第13讲 周期信号的频谱及其特点
- 格式:ppt
- 大小:2.05 MB
- 文档页数:37
§4.3 周期信号的频谱•信号频谱的概念•周期信号频谱的特点•频带宽度一、信号频谱的概念从广义上说,信号的某种特征量随信号频率变化的关系,称为信号的频谱,所画出的图形称为信号的频谱图。
周期信号的频谱是指周期信号中各次谐波幅值、相位随频率的变化关系,即将An~ω和ϕn~ω的关系分别画在以ω为横轴的平面上得到的两个图,分别称为振幅频谱图和相位频谱图。
因为n≥0,所以称这种频谱为单边谱。
也可画|Fn |~ω和ϕn~ω的关系,称为双边谱。
若F n为实数,也可直接画Fn 。
图示单边频谱图例1例:周期信号f (t ) =试求该周期信号的基波周期T ,基波角频率Ω,画出它的单边频谱图,并求f (t ) 的平均功率P 。
⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--63sin 41324cos 211ππππt t 解首先应用三角公式改写f (t )的表达式,即⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-+=263cos 41324cos 211)(ππππππt t t f 显然1是该信号的直流分量。
⎪⎭⎫ ⎝⎛+34cos 21ππt 的周期T 1= 8⎪⎭⎫⎝⎛-323cos 41ππ的周期T 2= 6所以f (t)的周期T = 24,基波角频率Ω=2π/T = π/12⎪⎭⎫ ⎝⎛+34cos 21ππt 是f (t)的(π/4)/(π/12 )=3次谐波分量;⎪⎭⎫ ⎝⎛-323cos 41ππt 是f (t)的(π/3)/(π/12 )=4次谐波分量;画出f (t )的单边振幅频谱图、相位频谱图如图(a)(b)oA n12π6π4π3π2A 2141ωoω3π3π4π6π12π32π-nϕ137111122⎫⎛⎫⎛⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=323cos 4134cos 211)(ππππt t t f频谱概念演示)(t fOtTT-11-2/T 频谱概念演示既是奇函数又是奇谐函数只含奇次谐波,且为正弦波.例1例2对于双边频谱,负频率,只有数学意义,而无物理意义。
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
周期信号频谱的特点在结构施工测量中,按装修工程要求将装饰施工所需要的控制点、线及时弹在墙、板上,作为装饰工程施工的控制依据。
1.地面面层测量在四周墙身与柱身上投测出100cm水平线,作为地面面层施工标高控制线。
根据每层结构施工轴线放出各分隔墙线及门窗洞口的位置线。
2.吊顶和屋面施工测量以1000m线为依据,用钢尺量至吊顶设计标高,并在四周墙上弹出水平控制线。
对于装饰物比较复杂的吊顶,应在顶板上弹出十字分格线,十字线应将顶板均匀分格,以此为依据向四周扩展等距方格网来控制装饰物的位置。
屋面测量首先要检查各方向流水实际坡度是否符合设计要求,并实测偏差,在屋面四周弹出水平控制线及各方向流水坡度控制线。
3.墙面装饰施工测量内墙面装饰控制线,竖直线的精度不应低于1/3000,水平线精度每3m两端高差小于±1mm,同一条水平线的标高允许误差为±3mm。
外墙面装饰用铅直线法在建筑物四周吊出铅直线以控制墙面竖直度、平整度及板块出墙面的位置。
4.电梯安装测量在结构施工中,从电梯井底层开始,以结构施工控制线为准,及时测量电梯井净空尺寸,并测定电梯井中心控制线。
测设轨道中心位置,并确定铅垂线,并分别丈量铅垂线间距,其相互偏差(全高)不应超过1mm。
每层门套两边弹竖直线,并保证电梯门坎与门前地面水平度一致。
5. 玻璃幕墙的安装测量结构完工后,安装玻璃幕墙时,用铅垂钢丝的测法来控制竖直龙骨的竖直度,幕墙分格轴线的测量放线应以主体结构的测量放线相配合,对其误差应在分段分块内控制、分配、消化,不使其积累。
幕墙与主体连接的预埋件,应按设计要求埋设,其测量放线偏差高差不大于±3mm,埋件轴线左右与前后偏差不大于10mm。
精度要求轴线竖向投测精度不低于1/10000。
平面放线量距精度不低于1/8000,标高传递精度主楼、裙房分别不超过±15mm、±10mm。
仪器选用该工程测量选用TOPCON电子全站仪一台,2"级经纬仪两台,DS3水准仪两台,50m 钢卷尺两把。
第13讲周期信号的频谱及其特点
周期信号是指具有重复性的信号,它可以分解成一系列有限的数值原理的和。
它们具有重复的时域特性,但可以有不同的振幅和不同的频率。
当我们讨论周期信号的频谱时,我们保持它们的相同频率的不同振幅(相移),以及相同的振幅,而它们的相位是随机的。
理论上,任何一个周期信号都可以被分解为一系列不同幅值的基频和谐波。
比如,当我们将电压看作是一种周期信号的时候,它的频谱就是一系列不同的电压值,有最高的基波,每个谐波的振幅都比它的前一个谐波的振幅要低。
周期信号的频谱特点主要有以下几点:
1)一个给定的周期信号的频谱会有一个最高幅值的基波和一系列谐波,这些谐波的振幅会越来越低;
2)一个周期信号的特征频率会是他的最高幅值基波的频率;
3)一个周期信号的频谱不会包含极低频率的分量;
4)随着频率的增加,周期信号的有效带宽也会逐渐增加;
5)随着频率的增加,一个周期信号越来越容易受到干扰;
6)一个周期信号的频谱图会有一个中心点,这个中心点代表了这个信号的中心频率和振幅;
7)周期信号的频谱图会显示出它的基波的相位,而不同的谐波的相位会有所不同。
一文看懂周期信号的频谱特点周期信号概念是周期信号瞬时幅值随时间重复变化的信号。
常见的周期信号有:正弦信号、脉冲信号以及它们的整流、微分、积分等。
这类可称为简单信号。
它们的特点是在一个周期内的极值点不会超过两个且周期性特征明显。
对于这类已明确具有周期特性的信号,周期与否的判别相对简单,周期测量的方法也很成熟完善,如:过零检测法,脉冲整形法等。
x(t)=x(t+kT),k=1,2.。
式中t表示时间,T表示周期。
频谱的概念频谱是频率谱密度的简称,是频率的分布曲线。
复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。
频谱广泛应用于声学、光学和无线电技术等方面。
频谱将对信号的研究从时域引入到频域,从而带来更直观的认识。
把复杂的机械振动分解成的频谱称为机械振动谱,把声振动分解成的频谱称为声谱,把光振动分解成的频谱称为光谱,把电磁振动分解成的频谱称为电磁波谱,一般常把光谱包括在电磁波谱的范围之内。
分析各种振动的频谱就能了解该复杂振动的许多基本性质,因此频谱分析已经成为分析各种复杂振动的一项基本方法。
周期信号频谱的特点(1)离散性:频谱谱线是离散的。
(2)收敛性:谐波幅值总的趋势随谐波次数的增加而降低。
(3)谐波性:谱线只出现在基频整数倍的频率处。
周期信号的有效频谱宽度在周期信号的频谱分析中,周期矩形脉冲信号的频谱具有典型的意义,得到广泛的应用。
下面以图3-8所示的周期矩形脉冲信号为例,进一步研究其频谱宽度与脉冲宽度之间的图3-8关系。
图3-8所示信号)(tf的脉冲宽度为,脉冲幅度为E,重复周期为T,重复角频率为若将)(tf展开为式(3-17)傅里叶级数,则由式(3-18)可得。