第三章(2)周期信号的频谱
- 格式:ppt
- 大小:570.50 KB
- 文档页数:26
周期信号的频域分析周期信号是指在一定时间间隔内,信号的波形和幅度重复的一种信号。
频域分析是指将一个信号从时域(时间域)转换到频域(频率域),以便更好地理解信号的频率特性和频谱分布。
f(t) = a0 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0为直流分量,an和bn分别为傅里叶级数的系数,ω0 =2π/T为基础角频率。
要进行频域分析,首先需要计算出信号的傅里叶系数an和bn。
计算步骤如下:1.计算直流分量a0,即信号f(t)在一个周期内的平均值。
2. 计算余弦项的系数an,使用公式:an = (2/T) * ∫(f(t)*cos(nω0t)dt)其中,∫表示对t从0到T的积分。
3. 计算正弦项的系数bn,使用公式:bn = (2/T) * ∫(f(t)*sin(nω0t)dt)同样,∫表示对t从0到T的积分。
计算出所有的an和bn之后,可以得到信号f(t)的频谱分布。
频谱是指信号在频率域上的幅度分布,可以用幅度谱和相位谱来表示。
1. 幅度谱表示信号各个频率分量的幅度大小。
幅度谱可以通过计算an和bn的幅度来得到,即幅度谱A(f) = sqrt(an^2 + bn^2)。
2. 相位谱表示信号各个频率分量的相位差。
相位谱可以通过计算an 和bn的相位差来得到,即相位谱ϕ(f) = atan(bn/an)。
通过这些计算,我们可以获得信号在频域上的频谱分布,进一步分析信号的频率特性。
频域分析的应用十分广泛。
在通信系统中,频域分析可以用于分析信号的频率偏移、频率响应等问题,为系统的调试和优化提供依据。
在音频和视频信号处理中,频域分析可以用于音频信号的均衡和滤波,视频信号的去噪和增强等。
此外,频域分析还在图像处理、生物医学信号处理等领域得到广泛应用。
总之,周期信号的频域分析是一种将信号从时域转换到频域的方法,可以帮助我们更好地理解信号的频率特性和频谱分布。
通过计算傅里叶系数,可以得到信号的幅度谱和相位谱,从而分析信号在频域上的特性。
第三章习题基础题3.1 证明cos t , cos(2)t , …, cos()nt (n 为正整数),在区间(0,2)π的正交集。
它是否是完备集? 解:(积分???)此含数集在(0,2)π为正交集。
又有sin()nt 不属于此含数集02sin()cos()0nt mt dt π=⎰,对于所有的m和n 。
由完备正交函数定义所以此函数集不完备。
3.2 上题的含数集在(0,)π是否为正交集?解:由此可知此含数集在区间(0,)π内是正交的。
3.3实周期信号()f t 在区间(,)22T T-内的能量定义为222()TT E f t dt -=⎰。
如有和信号12()()f t f t +(1)若1()f t 与2()f t 在区间(,)22T T-内相互正交,证明和信号的总能量等于各信号的能量之和;(2)若1()f t 与2()f t 不是相互正交的,求和信号的总能量。
解:(1)和信号f(t)的能量为[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2)由1()f t 与2()f t 在区间内正交可得2122()()0T T f t f t dt -=⎰则有 22221222()()T T T T E f t dt f t dt --=+⎰⎰即此时和信号的总能量等于各信号的能量之和。
和信号的能量为(2)[]222222222221212222()12()()()()()()T T T T T T T T T T E f t dt dtf t dt f t dt f t f t dtf t f t -----===+++⎰⎰⎰⎰⎰(少乘以2吧?)由1()f t 与2()f t 在区间(,)22T T-内不正交可得 2122()()0T T f t f t dt K -=≠⎰则有2222222212122222()()()()T T T T T T T T E f t dt f t dt K f t dt f t dt ----=++≠+⎰⎰⎰⎰即此时和信号的总能量不等于各信号的能量之和。
例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。
已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。
输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。
周期信号的频谱的特点对于周期信号,其频谱特点主要有以下几个方面:1.频谱呈现出离散的频率分量:周期信号的频谱是由一系列离散的频率分量组成的,这些频率分量可以看作是正弦波的谐波。
具体来说,周期信号的基波频率对应着信号的周期,而高次谐波频率对应着信号的周期的整数倍。
因此,周期信号的频谱呈现出离散的频率分量。
2.频率分量的幅值逐渐衰减:对于周期信号的频谱,随着频率的增大,各个频率分量的幅值逐渐衰减。
这是因为周期信号的频谱是由一系列频率为整数倍的正弦波叠加而成的,而高次谐波频率对应着幅度较小的频率分量。
因此,随着频率的增大,高次谐波频率分量的幅值逐渐变小,频谱呈现出幅度逐渐衰减的特点。
3.频谱具有对称性:对于实信号的周期信号,其频谱具有对称性。
具体来说,周期信号的频谱关于零频率轴对称。
这是因为周期信号的频谱是由实信号频谱叠加而成的,而实信号频谱及其傅里叶变换的共轭都是对称的,因此周期信号的频谱具有对称的特点。
4.频谱的带宽与周期信号的周期有关:对于周期信号,其频谱的带宽与信号的周期有关。
具体来说,频谱的带宽在理论上等于周期的倒数。
这是因为在频谱中,由于频率分量的间隔等于周期的倒数,频谱的带宽也等于周期的倒数。
5.频谱的相位对称性:对于周期信号,它的频谱在幅度谱的基础上还有相位谱。
频谱的相位是随着频率变化的,由于周期信号的频率分量是正弦波,而正弦波的相位是以周期为单位的,所以频谱的相位也具有周期性。
具体来说,频谱的相位存在对称性,即频率分量的相位和其对称频率分量的相位相差180度。
这是由于正弦波的周期性特点决定的。
综上所述,周期信号的频谱特点包括频谱呈现出离散的频率分量、频率分量的幅值逐渐衰减、频谱具有对称性、频谱的带宽与周期信号的周期有关,以及频谱的相位对称性等。
这些特点在信号处理和通信系统中具有重要的理论和实际意义,为信号的分析、处理和传输提供了基础。