6.窗函数及其对信号频谱的影响
- 格式:docx
- 大小:207.22 KB
- 文档页数:9
信号谱分析——窗函数窗函数在信号谱分析中起着重要的作用,它可以对信号进行加窗处理,从而在频谱分析中使信号具有更好的性能和准确度。
窗函数的选择直接关系到信号的频谱分辨率以及频谱泄漏的情况。
在信号谱分析中,窗函数是一种对信号序列进行加窗处理的函数。
它通过改变信号的时域特性,从而在频域上实现对信号的调整,使其能够更好地适应频谱分析。
常见的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
矩形窗是最简单的窗函数,它在信号的时域上直接用一个矩形波形来进行加窗处理。
虽然矩形窗的频谱分辨率很高,但它会产生频谱泄漏的现象,使得信号的频谱失真,无法准确地描述信号的频率。
汉宁窗是一种常用的窗函数,它在信号的时域上采用了一个凸曲线波形来对信号进行加窗处理。
与矩形窗相比,汉宁窗具有较小的频谱泄漏,能够提高信号的频谱准确度。
然而,汉宁窗的频谱分辨率相对较低,不适用于需要精确分辨信号频率的情况。
汉明窗是在汉宁窗基础上进行改进的窗函数,它在信号的时域上采用了一个更精细的凸曲线波形,具有更好的频谱性能。
汉明窗相对于汉宁窗来说,频谱分辨率更高,且频谱泄漏更小,因此在许多应用中更为常用。
布莱克曼窗是窗函数中的一种特殊形式,它在信号的时域上采用了一个通过多项式插值的波形。
布莱克曼窗在频谱分析中具有很好的性能,既能提高信号的频谱分辨率,又能降低频谱泄漏。
它适用于需要较高信号频率精度和较低频谱泄漏的情况。
在选择窗函数时,需要根据具体的实际应用场景和信号性质来进行选择。
如果需要较高的频谱分辨率,可以选择矩形窗或者布莱克曼窗;如果需要较低的频谱泄漏,可以选择汉宁窗或者汉明窗。
此外,还可以根据信号的特点进行自定义的窗函数设计,以满足实际需求。
总结起来,窗函数在信号谱分析中起到了重要的作用,它可以在频域上调整信号的性能和准确度。
合理选择窗函数可以提高信号分析的精度和可靠性,从而更好地理解和处理信号的频谱特性。
1.举例说明什么是因果序列和逆因果序列,并分别说明它们z 变换的收敛域。
答:因果序列定义为x (n )=0,n<0,例如x (n )=)(n u a n ⋅,其z 变换收敛域:∞≤<-z R x 。
逆因果序列的定义为x (n)=0,n>0。
例如x (n )=()1--n u a n ,其z 变换收敛域:+<≤x R z 02.用差分方程说明什么是IIR 和FIR 数字滤波器,它们各有什么特性? 答: 1)冲激响应h (n )无限长的系统称为IIR 数字滤波器,例如()()()1)(21)(1021-++-+-=n x b n x b n y a n y a n y 。
IIR DF 的主要特性:①冲激响应h (n )无限长;②具有反馈支路,存在稳定性问题;③系统函数是一个有理分式,具有极点和零点;④一般为非线性相位。
(2)冲激响应有限长的系统称为FIR DF 。
例如()2)1()()(21-+-+=n x b n x b n x n y 。
其主要特性:①冲激响应有限长;②无反馈支路,不存在稳定性问题;③系统函数为一个多项式,只存在零点;④具有线性相位。
3.用数学式子说明有限长序列x (n )的z 变换X (z )与其傅里叶变换X )(ωj e 的关系,其DFT 系数X (k )与X (z )的关系。
答: (1)x (n )的z 变与傅里叶变换的关系为()()ωωj e Z e X z X j== (2)x (n )的DFT 与其z 变换的关系为()()K X z X k N j K N e w Z ===- 2 π4.设x (n )为有限长实序列,其DFT 系数X (k )的模)(k X 和幅角arg[X (k )]各有什么特点?答:有限长实序列x (n )的DFT 之模()k x 和幅角[])(arg k X 具有如下的性质:(1))(k X 在0-2π之间具有偶对称性质,即)()(k N X k X -=(2)[])(arg k x 具有奇对称性质,即[]()[]k N X k X --=arg )(arg5.欲使一个FIR 数字滤波器具有线性相位,其单位取样响应)(n h 应具有什么特性?具有线性相位的FIR 数字滤器系统函数的零点在复平面的分布具有什么特点?答: 要使用FIR 具有线性相位,其h (n )应具有偶对称或奇对称性质,即h(n)=h(N-n-1)或h(n)=-h(N-n-1)。
第一章 信号及其描述(一)填空题1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中,并依靠它们来传输的。
这些物理量就是 信号 ,其中目前应用最广泛的是电信号。
2、 信号的时域描述,以 时间 为独立变量;而信号的频域描述,以 频率 为独立变量。
3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛性 。
4、 非周期信号包括 准周期 信号和 瞬变周期 信号。
5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。
6、 对信号的双边谱而言,实频谱(幅频谱)总是 关于Y 轴 (偶) 对称,虚频谱(相频谱)总是 关于原点(奇) 对称。
(二)判断对错题(用√或×表示)1、 各态历经随机过程一定是平稳随机过程。
( √ )2、 信号的时域描述与频域描述包含相同的信息量。
( √ )3、 非周期信号的频谱一定是连续的。
( × )4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。
( × )5、 随机信号的频域描述为功率谱。
( √ )(三)简答和计算题1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。
2、 求正弦信号)sin()(0ϕω+=t x t x 的均值x μ,均方值2x ψ,和概率密度函数p(x)。
3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。
4、 求被截断的余弦函数⎩⎨⎧≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。
5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。
第二章 测试装置的基本特性(一)填空题1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。
2、 试求传递函数分别为5.05.35.1+s 和2224.141n n ns s ωωω++的两个环节串联后组成的系统的总灵敏度。
第1篇一、实验目的1. 理解信号频谱的基本概念和原理。
2. 掌握傅里叶变换及其逆变换在信号频谱分析中的应用。
3. 学习利用MATLAB软件进行信号频谱分析。
4. 分析不同信号在时域和频域的特性。
二、实验原理信号的频谱分析是信号处理领域的重要方法,通过傅里叶变换可以将时域信号转换为频域信号,从而揭示信号中不同频率成分的分布情况。
傅里叶变换的基本原理是将信号分解为一系列正弦波和余弦波的线性组合,其中每个正弦波和余弦波的频率、幅度和相位代表了信号在该频率上的能量分布。
三、实验内容1. 信号的产生与观察使用MATLAB软件产生以下信号:- 基本信号:正弦波、余弦波、方波、三角波等。
- 复杂信号:叠加多个基本信号或进行调制、滤波等操作。
观察信号在时域和频域的波形,分析信号特性。
2. 傅里叶变换对上述信号进行傅里叶变换,得到其频谱。
分析频谱图,了解信号中不同频率成分的分布情况。
3. 逆傅里叶变换对信号进行逆傅里叶变换,将频域信号还原为时域信号。
观察还原后的信号,分析逆变换的效果。
4. 窗函数在进行傅里叶变换时,通常需要使用窗函数来减小频谱泄露。
比较不同窗函数(如矩形窗、汉宁窗、汉明窗等)对频谱的影响。
5. 采样定理分析信号采样过程中的采样定理,验证信号在时域和频域的特性。
四、实验结果与分析1. 基本信号- 正弦波和余弦波在时域和频域具有明显的单一频率成分。
- 方波和三角波在时域具有多个频率成分,频谱为离散谱。
- 复杂信号由多个基本信号叠加而成,频谱为连续谱。
2. 傅里叶变换傅里叶变换能够将时域信号转换为频域信号,揭示信号中不同频率成分的分布情况。
频谱图直观地展示了信号的能量分布,有助于分析信号的特性。
3. 逆傅里叶变换逆傅里叶变换能够将频域信号还原为时域信号。
实验结果表明,逆变换后的信号与原信号具有相似的特性,但可能存在一定的误差。
4. 窗函数窗函数能够减小频谱泄露,提高频谱分辨率。
不同窗函数对频谱的影响不同,应根据实际情况选择合适的窗函数。
窗函数及频谱分析实验目的:1. 掌握各类窗函数的时域和频率特性;2. 掌握合理运用窗函数分析信号频谱的方法;3. 掌握利用DFT 分析连续信号频谱的方法;4. 掌握谱分析中参数的选取方法。
实验原理:一、窗函数分析在确定信号谱分析中,截短无穷长的序列会造成频率泄漏,合理选取窗函数的类型,可以改善泄露现象。
1. 常用窗函数矩形窗w=boxcar(N)汉明窗w=hamming(N)汉宁窗w=hanning(N)布莱克曼窗w=blackman(N)凯泽窗w=Kaiser(N,beta)例:N=50;w=boxcar(N);W=fft(w,256);subplot(2,1,1);stem([0:N-1],w);subplot(2,1,2); plot([-128:127],abs(fftshift(W)))MATLAB中提供了fft函数,FFT是DFT的快速算法。
X=fft(x,n) :补零或截短的n 点傅立叶变换;fftshift(x)将fft计算输出的零频移到输出的中心。
例:N=50;w=hamming(N);W=fft(w,256);subplot(2,1,1);stem([0:N-1],w);subplot(2,1,2); plot([-128:127],abs(fftshift(W)))例:已知一连续信号为x(t) cos(2 f1t) cos(2 f2t)其中f i=100Hz, f2=120Hz,若以抽样频率fsam=600Hz对该信号进行抽样,试用DFT近似分析其频谱:利用不同宽度N的矩形窗截短该序列,N分别取15, 40, 80观察不同长度的窗对谱分析结果的影响;利用汉明窗重做( 1)。
用矩形窗分析:N=input('请输入N的值:’);L=512;f1=100;f2=120;fs=600;ws=2*pi*fs;t=(0:N-1)*(1/fs);x=cos(2*pi*f1*t)+cos(2*pi*f2*t);subplot(211);stem(t,x);W=fft(x,L);f=((-L/2:L/2-1)*(2*pi/L)*fs)/(2*pi);% f=((-L/2:L/2-1)*(1/L)*fs);subplot(212);plot(f,abs(fftshift(W))) 用汉明窗重做上述谱分析:N=input('请输入N的值:’);L=512;f1=100;f2=120;fs=600;ws=2*pi*fs;t=(0:N-1)*(1/fs);x=cos(2*pi*f1*t)+cos(2*pi*f2*t);wh=hamming(N)';x=x.*wh;subplot(211);stem(t,x);W=fft(x,L);f=((-L/2:L/2-1)*(2*pi/L)*fs)/(2*pi);subplot(212);plot(f,abs(fftshift(W)))例:已知连续信号为x(t) cos(2 f1t) 0.15cos(2 f2t),其中f i=100Hz, f2=150Hz,若以抽样频率fsam=600Hz对该信号进行抽样,利用不同宽度N的矩形窗截短该序列,N 分别取15,40,80 观察不同长度的窗对谱分析结果的影响;用汉明窗重做上述谱分析。
各种窗函数时域频率曲线概述说明以及解释1. 引言1.1 概述这篇长文旨在介绍和解释各种窗函数及其时域频率曲线。
窗函数在信号处理和频谱分析中被广泛应用,用于调整信号的频谱特性。
了解窗函数的定义、作用以及其选择准则对于正确应用窗函数起着关键作用。
1.2 文章结构本文将按照以下几个部分展开讨论:引言、各种窗函数、时域频率曲线概述、各种窗函数的时域表达式及频率响应解释以及特殊情况下窗函数的优化与改进方法。
1.3 目的本文的目标是提供读者对各种窗函数及其时域频率曲线有一个全面和清晰的理解。
通过详细介绍不同类型的窗函数,并解释它们在时域和频率上的表达形式和响应特性,读者可以更好地理解并选择适当的窗函数来处理不同类型的信号,并了解如何分析时域频率曲线。
此外,我们还将探讨一些优化和改进方法,以帮助读者在特殊情况下更好地使用窗函数。
该部分提供了文章引言部分(Introduction)的概述、结构和目的。
2. 各种窗函数2.1 窗函数的定义和作用:窗函数是一种数学函数,通常在信号处理中使用。
它们被用来将一个无限长的信号截断为有限长度,并且减小由此引起的频谱泄漏。
窗函数主要应用于频谱分析、滤波器设计、图像处理等领域。
窗函数的作用是在时域上对信号进行加权,在频域上对信号进行频率选择。
当我们处理周期性信号或者非周期但局部平稳的信号时,经常需要采用窗函数来分析信号的频谱。
2.2 常见窗函数介绍:2.2.1 矩形窗函数(Rectangular Window):矩形窗函数是最简单的窗函数,其在选取样本之外的区域值为0,而在选取样本内的区域值为1。
其时域表达式为x(n) = 1,频率响应为方形脉冲。
2.2.2 海明窗函数(Hamming Window):海明窗函数是一种平滑且连续可导的窗函数,其在选取样本内外都有非零值。
它具有较好的副瓣抑制能力和宽主瓣特性,在实际应用中十分常见。
其时域表达式为x(n) = 0.54 - 0.46 * cos(2πn/(N-1)),频率响应为类似于钟状的形态。
实验报告实验课程:数字信号处理实验开课时间:2020—2021 学年秋季学期实验名称:窗函数的特性分析实验时间:2020年9月16日星期三学院:物理与电子信息学院年级:大三班级:182 学号:1843202000234 姓名:武建璋一、实验预习(2)固定N=60,分别取beta=1,5,11。
clc,clear,close allbeat1=1;beat2=5;beat3=11;N=60;figure(1)subplot(3,2,[1,2])W=kaiser(N,beat1);stem([0:N-1],W);subplot(3,2,[3,4]);Ww=kaiser(N,beat2);stem([0:N-1],Ww);subplot(3,2,[5,6]);WW=kaiser(N,beat3);stem([0:N-1],WW);figure(2)subplot(3,2,[1,2])W1=fft(W,N)plot([0:N-1],abs(fftshift(W1))) subplot(3,2,[3,4]);W2=fft(Ww,N)plot([0:N-1],abs(fftshift(W2))) subplot(3,2,[5,6]);W3=fft(WW,N)plot([0:N-1],abs(fftshift(W3)))4、某序列为x[k] = (11πk/20) + cos(9πk/20),使用fft函数分析其频谱。
(1) 利用不同宽度N的矩形窗截短该序列,N分别为20,40,160,观察不同长度N 的窗对谱分析结果的影响。
clc,clear,close allN1=20;N2=40;N3=160;k1=0:N1;k2=0:N2;k3=0:N3;X1=0.5.*cos((11*pi*k1)/20)+cos((9*pi*k1)/20)X2=0.5.*cos((11*pi*k2)/20)+cos((9*pi*k2)/20)X3=0.5.*cos((11*pi*k3)/20)+cos((9*pi*k3)/20)figure(1)subplot(3,2,[1,2])W1=fft(X1,N1)plot([0:N1-1],abs(fftshift(W1)))subplot(3,2,[3,4]);W2=fft(X2,N2)plot([0:N2-1],abs(fftshift(W2)))subplot(3,2,[5,6]);W3=fft(X3,N3)plot([0:N3-1],abs(fftshift(W3)))figure(2)subplot(3,2,[1,2])W=abs(fftshift(W1))stem([0:N1-1],W);subplot(3,2,[3,4]);Ww=abs(fftshift(W2))stem([0:N2-1],Ww);subplot(3,2,[5,6]);WW=abs(fftshift(W3))stem([0:N3-1],WW);(2) 利用汉明窗重做(1)。
窗函数(window function)窗函数是频谱分析中一个重要的部分,CoCo包含了所有通用的窗函数以及冲击测试中的受迫/指数(force/exponential)窗。
窗函数修正了由于信号的非周期性并减小了频谱中由于泄露而带来的测量不准确性。
快速傅里叶变换假定了时间信号是周期无限的。
但在分析时,我们往往只截取其中的一部分,因此需要加窗以减小泄露。
窗函数可以加在时域,也可以加在频域上,但在时域上加窗更为普遍。
截断效应带来了泄漏,窗函数是为了减小这个截断效应,其设计成一组加权系数。
例如,一个窗函数可以定义为:w(t)=g(t) -T/2<t<T/2w(t)=0 其他g(t)是窗函数,T是窗函数的时间待分析的数据x(t)则表示为:x(t)=w(t)*x(t)'x(t)'表示原始信号x(t)表示待分析信号。
加窗在时域上表现的是点乘,因此在频域上则表现为卷积。
卷积可以被看成是一个平滑的过程。
这个平滑过程可以被看出是由一组具有特定函数形状的滤波器,因此,原始信号中在某一频率点上的能量会结合滤波器的形状表现出来,从而减小泄漏。
基于这个原理,人们通常在时域上直接加窗。
大多数的信号分析仪一般使用矩形窗(rectangular),汉宁(hann),flattop和其他的一些窗函数。
矩形窗函数:w(k)=1汉宁窗:w(k)=0.5*(1-cos(2*pi*k/(N-1))) 0<=k<=N-1由于加窗计算中衰减了原始信号的部分能量,因此对于最后的结果还需要加上修正系数。
在线性谱分析中,一般使用幅度系数(amplitude correction),在功率谱中,一般使用能量系数(energy correction)。
具体请看下以章节。
泄露效应对于简单的信号,比如一个单频率的正弦波,泄露就表现为不在其频率点上仍然会有能量的出现。
离其本身的频率越近的频率,泄露的情况越严重,而离的越远,则情况则会好一些。
窗函数加窗原理
窗函数是信号处理中常用的一种处理方法,它主要用于有限长度序列(如离散时间信号)的频谱分析和滤波等应用中。
窗函数可以理解为将原始序列乘以一个具有特定形状的窗口函数,从而限制信号的时间和频率分辨率。
窗函数的加窗原理是通过对原始序列进行加窗处理,将序列的边界部分逐渐减小,从而避免了窗口边界处的不连续性引起的频谱泄漏问题。
通过加窗处理,可以有效地抑制边界处的频谱泄漏,使频谱分析更准确。
具体说来,加窗原理是将原始序列与一个窗口函数进行乘积运算。
窗口函数一般具有以下特点:
1. 对称性:窗口函数在中心位置具有对称特性,即窗口函数的前半部分和后半部分对称。
2. 主瓣宽度:窗口函数的主瓣宽度决定了频谱分析的时间和频率分辨率。
主瓣越宽,时间分辨率越高;主瓣越窄,频率分辨率越高。
3. 零点:窗口函数的零点位置决定了频谱分析中频率泄漏的程度。
零点位置越靠近窗口边界,频率泄漏越严重;零点位置越靠近窗口中心,频率泄漏越小。
通过加窗处理,可以有效控制频谱泄漏,并减小窗口边界处引起的不连续性,从而提高频谱分析的精确性和可靠性。
窗函数及其对信号频谱的影响窗函数是一种在数字信号处理和频谱分析中常用的数学工具,用于对信号进行截断和减小频谱泄漏的影响。
它的主要作用是将一个无限延伸的信号变为有限长度的信号,通过在时域上对信号进行加权操作,以减小信号的边界效应和频谱泄漏。
在频谱分析中,窗函数可以用于对信号进行谱估计、滤波和频谱改善等操作。
窗函数对信号频谱的影响主要体现在两个方面:频谱泄漏和分辨率。
首先,频谱泄漏是指当信号的频率不是完美整数倍的时候,由于信号和窗函数之间的乘积在时域上的周期性,会导致频谱泄漏现象的出现。
这种泄漏会使原本只存在于其中一频率的能量分散到其他频率上,使得谱线变得模糊,丧失了原始信号中的精细结构和局部特征。
频谱泄漏的程度与窗函数的性质有关,不同的窗函数具有不同的泄漏特性。
例如,矩形窗函数具有最大的频谱泄漏,而汉宁窗函数则具有较小的频谱泄漏。
其次,窗函数对信号频谱分辨率的影响也是十分重要的。
分辨率是指信号在频域上的清晰度和能够分辨不同频率成分的能力。
在频谱分析中,较窄的窗函数会使得频率分辨率更高,可以更好地分析信号的细节和频率成分;而较宽的窗函数会导致频率分辨率降低,无法很好地区分信号的细微差异。
这是因为较窄的窗函数在频域上对应较宽的主瓣,较宽的窗函数对应较窄的主瓣。
常见的窗函数中,矩形窗函数具有最宽的主瓣,而汉宁窗函数具有较窄的主瓣。
为了找到在不同应用场景下最合适的窗函数,需要根据信号的特点和要求进行选择。
例如,如果需要精确地测量信号的频率,可以选择具有较小频谱泄漏和较窄主瓣的窗函数,如汉宁窗函数和黑曼窗函数。
而在频谱分析中,为了更好地观察信号的整体特征和频率分布情况,可以选择具有较大频谱泄漏和较宽主瓣的窗函数,如矩形窗函数和三角窗函数。
总之,窗函数是数字信号处理和频谱分析中不可或缺的工具,通过对信号的截断和加权操作,可以减小信号的边界效应和频谱泄漏的影响。
不同的窗函数具有不同的频谱特性,可以根据需要选择合适的窗函数来对信号进行分析和处理,以提高频谱分辨率和准确性。
实验六窗函数及其对信号频谱的影响一. 实验目的1. 掌握几种典型窗函数的性质、特点,比较几种典型的窗函数对信号频谱的影响。
2. 通过实验认识它们在克服fft 频谱分析的能量泄漏和栅栏效应误差中的作用,以便在实际工作中能根据具体情况正确选用窗函数二. 实验原理1. 信号的截断及能量泄漏效应数字信号处理的主要数学工具是博里叶变换.应注意到,傅里叶变换是研究整个时间域和频率域的关系。
然而,当运用计算机实现工程测试信号处理时,不可能对无限长的信号进行测量和运算,而是取其有限的时间片段进行分析。
做法是从信号中截取一个时间片段,然后用观察的信号时间片段进行周期延拓处理,得到虚拟的无限长的信号,然后就可以对信号进行傅里叶变换、相关分析等数学处理。
图6.1 信号的周期延拓周期延拓后的信号与真实信号是不同的,下面我们就从数学的角度来看这种处理带来的误差情况。
设有余弦信号x(t)在时域分布为无限长(- ∞,∞),当用矩形窗函数w(t)与其相乘时,得到截断信号x t(t) =x(t)w(t)。
根据博里叶变换关系,余弦信号的频谱x(ω)是位于ω。
处的δ函数,而矩形窗函数w(t)的谱为sinc(ω)函数,按照频域卷积定理,则截断信号x t(t) 的谱x t(ω) 应为:将截断信号的谱x t(ω)与原始信号的谱x(ω)相比较可知,它已不是原来的两条谱线,而是两段振荡的连续谱.这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(leakage)。
信号截断以后产生的能量泄漏现象是必然的,因为窗函数w(t)是一个频带无限的函数,所以即使原信号x(t)是限带宽信号,而在截断以后也必然成为无限带宽的函数,即信号在频域的能量与分布被扩展了。
又从采样定理可知,无论采样频率多高,只要信号一经截断,就不可避免地引起混叠,因此信号截断必然导致一些误差,这是信号分析中不容忽视的问题。
如果增大截断长度t,即矩形窗口加宽,则窗谱w(ω)将被压缩变窄(π/t减小)。
虽然理论上讲,其频谱范围仍为无限宽,但实际上中心频率以外的频率分量衰减较快,因而泄漏误差将减小。
当窗口宽度t趋于无穷大时,则谱窗w(ω)将变为δ(ω)函数,而δ(ω)与x(ω)的卷积仍为x(ω),这说明,如果窗口无限宽,即不截断,就不存在泄漏误差。
图6.2 信号截断与能量泄露现象为了减少频谱能量泄漏,可采用不同的截取函数对信号进行截断,截断函数称为窗函数,简称为窗。
泄漏与窗函数频谱的两侧旁瓣有关,如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱,为此,在时间域中可采用不同的窗函数来截断信号。
2. 窗函数实际应用的窗函数,可分为以下主要类型:a) 幂窗--采用时间变量某种幂次的函数,如矩形、三角形、梯形或其它时间(t)的高次幂;b) 三角函数窗--应用三角函数,即正弦或余弦函数等组合成复合函数,例如汉宁窗、海明窗等;c) 指数窗--采用指数时间函数,如形式,例如高斯窗等。
下面介绍几种常用窗函数的性质和特点。
a) 矩形窗矩形窗属于时间变量的零次幂窗,函数形式为:相应的窗谱为:矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。
这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。
图6.3 矩形窗的时域及频域波形b) 三角窗三角窗亦称费杰(fejer)窗,是幂窗的一次方形式,其定义为:相应的窗谱为:三角窗与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣,如图6.4所示。
图6.4 三角窗的时域及频域波形c) 汉宁(hanning)窗汉宁窗又称升余弦窗,其时域表达式为:相应的窗谱为:由此式可以看出,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是3个sine(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了π/t,从而使旁瓣互相抵消,消去高频干扰和漏能。
可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。
d) 海明(hamming)窗海明窗也是余弦窗的一种,又称改进的升余弦窗,其时间函数表达式为:其窗谱为:海明窗与汉宁窗都是余弦窗,只是加权系数不同。
海明窗加权的系数能使旁瓣达到更小。
分析表明,海明窗的第一旁瓣衰减为一42db.海明窗的频谱也是由3个矩形时窗的频谱合成,但其旁瓣衰减速度为20db/(10oct),这比汉宁窗衰减速度慢。
海明窗与汉宁窗都是很有用的窗函数。
5) 高斯窗高斯窗是一种指数窗。
其时域函数为:式中a为常数,决定了函数曲线衰减的快慢。
a值如果选取适当,可以使截断点(t为有限值)处的函数值比较小,则截断造成的影响就比较小。
高斯窗谱无负的旁瓣,第一旁瓣衰减达一55db。
高斯富谱的主瓣较宽,故而频率分辨力低.高斯窗函数常被用来截断一些非周期信号,如指数衰减信号等。
不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。
信号的截断产生了能量泄漏,而用fft算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的,但是我们可以通过选择不同的窗函数对它们的影响进行抑制。
图6.5是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高。
图6.5 几种常用的窗函数的时域和频域波形对于窗函数的选择,应考虑被分析信号的性质与处理要求。
如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用主瓣宽度比较窄而便于分辨的矩形窗,例如测量物体的自振频率等;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。
三. 实验仪器和设备1. 计算机 n台2. drvi快速可重组虚拟仪器平台 1套3. 打印机 1台四. 实验步骤及内容1. 启动服务器,运行drvi主程序,开启drvi数据采集仪电源,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi采集仪主卡检测"进行服务器和数据采集仪之间的注册。
联机注册成功后,分别从drvi工具栏和快捷工具条中启动"drvi微型web服务器"和"内置的web服务器",开始监听8500和8600端口。
2. 打开客户端计算机,启动计算机上的drvi客户端程序,然后点击drvi快捷工具条上的"联机注册"图标,选择其中的"drvi局域网服务器检测",在弹出的对话框中输入服务器ip地址(例如:192.168.0.1),点击"发送"按钮,进行客户端和服务器之间的认证,认证完毕即可正常运行客户端所有功能。
3. 在drvi软件平台的地址信息栏中输入如下信息"http://服务器ip地址:8600/gccslab/index.htm",打开web版实验指导书,在实验目录中选择"窗函数及其对信号频谱的影响"实验,根据实验原理和要求设计该实验。
4. 该实验首先需要设计一个一个正弦信号发生器,来提供原始信号,drvi中提供了一个"数字信号发生器"芯片,将其中的"信号类型"设置为2就可以产生正弦信号,再用一片"启/停按钮"芯片控制信号是否产生;为了产生各种窗函数,还需要插入一片"谱窗函数"芯片,并用一片"多联开关"芯片与之联动来控制窗函数的输出类型;为了能详细观察信号加窗以后对频谱的影响,需要插入一片"频谱细化分析"芯片,来对选定的频率段进行局部放大,对于该芯片的上、下限细化频率,可以插入两片"水平推杆"芯片来调节;同时,为了观察信号加窗前后频谱的对应变化情况,还应插入两片"频谱计算"芯片来计算信号的频谱;另外选择五片"波形/频谱显示"芯片,用于显示以上处理结果;然后根据连接这些芯片所需的数组型数据线数量,插入8片"内存条"芯片,用于存储8组数组型数据;再加上一些文字显示芯片和装饰芯片,就可以搭建出一个"窗函数及其对信号频谱的影响"实验。
所需的软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图6.6所示,根据实验原理设计图在drvi软面包板上插入上述软件芯片,然后修改其属性窗中相应的连线参数就可以完成该实验的设计和搭建过程。
图6.6 窗函数及其对信号频谱的影响原理设计图5. 对于"谱窗函数"芯片,设定其"输入波形存储芯片号"为6000,"输出波形存储芯片号"为6001,使存储在"软内存芯片"6000中的数据经过加窗处理后放置在"软内存芯片"6001中,至于具体采用何种窗函数,则通过设置"窗谱类型线号"为2来和"多联开关" 联动,通过多联开关来选择具体的窗函数种类,如图6.7所示;对于"频谱细化分析"芯片;设定其"输入波形存储芯片号"为6001,"输出波形存储芯片号"分别为6002和6003,具体观察的频段范围则通过对"细化上、下限频率"的设置来调节,如第4条所述,分别设置其线号为3和4,并与"推杆"芯片的"输出显示线号"相对应,如图6.8所示。
由于此两芯片比较特殊,在此特别加以强调说明。
图6.7 "谱窗函数"芯片参数设置样例图 6.8 "频率细化分析"芯片参数设置样例6. 也可以点击附录中"该实验脚本文件"的链接,将本实验的脚本文件贴入并启动该实验。
实验效果图如图6.9所示。
图6.9 窗函数及其对信号频谱的影响7. 点击实验中的"运行"按钮,然后选择矩形窗,分析和观察矩形窗对信号频谱的影响,同时调节上下截止频率,观察其能量泄漏和栅栏效应。
8. 然后分别选择"hanning窗"、"hamming窗"、"blackman窗"和"平顶窗",分析和观察这些窗函数对信号频谱的影响,同时调节上下截止频率,观察其能量泄漏和栅栏效应。