠, 当40x >时,4000.610406100,y x x 甲 100.88,y x x 乙当y y =甲乙时,则86100,x x 解得:50,x = ∴当50x =时,两家超市的优惠一样, 当y y >乙甲时,则61008,x x 解得:50,x ∴当4050x <<时,选择乙超市更优惠, 当y y <乙甲时,则61008,x x 解得:50,x ∴当50x >时,选择甲超市更优惠.【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.41.(2022·湖南衡阳)先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-. 【答案】2a 2ab +,3-【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算. 【详解】解:原式222222a b ab b a ab =-++=+, 将1a =,2b =-代入式中得:原式()21212143=+⨯⨯-=-=-.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键. 42.(2022·浙江金华)如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长.(2)当3a =时,该小正方形的面积是多少? 【答案】(1)3a +(2)36【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可.(1)解:∵直角三角形较短的直角边122a a =⨯=,较长的直角边23a =+, ∴小正方形的边长233a a a =+-=+;(2)解:22(3)69S a a a =+=++小正方形, 当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.43.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯, 第2个等式:()()()22222134134⨯+=⨯+-⨯, 第3个等式:()()()22223146146⨯+=⨯+-⨯, 第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________; (2)写出你猜想的第n 个等式(用含n 的式子表示),并证明. 【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答; (2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅, 证明如下:等式左边:()2221441n n n +=++, 等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.44.(2022·浙江丽水)先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++12x =+当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.45.(2022·重庆)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”. 例如:2543M =,∵223425+=,∴2543是“勾股和数”;又如:4325M =,∵225229+=,2943≠,∴4325不是“勾股和数”. (1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c dG M +=,()()()103a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析 (2)8109或8190或4536或4563.。
一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。
专题2 整式及因式分解列代数式1.(2021•温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元2.(2021•台州)将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.×100%C.×100%D.×100%3.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?4.(2022•舟山)观察下面的等式:=+,=+,=+,……(1)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数).(2)请运用分式的有关知识,推理说明这个结论是正确的.合并同类项5.(2023•丽水)计算a2+2a2的正确结果是()A.2a2B.2a4C.3a2D.3a4 6.(2022•连云港)计算:2a+3a=.规律型:数字的变化类7.(2023•浙江)观察下面的等式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,92﹣72=8×4,…(1)写出192﹣172的结果;(2)按上面的规律归纳出一个一般的结论(用含n的等式表示,n为正整数);(3)请运用有关知识,推理说明这个结论是正确的.8.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.(1)尝试:①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;③当a=3时,352=1225=;……(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.(3)运用:若与100a的差为2525,求a的值.幂的运算9.(2022•湖州)下列各式的运算,结果正确的是()A.a2+a3=a5B.a2•a3=a6C.a3﹣a2=a D.(2a)2=4a2 10.(2023•宁波)下列计算正确的是()A.x2+x=x3B.x6÷x3=x2C.(x3)4=x7D.x3•x4=x711.(2022•宁波)下列计算正确的是()A.a3+a=a4B.a6÷a2=a3C.(a2)3=a5D.a3•a=a4完全平方(平方差)公式12.(2023•台州)下列运算正确的是()A.2(a﹣1)=2a﹣2B.(a+b)2=a2+b2C.3a+2a=5a2D.(ab)2=ab213.(2021•台州)已知(a+b)2=49,a2+b2=25,则ab=()A.24B.48C.12D.2 14.(2021•温州)(1)计算:4×(﹣3)+|﹣8|﹣.(2)化简:(a﹣5)2+a(2a+8).15.(2023•宁波)计算:(1)(1+)0+|﹣2|﹣.(2)(a+3)(a﹣3)+a(1﹣a).整式的运算及化简求值16.(2022•绍兴)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a517.(2023•绍兴)下列计算正确的是()A.a6÷a2=a3B.(﹣a2)5=﹣a7C.(a+1)(a﹣1)=a2﹣1D.(a+1)2=a2+118.(2023•丽水)如图,分别以a,b,m,n为边长作正方形,已知m>n且满足am﹣bn =2,an+bm=4.(1)若a=3,b=4,则图1阴影部分的面积是;(2)若图1阴影部分的面积为3,图2四边形ABCD的面积为5,则图2阴影部分的面积是.19.(2023•金华)已知,求(2x+1)(2x﹣1)+x(3﹣4x)的值.20.(2022•丽水)先化简,再求值:(1+x)(1﹣x)+x(x+2),其中x=.21.(2021•金华)已知x=,求(3x﹣1)2+(1+3x)(1﹣3x)的值.因式分解22.(2023•绍兴)因式分解:m2﹣3m=.23.(2023•温州)分解因式:2a2﹣2a=.24.(2023•金华)因式分解:x2+x=.25.(2023•台州)因式分解:x2﹣3x=.26.(2022•丽水)分解因式:a2﹣2a=.27.(2021•台州)因式分解:xy﹣y2=.28.(2021•宁波)分解因式:x2﹣3x=.29.(2023•杭州)分解因式:4a2﹣1=()A.(2a﹣1)(2a+1)B.(a﹣2)(a+2)C.(a﹣4)(a+1)D.(4a﹣1)(a+1)30.(2021•杭州)因式分解:1﹣4y2=()A.(1﹣2y)(1+2y)B.(2﹣y)(2+y)C.(1﹣2y)(2+y)D.(2﹣y)(1+2y)31.(2023•宁波)分解因式:x2﹣y2=.32.(2023•丽水)分解因式:x2﹣9=.33.(2022•台州)分解因式:x2﹣1=.34.(2023•长春)分解因式:m2﹣1=.35.(2022•宁波)分解因式:x2﹣2x+1=.36.(2022•温州)分解因式:m2﹣n2=.37.(2022•金华)因式分解:x2﹣9=.38.(2023•浙江)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:.。
第2讲整式及因式分解(精练)(解析版)A基础训练B能力提升A基础训练一、单选题1.(2022•山东枣庄•中考真题)下列运算正确的是()A. 3屋一次=3 B. a3-ra2=a C. ( - 3ab2) 2= - 6a2h4 D. (a+h) 2=a2+ab+b2【答案】B【详解】A、3/-。
2=2〃2,故A错误,不符合题意;B、a3-ra2=ch故B正确,符合题意;C、( - 3ab2) 2 = 9612b4,故c错误,不符合题意;D、(6f+Z?) 2 = a2+2ah+h29故D不正确,不符合题意;故选:B.2.(2022•江苏泰州,中考真题)下列计算正确的是()A. 3ab + 2ab = 5ab B. 5y2 -2y2 = 3C. 7a + a = 7。
2D. /rTn — Imn2 = —mn2【答案】A【详解】解:A、3ab+lab - 5ab,故选项正确,符合题意;B、5/-2/=3/,故选项错误,不符合题意;C、Ja + a = Sa,故选项错误,不符合题意;D、和22不是同类项,不能合并,故选项错误,不符合题意;故选:A.3.(2022•广西河池・中考真题)多项式/一以+ 4因式分解的结果是()A. x (% - 4) +4 B. (x+2) (x- 2) C. (x+2) 2D. (%- 2) 2【答案】D【详解】解:d-4x+4 = (%-2)2.故选:D.4.(2022・湖南永州•中考真题)下列因式分解正确的是()A. 6+冲= i(x+y) + lB. 3Q +3Z?=3(Q+Z7)C. Q?+4Q +4=S+4『D. a2 -^b = a(a+b)【答案】B【详解】解:A、ax+ay=a(x+y),故选项计算错误;B、3a+3b=3(a+b)9选项计算正确;C> (a+b)2=a2^2ab+b2,故原选项错误;D、由A项解答可得a2-9b2=(a+3b)(a-3b),故原选项正确;故选D.2.(2022,江苏・顾山中学九年级阶段练习)直角三角形两直角边是方程%2一8%+ 14 = 0的两根,则它的斜边为()A. 8B. 7C. 6D. 2、/7【答案】C【详解】解:设直角三角形的斜边为J两直角边分别为〃与b,・・・直角三角形两直角边是方程8x + 14 = 0的两根,:,a + b = S,勿? = 14,根据勾股定理可得:=/+/=(〃 +与2—2^ = 64-28 = 36,• • c = 6 ♦故选:C.3.(2022・全国•七年级课时练习)若4 = /—2xy, 3 = J孙+ /,则A-23为()A. 3x2-2y2 -5xy^B. x2-2y2 -3xyC. —5xy — 2 y ~D . 3x~ + 2y~【答案】B【详解】解:A = £-2盯,8 = J孙+ y2,A — 2B = x~-2xy _ 2 _xy+y~] = x2 _2xy _ xy _ 2^~ =—2y——3xy ,故选:B.4.(2022 ・全国•八年级课时练习)对于多项式(1) d-y2;(2)-x2-y2; (3) 4x2-y ; (4)—4 + d中,能用平方差公式分解的是()A. (1) (2) B. (1) (3) C. (1) (4)D. (2) (4)【答案】C【详解】解:・・・平方差公式必须只有两项,并且是两个数平方差的形式,(1)—— y2两平方项符号相反,可以利用平方差公式;(2)-%2 - ,两平方项符号相同,不能运用平方差公式;(3)4/—y虽然是两项,并且是差的形式,但不是平方差的形式;(4)-4 + X2,两平方项符号相反,可以利用平方差公式.所以(1) (4)能用平方差公式分解.故选:C.5.(2022•辽宁•沈阳市南昌初级中学(沈阳市第二十三中学)八年级期中)小军是一位密码编译爱好者,在他的密码手册中,有这样一条信息:%-V, a—b, c , /_)/,《J工+了,分别对应下列六个字:抗,胜,必、,利,我,疫.现将y2户阳/_力因式分解,结果呈现的密码信息可能是() A.抗疫胜利B.抗疫必胜C.我必胜利D.我必抗疫【答案】B【详解】解:原式=(/一》2)(女—秘) = C(Q_〃)(X+・・・x-y, a-b,c, /_y2, 0 ,x+y,分别对应下列六个字:抗,胜,必,利,我,疫. 对应抗,x+y对应疫,。
专题02 整式与因式分解一.选择题1.(2022·福建)化简()223a 的结果是( ) A .29aB .26aC .49aD .43a【答案】C 【分析】根据幂的乘方和积的乘方进行计算即可.【详解】()()222224339a a a ==,故选:C . 【点睛】本题考查幂的乘方和积的乘方,熟记幂的运算法则是解题的关键.2.(2022·湖南永州)下列因式分解正确的是( )A .()1ax ay a x y +=++B .()333a b a b +=+C .()22444a a a ++=+D .()2a b a a b +=+【答案】B【分析】根据因式分解的方法,提公因式法及公式法依次进行计算判断即可.【详解】解:A 、ax +ay =a (x +y ),故选项计算错误;B 、3a +3b =3(a +b ),选项计算正确;C 、()22442a a a ++=+,选项计算错误;D 、2a b +不能进行因式分解,选项计算错误;故选:B .【点睛】题目主要考查因式分解的判断及应用提公因式法与公式法进行因式分解,熟练掌握因式分解的方法是解题关键.3.(2022·四川内江)下列运算正确的是( )A .a 2+a 3=a 5B .(a 3)2=a 6C .(a ﹣b )2=a 2﹣b 2D .x 6÷x 3=x 2【答案】B【分析】根据合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,进行判断即可.【详解】A.a 2和a 3不是同类项,不能合并,故A 不符合题意;B.(a 3)2=a 6,故B 符合题意;C.(a ﹣b )2=a 2﹣2ab +b 2,故C 不符合题意;D.63633x x x x ÷==﹣,故D 不符合题意.故选:B .【点睛】本题主要考查了整式的运算,熟练掌握合并同类项法则,幂的乘方和同底数幂的除法法则,完全平方公式,是解题的关键.4.(2022·山东临沂)计算()1a a a +-的结果是( )A .1B .2aC .22a a +D .21a a -+【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()1a a a +- 22a a a a .故选B【点睛】本题考查的是整式的混合运算,单项式乘以多项式,掌握“单项式乘以多项式的运算”是解本题的关键.5.(2022·内蒙古赤峰)已知()()2221x x x +--=,则2243x x -+的值为( )A .13B .8C .-3D .5【答案】A【分析】先化简已知的式子,再整体代入求值即可.【详解】∵()()2221x x x +--=∴225x x -=∴222432(2)313x x x x -+=-+=故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键.6.(2022·江苏泰州)下列计算正确的是( )A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=-【答案】A【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意;B 、222523y y y -=,故选项错误,不符合题意;C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.7.(2022·湖北鄂州)下列计算正确的是( )A .b +b 2=b 3B .b 6÷b 3=b 2C .(2b )3=6b 3D .3b ﹣2b =b 【答案】D【分析】根据积的乘方“把积的每一个因式分别乘方,再把所得的幂相乘”,合并同类项“把同类项的系数相减,所得的结果作为系数,字母和字母的指数不变”,同底数幂的除法“底数不变,指数相减”进行计算即可得.【详解】解:A 、22b b b b +=+,选项说法错误,不符合题意;B 、63633b b b b -÷==,选项说法错误,不符合题意;C 、33(2)8b b =,选项说法错误,不符合题意;D 、32b b b -=,选项说法正确,符合题意;故选D .【点睛】本题考查了积的乘方,合并同类项,同底数幂的除法,解题的关键是掌握这些知识点. 8.(2022·辽宁锦州)下列运算正确的是( )A .236a a a ⋅=B .22(2)4x x -=C .22m mn n -= D .2ab ab b -=【答案】B【分析】由同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,分别进行判断,即可得到答案.【详解】解:235a a a ⋅=,故A 错误;22(2)4x x -=,故B 正确;22m mn n -=,故C 错误; 2ab ab -不能合并,不D 错误;故选:B .【点睛】本题考查了同底数幂乘法、积的乘方、负整数指数幂的乘法、合并同类项,解题的关键是掌握运算法则,正确的进行判断.9.(2022·广西贵港)下例计算正确的是( )A .22a a -=B .2222a b a b +=C .33(2)8a a -=D .()236a a -= 【答案】D【分析】分别根据合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方法则进行计算即可求解.【详解】解:A. 2a −a =a ,故原选项计算错误,不符合题意;B. 2222a b a b +≠,不是同类项不能合并,故原选项计算错误,不符合题意;C. 33(2)-8a a -=,故原选项计算错误,不符合题意;D. (-a 3)2=a 6,故原选项计算正确,符合题意.故选:D .【点睛】本题考查了合并同类项、单项式除以单项式、同底数幂的乘法、幂的乘方等运算,熟知运算法则是解题关键.10.(2022·湖北恩施)下列运算正确的是( )A .236a a a ⋅=B .321a a ÷=C .32a a a -=D .()236a a = 【答案】D【分析】根据同底数幂的乘除法、合并同类项法则、幂的乘方法则逐项判断即可得.【详解】解:A 、235a a a ⋅=,则此项错误,不符题意;B 、32a a a ÷=,则此项错误,不符题意;C 、3a 与2a 不是同类项,不可合并,则此项错误,不符题意;D 、()236a a =,则此项正确,符合题意;故选:D . 【点睛】本题考查了同底数幂的乘除法、合并同类项、幂的乘方,熟练掌握各运算法则是解题关键. 11.(2022·黑龙江哈尔滨)下列运算一定正确的是( )A .()22346a b a b =B .22434b b b +=C .()246a a =D .339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意; B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意; D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意;故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.12.(2022·内蒙古包头)若42222m ⨯=,则m 的值为( )A .8B .6C .5D .2【答案】B【分析】根据同底数幂的乘法运算计算4242622222m +⨯===,即可求解.【详解】4242622222m +⨯===,6m ∴=,故选:B .【点睛】本题考查了同底数幂的乘法运算,即m n m n a a a +⋅=(m 、n 为正整数),熟练掌握运算法则是解题的关键.13.(2022·湖南长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100)x -元C .8(100)x -元D .(1008)x -元 【答案】C【分析】根据题意列求得购买乙种读本()100x -本,根据单价乘以数量即可求解.【详解】解:设购买甲种读本x 本,则购买乙种读本()100x -本,乙种读本的单价为8元/本,则则购买乙种读本的费用为8(100)x -元故选C【点睛】本题考查了列代数式,理解题意是解题的关键.14.(2022·山东聊城)下列运算正确的是( )A .()22233xy x y -=B .2243474x x x +=+C .()2323131t t t t t -+=-+ D .()()43341a a -÷-=- 【答案】D【分析】A 选项根据积的乘方等于乘方的积即可判断;B 选项合并同类型:字母和字母的指数比不变,系数相加;C 选项利用乘方的分配律;D 选项先用幂的乘方化简,在运用整式的除法法则.【详解】解:A 、原式229x y =,不合题意;B 、原式27x =,不合题意;C 、原式323t t t =-+,不合题意;D 、原式=-1,符合题意;故选:D .【点睛】本题考查积的乘方、幂的乘方、合并同类型、乘法分配律、整式的除法,掌握相应的运算法则是解题的关键,其中每一项的符号是易错点.15.(2022·湖南岳阳)下列运算结果正确的是( )A .23a a a +=B .55a a a ÷=C .236a a a ⋅=D .437()a a =【答案】A【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据同底数幂的乘法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式3=a ,故该选项符合题意;B 选项,原式4a =,故该选项不符合题意;C 选项,原式5a =,故该选项不符合题意;D 选项,原式12a =,故该选项不符合题意;故选A .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握()m n mn a a =是解题的关键. 16.(2022·内蒙古包头)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .16 【答案】C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4,∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-,故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 17.(2022·贵州遵义)下列运算结果正确的是( )A .3412a a a ⋅=B .321ab ab -=C .()232624ab a b -=D .()222a b a b -=- 【答案】C 【分析】分别利用同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式分别判断即可.【详解】A .347a a a ⋅=,故此选项计算错误,不符合题意;B .32ab ab ab -=,故此选项计算错误,不符合题意;C .()232624ab a b -=,此选项计算正确,符合题意;D .()2222a b a ab b -=-+,故此选项计算错误,不符合题意;故选:C .【点睛】本题考查同底数幂的乘法法则,合并同类项的法则,积的乘方法则及完全平方公式,熟练掌握相关计算法则是解答本题的关键.同底数幂相乘,底数不变,指数相加;合并同类项时,只把系数相加,所得结果作为合并后的系数,字母和字母的指数不变;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.18.(2022·广西)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A .222()2a b a ab b +=++B .222()2a b a ab b -=-+C .22()()a b a b a b +-=-D .222()ab a b = 【答案】A【分析】根据大正方形的面积=边长为a 的正方形的面积+两个长为a ,宽为b 的长方形的面积+边长为b 的正方形的面积,即可解答.【详解】根据题意得:(a +b )2=a 2+2ab +b 2,故选:A .【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键. 19.(2022·广东深圳)下列运算正确的是( )A .268a a a ⋅=B .()3326a a -=C .()22a b a b +=+D .235a b ab +=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.【详解】解:268a a a ⋅=,计算正确,故此选项符合题意;B 、33(2)8a a -=-,原计算错误,故此选项不符合题意;C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.20.(2022·上海)下列运算正确的是……( )A .a ²+a ³=a 6B .(ab )2 =ab 2C .(a +b )²=a ²+b ²D .(a +b )(a -b )=a ² -b 2 【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A.a ²+a ³没有同类项不能合并,故此选项不符合题意;B.(ab )2 =a2b 2,故此选项不符合题意;C.(a +b )²=a ²+2ab +b ²,故此选项不符合题意D.(a +b )(a -b )=a ² -b 2,故此选项符合题意故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.二.填空题21.(2022·湖南长沙)当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它己被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”己经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2002个不同的数据二维码,现有四名网友对2002的理解如下:YYDS (永远的神):2002就是200个2相乘,它是一个非常非常大的数;DDDD (懂的都懂):2002等于2200;JXND (觉醒年代):2002的个位数字是6;QGYW (强国有我):我知道10321024,101000==,所以我估计2002比6010大.其中对2002的理解错误的网友是___________(填写网名字母代号).【答案】DDDD【分析】根据乘方的含义即可判断YYDS (永远的神)的理解是正确的;根据积的乘方的逆用,将2002化为1002(2),再与2200比较,即可判断DDDD (懂的都懂)的理解是错误的;根据2的乘方的个位数字的规律即可判断JXND (觉醒年代)的理解是正确的;根据积的乘方的逆用可得2001020603202(2),10(10)==,即可判断QGYW (强国有我)的理解是正确的.【详解】2002是200个2相乘,YYDS (永远的神)的理解是正确的;200100222(2)200=≠,DDDD (懂的都懂)的理解是错误的;1234522,24,28,216,232=====,∴2的乘方的个位数字4个一循环,200450÷=,∴2002的个位数字是6,JXND (觉醒年代)的理解是正确的;2001020603202(2),10(10)==,10321024,101000==,且103210>20060210∴>,故QGYW (强国有我)的理解是正确的;故答案为:DDDD .【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算法则是解题的关键.22.(2022·内蒙古包头)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.【答案】23y xy -+【分析】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,求解即可.【详解】设这个多项式为A ,由题意得:22(328)235A xy y xy y ++-=+-,22222(235)(328)2353283A xy y xy y xy y xy y y xy ∴=+--+-=+---+=-+,故答案为:23y xy -+.【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.23.(2022·黑龙江大庆)已知代数式22(21)4a t ab b +-+是一个完全平方式,则实数t 的值为____________.【答案】52或32- 【分析】直接利用完全平方公式求解.【详解】解:∵代数式22(21)4a t ab b +-+是一个完全平方式,∴()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,∴214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.24.(2022·四川广安)已知a +b =1,则代数式a 2﹣b 2 +2b +9的值为________.【答案】10【分析】根据平方差公式,把原式化为()()29a b a b b +-++,可得9a b ++,即可求解.【详解】解:a 2﹣b 2 +2b +9()()29a b a b b =+-++29a b b =-++9a b =++19=+10=故答案为:10【点睛】本题主要考查了平方差公式的应用,利用整体代入思想解答是解题的关键. 25.(2022·吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要__________元.(用含m 的代数式表示)【答案】10m【分析】根据“总费用=购买篮球的数量⨯每个篮球的价格”即可得.【详解】解:由题意得:一共需要的费用为10m 元,故答案为:10m .【点睛】本题考查了列代数式,正确找出等量关系是解题关键.26.(2022·湖北恩施)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 【答案】15 13032【分析】由已知推出1211111n n n n a a a a +++-=-,得到202220211132a a -=,202120201132a a -=,431132a a -=,211132a a -=,上述式子相加求解即可. 【详解】解:∵21112n n n a a a +++=;∴1211111n n n n a a a a +++-=-, ∵21111113212222a a -=-=-=, ∵43411113227a a a -=-=, ∴a 4=15, ∴202220211132a a -=,202120201132a a -=,211132a a -=,把上述2022-1个式子相加得2022111320212a a ⨯-=, ∴a 2022=13032, 故答案为:15,13032.【点睛】此题主要考查数字的变化规律,关键是得出1211111n n n n a a a a +++-=-,利用裂项相加法求解. 27.(2022·江苏常州)计算:42÷=m m _______. 【答案】2m【分析】根据同底数幂的除法运算法则即可求出. 【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键. 28.(2022·辽宁锦州)分解因式:2232x y xy y -+=____________. 【答案】2()y x y -【分析】先提取公因数y ,再利用完全平方公式进行二次分解.完全平方公式:(a ±b )2=a 2±2ab +b 2. 【详解】解:222223(2)(2)=-++=--x y xy y x xy y y x y y ;故答案为:2()y x y -【点睛】本题考查了提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式. 29.(2022·江苏常州)分解因式:22x y xy +=______. 【答案】xy (x +y )【分析】利用提公因式法即可求解.【详解】22()x y y y xy x x =++,故答案为:()xy x y +.【点睛】本题考查了用提公因式法分解因式的知识,掌握提公因式法是解答本题的关键. 30.(2022·四川内江)分解因式:a 4﹣3a 2﹣4=_____. 【答案】(a 2+1)(a +2)(a ﹣2)【分析】首先利用十字相乘法分解为()()2214a a +- ,然后利用平方差公式进一步因式分解即可.【详解】解:a 4﹣3a 2﹣4=(a 2+1)(a 2﹣4)=(a 2+1)(a +2)(a ﹣2), 故答案为:(a 2+1)(a +2)(a ﹣2).【点睛】本题考查利用因式分解,解决问题的关键是掌握解题步骤:一提二套三检查. 31.(2022·贵州遵义)已知4a b +=,2a b -=,则22a b -的值为__________.【答案】8【分析】根据平方差公式直接计算即可求解.【详解】解:∵4a b +=,2a b -=,∴22a b -()()428a b a b =+-=⨯= 故答案为:8 【点睛】本题考查了因式分解的应用,掌握平方差公式是解题的关键. 32.(2022·北京)分解因式:2xy x -=______. 【答案】()()11x y y +-【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】2xy x -()21x y =-()()11x y y =+-故答案为:()()11x y y +-.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解. 33.(2022·湖北恩施)因式分解:3269x x x -+=_______. 【答案】2(3)x x -【分析】先提公因式,再利用完全平方公式解题. 【详解】解:322269(69)(3)x x x x x x x x -+=-+=- 故答案为:2(3)x x -.【点睛】本题考查因式分解,涉及提公因式、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.34.(2022·山东临沂)因式分解2242x x -+=______. 【答案】22(1)x -. 【详解】解:2242x x -+ =22(21)x x -+ =22(1)x -, 故答案为22(1)x -.35.(2022·浙江台州)分解因式:21a -=____. 【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键. 36.(2022·江苏苏州)计算:3a a ⋅= _______. 【答案】a 4【分析】本题须根据同底数幂乘法,底数不变指数相加,即可求出答案. 【详解】解:a 3•a , =a 3+1, =a 4.故答案为:a 4.【点睛】本题主要考查了同底数幂的乘法,在解题时要能灵活应用同底数幂的乘法法则,熟练掌握运算性质是解题的关键.37.(2022·黑龙江牡丹江)如图所示,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.【答案】OC【详解】解∶∵1在射线OA 上,2在射线OB 上,3在射线OC 上,4在射线OD 上,5在射线OE 上,6在射线OF 上,7在射线OA 上,… ∴每六个一循环. ∵2013÷6=335…3,∴所描的第2013个点在射线和3所在射线一样. ∴所描的第2013个点在射线OC 上. 故答案为:OC38.(2022·吉林)计算:2a a ⋅=____.【答案】3a【详解】试题分析:根据同底数幂的乘法性质,底数不变,指数相加,可直接结算,2123a a a a +⋅==. 考点:同底数幂的乘法39.(2022·黑龙江牡丹江)下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.【答案】485【详解】解: 由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形, 第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形, 第五个图形中161×3+2=485个正三角形. 故答案为:48540.(2022·湖北十堰)如图,某链条每节长为2.8cm ,每两节链条相连接部分重叠的圆的直径为1cm ,按这种连接方式,50节链条总长度为_________cm .【答案】91【分析】通过观察图形可知,1节链条的长度是2.8cm ,2节链条的长度是(2.8×2-1)cm ,3节链条的长度是(2.8×3-1×2)cm ,n 节链条的长度是2.8n -1×(n -1)cm ,据此解答即可求解. 【详解】解:2节链条的长度是(2.8×2-1)cm , 3节链条的长度是(2.8×3-1×2)cm , n 节链条的长度是2.8n -1×(n -1)cm , 所以50节链条的长度是:2.8×50-1×(50-1) =140-1×49=91(cm) 故答案为:91【点睛】此题考查的图形类规律,关键是找出规律,得出n 节链条长度为2.5×n -0.8×(n -1). 41.(2022·广西贺州)因式分解:2312m -=__________. 【答案】3(2)(2)m m +-【分析】首先提取公因数3,进而利用平方差公式进行分解即可. 【详解】解:原式=3(x 2−4)=3(x +2)(x −2); 故答案为:3(x +2)(x −2).【点睛】此题主要考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题关键. 42.(2022·广西玉林)计算:3a a -=_____________. 【答案】2a【分析】按照合并同类项法则合并即可. 【详解】3a -a =2a , 故答案为:2a .【点睛】本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算. 43.(2022·广东)单项式3xy 的系数为___________. 【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案. 【详解】3xy 的系数是3, 故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 44.(2022·黑龙江大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.【答案】49【分析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规侓即可得答案.【详解】解:∵第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个, 第3个图案中有六边形图形:3+4+3=10个, 第4个图案中有六边形图形:4+5+4=13个, ……∴第16个图案中有六边形图形:16+17+16=49个, 故答案为:49.【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题. 45.(2022·江苏泰州)已知22222,2,()a m mn b mn n c m n m n =-=-=-≠ 用“<”表示a b c 、、的大小关系为________. 【答案】b c a <<【分析】利用作差法及配方法配成完全平方式再与0比较大小即可求解. 【详解】解:由题意可知:222222222)(2))(()(22m n mn m n a b m mn mn n m n m n ,∵m n ≠, ∴222()0m n m n ,∴b a <;22222223)()2)(4(2n m mn a c m mn n mm n n ,当且仅当002nm n 且时取等号,此时0m n ==与题意m n ≠矛盾,∴223()024n mn ∴c a <;22222223)()()24(2n m c b m n m n n mn n m n ,同理b c <, 故答案为:b c a <<.【点睛】本题考查了两代数式通过作差比较大小,将作差后的结果配成完全平方式,利用完全平方式总是大于等于0的即可与0比较大小.46.(2022·黑龙江绥化)因式分解:()()269m n m n +-++=________. 【答案】()23m n +-【分析】将m n 看做一个整体,则9等于3得的平方,逆用完全平方公式因式分解即可. 【详解】解:()()269m n m n +-++()()22233m n m n =+-⨯⨯++()23m n =+-.【点睛】本题考查应用完全平方公式进行因式分解,整体思想,能够熟练逆用完全平方公式是解决本题的关键.47.(2022·广西梧州)若1x =,则32x -=________. 【答案】1【分析】将1x =代入代数式求解即可.【详解】解:∵1x =, ∴323121x -=⨯-=, 故答案为:1.【点睛】本题考查了代数式求值.解题的关键在于正确的计算. 48.(2022·贵州黔东南)分解因式:2202240442022x x -+=_______. 【答案】()220221x -【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式=()()2220222120221x x x -+=-;故答案为()220221x -.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.49.(2022·黑龙江绥化)某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案. 【答案】3##三【分析】设购买甲种奖品x 件,乙种奖品y 件,列出关系式,并求出3124yx =-,由于1≥x ,1y ≥且x ,y 都是正整数,所以y 是4的整数倍,由此计算即可. 【详解】解:设:购买甲种奖品x 件,乙种奖品y 件, 4348x y +=,解得3124y x =-, ∵1≥x ,1y ≥且x ,y 都是正整数, ∴y 是4的整数倍, ∴4y =时,341294x ⨯=-=,8y =时,381264x ⨯=-=, 12y =时,3121234x ⨯=-=, 16y =时,3161204x ⨯=-=,不符合题意, 故有3种购买方案, 故答案为:3.【点睛】本题考查列关系式,根据题意判断出y 是4的整数倍是解答本题的关键. 50.(2022·海南)因式分解:ax ay +=___________. 【答案】()a x y +【分析】原式直接提取a 即可.【详解】解:ax ay +=()a x y +. 故答案为:()a x y +.【点睛】本题主要考查了分解因式,正确确定公因式是解答本题的关键. 三.解答题51.(2022·广西)先化简,再求值2()()(2)x x y x y xy xy x +-+-+,其中11,2x y ==. 【答案】x 3-2xy +x ,1【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:2()()(2)x x y x y xy xy x +-+-+ =x (x 2-y 2)+xy 2-2xy +x =x 3-xy 2+xy 2-2xy +x =x 3-2xy +x ,当x =1,y =12时,原式=13-2×1×12+1=1.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键. 52.(2022·湖南岳阳)已知2210a a -+=,求代数式()()()4111a a a a -++-+的值. 【答案】-2【分析】先化简所求的式子,再结合已知求解即可.【详解】解:()()()4111a a a a -++-+ 22411a a a =-+-+224a a =-()222a a =-,∵2210a a -+=, ∴221a a -=-, ∴原式()212=⨯-=-.【点睛】本题考查代数式的运算,熟练掌握单项式乘多项式,平方差公式是解题的关键. 53.(2022·江苏无锡)计算:(1)(21cos 602-⨯-;(2)()()()()23a a a b a b b b +-+---.【答案】(1)1 (2)2a +3b【分析】(1)先化简绝对值和计算乘方,并把特殊角的三角函数值代入,再计算乘法,最后算加减即可求解;(2)先运用单项式乘以多项式法则和平方差公式计算,再合并同类项即可. (1) 解:原式=11322⨯- =3122- =1; (2)解:原式=a 2+2a -a 2+b 2-b 2+3b =2a +3b .【点睛】本题考查实数混合运算,整式混合运算,熟练掌握实数运算法则和单项式乘以多项式法则,熟记特殊角的三角函数值、平方差公式是解题的关键.54.(2022·广西梧州)(125(3)(2)+-⨯- (2)化简:232()23a a a a a +--⋅. 【答案】(1)14-;(2)24a a -【分析】(1 (2)先去括号和计算乘法运算,然后合并同类项即可. 【详解】解:(1)解:原式=235(3)(2)-+-⨯- =35(3)4-+-⨯ =3512-- =14-;(2)原式=223226a a a a +-- =24a a -.【点睛】本题考查了实数的运算以及整式的混合运算,正确掌握相关运算法则是解题的关键. 55.(2022·北京)已知2220x x +-=,求代数式2(2)(1)x x x +++的值. 【答案】5【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:∵2220x x +-=, ∴222x x +=, ∴2(2)(1)x x x +++22221x x x x =++++ 2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键.56.(2022·江苏常州)计算:(1)201(3)3---+π;(2)2(1)(1)(1)+--+x x x .【答案】(1)43(2)2x +2【分析】(1)利用负指数公式化简,零指数公式化简,平方根定义化简,合并后即可求出值;(2)利用完全平方,以及平方差计算,再合并即可求出值.(1)201(3)3---+π=2﹣1+13=43; (2)2(1)(1)(1)+--+x x x=22211x x x ++-+=2x +2.【点睛】此题考查了乘法公式,以及实数的运算,实数的运算涉及的知识有:零指数公式,负指数公式,绝对值的代数意义,以及平方根的定义.57.(2022·吉林)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.【答案】6A m =+,解答过程补充完整为26m -【分析】利用26m m +除以m 可得A ,再根据合并同类项法则补充解答过程即可.【详解】解:观察第一步可知,()26A m m m =+÷, 解得6A m =+,将该例题的解答过程补充完整如下:(6)6(1)m m m +-+2666m m m =+--26m =-,故答案为:26m -.【点睛】本题考查了多项式的乘除法、合并同类项,熟练掌握整式的运算法则是解题关键.58.(2022·吉林长春)先化简,再求值:()()()221a a a a +-++,其中4a =.【答案】4a +【分析】根据平方差公式与单项式乘以单项式进行计算,然后将4a 代入求值即可求解.【详解】解:原式=224a a a -++4a =+当4a =时,原式44=【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.。
热点02 整式与因式分解模块考点 水平层级 整式与因式分解代数式的有关概念Ⅱ 列代数式和求代数式的值Ⅱ 整式的加、减、乘、除及乘方的运算法则Ⅲ 乘法公式【平方差、两数和(差)的平方公式】及其简单运用Ⅲ 因式分解的意义 Ⅱ 因式分解的基本方法【提取公因式法、分组分解法、公式法、二次项系数为1的十字相乘法】 Ⅲ【满分技巧】整式的加、减、乘、除及乘法的运算法则,乘法公式及其简单运用1.用运算符号和括号把数或表示数的字母连接而成的式子叫做代数式.2.用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值.3.由数与字母的积或字母与字母的积所组成的代数式叫做单项式.单项式中的数字因数叫做这个单项式的系数.4.一个单项式中,所有字母的指数的和叫做这个单项式的次数.5.由几个单项式的和组成的代数式叫做多项式,在多项式中的每个单项式叫做多项式的项,不含字母的项叫做常数项.次数最高的项的次数就是这个多项式的次数. 例如:多项式221a a +-是单项式22a a 、与﹣1三项的和,代数式中次数最高的项是2a ,所以这个多项式的次数是2.6.单项式、多项式统称为整式.7.所含的字母相同,且相同字母的指数也相同的单项式叫做同类项.8.把多项式中的同类项合并成一项,叫做合并同类项.一个多项式合并后含有几项,这个多项式就叫做几项式.9.合并同类项的法则是:把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变.10.a a a a 可以写成n a (读作“a 的n 次方”),其中a 表示底数,正整数a 表示指数,a 的n 次乘方的结果叫做a 的n 次幂.11.同底数的幂相乘,底数不变,指数相加.m n m n a a a +=(m 、n 都是正整数).同底数幂相除,底数不变,指数相减m n m n a a a -÷=(m 、n 是正整数且m >n ,a ≠0).任何不等于零的数的零次幂为1,即01a =(a ≠0).12.幂的乘方,底数不变,指数相乘,即()m n mn a a =.(m 、n 都是正整数)13.积的乘方等于把积的每一个因数分别乘方,再把所得的幂相乘,即()n n n ab a b =.(n 为正整数)14.单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.15.单项式与多项式相乘,用单项式乘以多项式的每一项,再把所得的积相加.16.多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.17.两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.18.多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加.【总结】理解代数式中字母表示数以及单项式多项式的相关概念;注意单项式与多项式乘法的基本步骤.因式分解的意义,因式分解的基本方法1.平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即22()()a b a b a b +-=-.2.完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即:222()2a b a ab b +=++,222()2a b a ab b -=-+.3.平方差公式和完全平方公式也叫做乘法公式.4.把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.5.一个多项式中每一项都含有的因式叫做这个多项式的公因式.6.如果一个多项式各项含有公因式,那么可以把该公因式提取出来作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式.这种分解因式的方法叫做提取公因式法.7.提取的公因式应是各项系数的最大公因数(系数都是整数时)与各项都含有的相同字母的最低次幂的积.8.逆用乘法公式将一个多项式分解因式的方法叫做公式法,由平方差公式反过来可得22=()()a b a b a b -+-.这个公式叫做因式分解的平方差公式.同理由乘法公式中的完全平方公式反过来可得2222=()a ab b a b +++,2222=()a ab b a b -+-.这两个公式叫做因式分解的完全平方公式.9.由多项式与多项式相乘的法则,可知2()()()x a x b x a b x ab ++=+++.反过来可得2()()()x a b x ab x a x b +++=++.如果二次三项式2x px q ++中的常数项q 能分解成两个因数a 、b 的积,而且一次项系数p 又恰好是a +b ,那么2x px q ++就可以进行如下的因式分解,即22()()()x px q x a b x ab x a x b ++=+++=++.10.利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.11.利用分组来分解因式的方法叫做分组分解法.【总结】注意理解因式分解的意义;注意因式分解四种方法的灵活运用,特别是十字相乘法的基本步骤需要理解.【限时检测】(建议用时:30分钟)一、单选题1.(2020·上海浦东新区·九年级三模)下列各运算中,正确的运算是( )A .=B .339(3)27a a -=-;C .842a a a ÷=;D .22244()a b a b -=-.【答案】B【分析】依据同底数幂的除法、合并同类二次根式、积的乘方以及完全平方公式法则即可判断.【详解】A.5335+不是同类二次根式,不能合并,故此选项错误;B. 339(3)27a a -=-,正确;C.48484=a a a a -÷=,故此选项错误;D.2224224()2a b a a b b -=-+,故此选项错误.故选B .【点睛】本题考查了同底数幂的除法、合并同类二次根式、积的乘方以及完全平方公式,熟练掌握运算法则是解题的关键.2.(2020·上海长宁区·九年级二模)下列单项式中与xy 2是同类项( )A .x 2yB .x 2y 2C .2xy 2D .3xy【答案】C【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【详解】解:与xy 2是同类项的是2xy 2.故选:C .【点睛】此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.3.(2020·上海大学附属学校九年级三模)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第20项的系数为( )A .1B .18C .19D .20【答案】D 【分析】观察“杨辉三角”,根据已知图归纳类推出一般规律,由此即可得出答案.【详解】观察“杨辉三角”可得以下两条规律:(其中,n 为自然数)(1)()n a b +的展开式的项数为1n +(2)()n a b +的展开式中第二项与倒数第二项的系数相同,均为n (1n ≥)则20()a b +的展开式共有21项,第20项为倒数第二项,其系数为20故选:D .【点睛】本题考查了数字的变化规律,正确归纳出一般规律是解题关键.4.(2020·上海嘉定区·九年级二模)当x ≠0时,下列运算正确的是( )A .x 3+x 2=x 5B .x 3•x 2=x 6C .(x 3)2=x 9D .x 3÷x 2=x 【答案】D【分析】分别根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减进行计算即可.【详解】A .x 3与x 2不能合并,故原题计算错误;B .x 3•x 2=x 5,故原题计算错误;C .(x 3)2=x 6,故原题计算错误;D .x 3÷x 2=x ,故原题计算正确.故选:D .【点睛】此题主要考查了合并同类项、同底数幂的乘除法、幂的乘方,关键是熟练掌握各计算法则. 5.(2020·上海青浦区·九年级二模)计算(﹣2x )2的结果是( )A .2x 2B .﹣2x 2C .4x 2D .﹣4x 2 【答案】C【分析】根据积的乘方法则计算即可.【详解】解:(﹣2x )2=4x 2.故选:C .【点睛】本题考查积的乘方计算,掌握计算法则正确计算是解题关键.6.(2020·上海杨浦区·九年级二模)下列计算中,正确的是( )A .a 2•a 4=a 8B .(a 3)4=a 7C .(ab )4=ab 4D .a 6÷a 3=a 3 【答案】D【分析】直接利用积的乘方、幂的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.【详解】A .a 2•a 4=a 2+4=a 6,故此选项计算错误,B .(a 3)4=a 3×4=a 12,故此选项计算错误,C .(ab )4=a 4b 4,故此选项计算错误,D .a 6÷a 3=a 6-3=a 3,故此选项计算正确.故选D . 【点睛】此题主要考查了积的乘方、幂的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.7.(2020·上海奉贤区·九年级二模)下列计算中,结果等于a 2m 的是( )A .a m +a mB .a m •a 2C .(a m )mD .(a m )2【答案】D 【分析】直接利用合并同类项法则、同底数幂的乘法运算法则、幂的乘方运算法则分别计算得出答案.【详解】解:A 、a m +a m =2a m ,故此选项不合题意;B 、a m •a 2=a m +2,故此选项不合题意;C 、(a m )m =2m a ,故此选项不合题意;D 、(a m )2=a 2m ,故此选项符合题意.故选:D .【点睛】此题考查的是幂的运算性质和合并同类项,掌握合并同类项法则、同底数幂的乘法运算法则、幂的乘方运算法则是解决此题的关键.8.(2020·上海宝山区·)下列计算正确的是( )A .ab b a -=B .235a a a +=C .32a a a ÷=D .()325a a = 【答案】C【分析】根据合并同类项、同底数幂的除法、幂的乘方的运算法则进行计算,即可解答.【详解】解:A. a 和ab 不是同类项,不能合并,故A 错误;B. a 2和a 3不是同类项,不能合并,故B 错误;C. 32a a a ÷=,故C 正确;D. ()326a a =,故D 错误;故选C .【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方的运算法,牢记并灵活运用相关运算法则是解答本题的关键.9.(2020·上海闵行区·九年级二模)在下列各式中,与213xy 是同类项的是( ) A .2xyB .2y x -C .213xy +D .2x y【答案】B 【分析】根据同类项的概念:所含字母相同,相同字母的指数也相同,即可得出答案. 【详解】由同类项的概念可知,与213xy 是同类项的是2y x -,故选:B . 【点睛】本题主要考查同类项的概念,掌握同类项的概念是解题的关键.10.(2020·上海金山区·九年级二模)计算(a 3)2的结果是( )A .aB .a 5C .a 6D .a 9【答案】C【解析】(a 3)2=a 3×2=a 6.故选C .二、填空题11.(2020·上海九年级二模)计算:62()a a -=________.【答案】8a【分析】先确定积的符号,再按照同底数幂的乘法法则运算即可得到答案.【详解】解:()62628a a a a a -=-•=-.故答案为:8a . 【点睛】本题考查的是同底数幂的乘法,掌握同底数幂的乘法法则是解题的关键.12.(2020·上海大学附属学校九年级三模)计算:6x 4y 3÷2x 3y 3=_____________. 【答案】3x【分析】根据单项式除单项式的法则计算即可.【详解】解:由题意得:6x 4y 3÷2x 3y 3=3x 。