2018-2019年上学期二年级数学11月月考题
- 格式:doc
- 大小:758.50 KB
- 文档页数:3
元宝区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知U=R ,函数y=ln (1﹣x )的定义域为M ,集合N={x|x 2﹣x <0}.则下列结论正确的是( ) A .M ∩N=N B .M ∩(∁U N )=∅C .M ∪N=UD .M ⊆(∁U N )2. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2B .3C .4D .53. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ4. 设,,a b c 分别是ABC ∆中,,,A B C ∠∠∠所对边的边长,则直线sin 0A x ay c ++=与sin sin 0bx B y C -+=的位置关系是( )A .平行B . 重合C . 垂直D .相交但不垂直 5. 若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( ) ①f (x )=,②f (x )=,③f (x )=,④f (x )=.A .4B .3C .2D .16. 在△ABC 中,AB 边上的中线CO=2,若动点P满足=(sin 2θ)+(cos 2θ)(θ∈R),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .07. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 8. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .10.如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2 C .2 D .611.设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+ 二、填空题13.给出下列命题:①把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣);②若α,β是第一象限角且α<β,则cos α>cos β;③x=﹣是函数y=cos (2x+π)的一条对称轴;④函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同;⑤y=2sin (2x ﹣)在是增函数;则正确命题的序号 .14.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)15.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .16.直线ax ﹣2y+2=0与直线x+(a ﹣3)y+1=0平行,则实数a 的值为 .17.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .三、解答题19.已知函数f (x )=x 2﹣ax+(a ﹣1)lnx (a >1). (Ⅰ) 讨论函数f (x )的单调性; (Ⅱ) 若a=2,数列{a n }满足a n+1=f (a n ). (1)若首项a 1=10,证明数列{a n }为递增数列;(2)若首项为正整数,且数列{a n }为递增数列,求首项a 1的最小值.20.(本小题满分12分)某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^121()()()niii nii u u v v u u β==--=-∑∑,^^a v u β=-.21.(本小题满分10分)选修4-1:几何证明选讲 选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于 点D ,过B 作O 的切线交AD 的延长线于点E .(Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.22.(本小题满分10分)选修4-1:几何证明选讲 如图,点,,,A B D E 在O 上,ED 、AB 的延长线交于点C ,AD 、BE 交于点F ,AE EB BC ==.(1)证明:DE BD =;(2)若2DE =,4AD =,求DF 的长.23.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,(Ⅰ)求证:平面PED ⊥平面PAC ;(Ⅱ)若直线PE 与平面PAC所成的角的正弦值为,求二面角A ﹣PC ﹣D 的平面角的余弦值.24.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望.元宝区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:由1﹣x>0,解得:x<1,故函数y=ln(1﹣x)的定义域为M=(﹣∞,1),由x2﹣x<0,解得:0<x<1,故集合N={x|x2﹣x<0}=(0,1),∴M∩N=N,故选:A.【点评】本题考察了集合的包含关系,考察不等式问题,是一道基础题.2.【答案】C【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,∵a2014,a2016是函数f(x)=+6x﹣1的极值点,∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.数列{a n}中,满足a n+2=2a n+1﹣a n,可知{a n}为等差数列,∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4.故选:C.【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.3.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.4.【答案】C【解析】试题分析:由直线sin 0A x ay c ++=与sin sin 0bx B y C -+=,则sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=,所以两直线是垂直的,故选C. 1 考点:两条直线的位置关系. 5. 【答案】C【解析】解:由区间G 上的任意两点x 1,x 2和任意实数λ(0,1), 总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),等价为对任意x ∈G ,有f ″(x )>0成立(f ″(x )是函数f (x )导函数的导函数),①f (x )=的导数f ′(x )=,f ″(x )=,故在(2,3)上大于0恒成立,故①为“上进”函数;②f (x )=的导数f ′(x )=,f ″(x )=﹣•<0恒成立,故②不为“上进”函数;③f (x )=的导数f ′(x )=,f ″(x )=<0恒成立,故③不为“上进”函数;④f (x )=的导数f ′(x )=,f ″(x )=,当x ∈(2,3)时,f ″(x )>0恒成立.故④为“上进”函数. 故选C .【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.6. 【答案】 C【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.7. 【答案】B 【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.8. 【答案】B【解析】解:∵△ABC 是锐角三角形,∴A+B >,∴A >﹣B ,∴sinA >sin (﹣B )=cosB ,∴sinA ﹣cosB >0, 同理可得sinA ﹣cosC >0, ∴点P 在第二象限. 故选:B9. 【答案】C【解析】解:∵f (x )≤0⇔x 2﹣x ﹣2≤0⇔﹣1≤x ≤2, ∴f (x 0)≤0⇔﹣1≤x 0≤2,即x 0∈[﹣1,2], ∵在定义域内任取一点x 0, ∴x 0∈[﹣5,5], ∴使f (x 0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键10.【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:===2+4﹣2+2=6. 故选:D .【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.11.【答案】A【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2+3x ﹣3|与y=a 的图象的交点的个数,作函数y=|x 2+3x ﹣3|与y=a 的图象如下,,结合图象可知, m 的可能值有2,3,4; 故选A .12.【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1二、填空题13.【答案】【解析】解:对于①,把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cos α=cos β=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos (2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos (2x+π)的一条对称轴,故③正确.对于④,函数y=4sin (2x+)=4cos[﹣(2x+)]=4cos (﹣2)=4cos (2x ﹣),故函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同,故④正确.对于⑤,在上,2x ﹣∈,函数y=2sin (2x ﹣)在上没有单调性,故⑤错误,故答案为:①③④.14.【答案】(0,2)【解析】解:令x=0,得y=a0+1=2∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)故答案为:(0,2).【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点15.【答案】.【解析】设A(1,1),B(﹣1,﹣1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题.16.【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值.【解答】解:直线ax﹣2y+2=0与直线x+(a﹣3)y+1=0平行,∴,解得a=1.故答案为1.17.【答案】∃x0∈R,都有x03<1.【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x∈R,都有x3≥1”的否定形式为:命题:“∃x0∈R,都有x03<1”.故答案为:∃x0∈R,都有x03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.18.【答案】12【解析】考点:分层抽样三、解答题19.【答案】【解析】解:(Ⅰ)∵,∴(x>0),当a=2时,则在(0,+∞)上恒成立,当1<a<2时,若x∈(a﹣1,1),则f′(x)<0,若x∈(0,a﹣1)或x∈(1,+∞),则f′(x)>0,当a>2时,若x∈(1,a﹣1),则f′(x)<0,若x∈(0,1)或x∈(a﹣1,+∞),则f′(x)>0,综上所述:当1<a<2时,函数f(x)在区间(a﹣1,1)上单调递减,在区间(0,a﹣1)和(1,+∞)上单调递增;当a=2时,函数(0,+∞)在(0,+∞)上单调递增;当a>2时,函数f(x)在区间(0,1)上单调递减,在区间(0,1)和(a﹣1,+∞)上单调递增.(Ⅱ)若a=2,则,由(Ⅰ)知函数f(x)在区间(0,+∞)上单调递增,(1)因为a1=10,所以a2=f(a1)=f(10)=30+ln10,可知a2>a1>0,假设0<a k<a k+1(k≥1),因为函数f(x)在区间(0,+∞)上单调递增,∴f(a k+1)>f(a k),即得a k+2>a k+1>0,由数学归纳法原理知,a n+1>a n对于一切正整数n都成立,∴数列{a n}为递增数列.(2)由(1)知:当且仅当0<a1<a2,数列{a n}为递增数列,∴f(a1)>a1,即(a1为正整数),设(x≥1),则,∴函数g(x)在区间上递增,由于,g(6)=ln6>0,又a1为正整数,∴首项a1的最小值为6.【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题.选做题:本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分7分.如果多做,则按所做的前两题计分.【选修4-2:矩阵与变换】20.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)AA ,24(,)A A ,21(,)AB ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同. 21.【答案】【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分 又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分 所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分(Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠,BDE ∆∽ABE ∆,所以ABBDAE BE =,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠,所以DBC BCD ∠=∠,CD BD =.……………………8分所以ABCDAB BD AE BE ==,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分22.【答案】【解析】(1)证明:∵EB BC =,∴C BEC ∠=∠. ∵BED BAD ∠=∠,∴C BED BAD ∠=∠=∠. ∵2EBA C BEC C ∠=∠+∠=∠,AE EB =, ∴2EAB EBA C ∠=∠=∠,又C BAD ∠=∠. ∴EAD C ∠=∠,∴BAD EAD ∠=∠. ∴DE BD =.(2)由(1)知EAD C FED ∠=∠=∠, ∵EAD FDE ∠=∠,∴EAD ∆∽FED ∆,∴DE ADDF ED=. ∵2DE =,4AD =,∴1DF =. 23.【答案】【解析】解:(Ⅰ)∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD=AB ,AB ⊥PA ∴PA ⊥平面ABCD 结合AB ⊥AD ,可得分别以AB 、AD 、AP 为x 轴、y 轴、z 轴,建立空间直角坐标系o ﹣xyz ,如图所示… 可得A (0,0,0)D (0,2,0),E (2,1,0),C (2,4,0), P (0,0,λ) (λ>0)∴,,得,,∴DE ⊥AC 且DE ⊥AP ,∵AC 、AP 是平面PAC 内的相交直线,∴ED ⊥平面PAC . ∵ED ⊂平面PED ∴平面PED ⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC 的一个法向量是,设直线PE 与平面PAC 所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P 的坐标为(0,0,2)设平面PCD的一个法向量为=(x,y0,z0),,由,,得到,令x0=1,可得y0=z0=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A﹣PC﹣D的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.24.【答案】【解析】解:(1)设事件A为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:EX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.。
怀宁县二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,一隧道截面由一个长方形和抛物线构成现欲在随道抛物线拱顶上安装交通信息采集装置若位置C 对隧道底AB 的张角θ最大时采集效果最好,则采集效果最好时位置C 到AB 的距离是()A .2mB .2m C .4 m D .6 m2. 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为()O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.3. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .12 4. “a ≠1”是“a 2≠1”的()A .充分不必条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 函数y=|a|x ﹣(a ≠0且a ≠1)的图象可能是()A .B .C .D .6. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么()A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点7. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1508. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( )A .m ⊥α,m ⊥β,则α∥βB .m ∥n ,m ⊥α,则n ⊥αC .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n9. ()0﹣(1﹣0.5﹣2)÷的值为()A .﹣B .C .D .10.方程表示的曲线是( )1x -=A .一个圆 B . 两个半圆 C .两个圆D .半圆11.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是()A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣312.极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .2二、填空题13.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .14.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 15.已知实数,满足,目标函数的最大值为4,则______.x y 2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩3z x y a =++a =【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)17.已知是数列的前项和,若不等式对一切恒成立,则的取值范围是n S 1{}2n n -n 1|12n n n S λ-+<+|n N *∈λ___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.18.已知三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,ABC D -O ABC ∆DBC ∆3=AB ,,则球的表面积为 .3=AC 32===BD CDBC O 三、解答题19.本小题满分10分选修:坐标系与参数方程选讲44-在直角坐标系中,直线的参数方程为为参数,在极坐标系与直角坐标系取相同的长xoy3x y ⎧=⎪⎪⎨⎪=+⎪⎩xOy 度单位,且以原点为极点,以轴正半轴为极轴中,圆的方程为.O x C ρθ=Ⅰ求圆的圆心到直线的距离;C Ⅱ设圆与直线交于点,若点的坐标为,求.C A B 、P (3,PA PB +20.设集合.{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=(1)若,求实数的值;{}2A B =I (2),求实数的取值范围.1111]A B A =U 21.(本小题满分10分)选修4—5:不等式选讲已知函数,.()f x x a =-()a R ∈(Ⅰ)若当时,恒成立,求实数的取值;04x ≤≤()2f x ≤a (Ⅱ)当时,求证:.03a ≤≤()()()()f x a f x a f ax af x ++-≥-22.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x ,推销金额为因变量y ,作出散点图;(2)求年推销金额y 关于工作年限x 的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.23.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,()()3231312f x x k x kx =-+++其中.k R ∈(1)当时,求函数在上的值域;3k =()f x []0,5(2)若函数在上的最小值为3,求实数的取值范围.()f x []1,2k24.(本小题满分10分)已知函数.()|||2|f x x a x =++-(1)当时,求不等式的解集;3a =-()3f x ≥(2)若的解集包含,求的取值范围.()|4|f x x ≤-[1,2]怀宁县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:建立如图所示的坐标系,设抛物线方程为x 2=﹣2py (p >0),将点(4,﹣4)代入,可得p=2,所以抛物线方程为x 2=﹣4y ,设C (x ,y )(y >﹣6),则由A (﹣4,﹣6),B (4,﹣6),可得k CA =,k CB =,∴tan ∠BCA===,令t=y+6(t >0),则tan ∠BCA==≥∴t=2时,位置C 对隧道底AB 的张角最大,故选:A .【点评】本题考查抛物线的方程与应用,考查基本不等式,确定抛物线的方程及tan ∠BCA ,正确运用基本不等式是关键. 2. 【答案】D【解析】由切线性质知,所以,则由,得,PQ CQ ⊥222PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,2222(3)(4)4x y x y -++-=+68210x y --=P 3. 【答案】C 【解析】解:由题意知当﹣2≤x ≤1时,f (x )=x ﹣2,当1<x ≤2时,f (x )=x 3﹣2,又∵f (x )=x ﹣2,f (x )=x 3﹣2在定义域上都为增函数,∴f (x )的最大值为f (2)=23﹣2=6.故选C . 4. 【答案】B【解析】解:由a 2≠1,解得a ≠±1.∴“a≠1”推不出“a2≠1”,反之由a2≠1,解得a≠1.∴“a≠1”是“a2≠1”的必要不充分条件.故选:B.【点评】本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.5.【答案】D【解析】解:当|a|>1时,函数为增函数,且过定点(0,1﹣),因为0<1﹣<1,故排除A,B当|a|<1时且a≠0时,函数为减函数,且过定点(0,1﹣),因为1﹣<0,故排除C.故选:D.6.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.7.【答案】B【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S×h=30×5=50.故选B.8.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.9.【答案】D【解析】解:原式=1﹣(1﹣)÷=1﹣(1﹣)÷=1﹣(1﹣4)×=1﹣(﹣3)×=1+=.故选:D.【点评】本题考查了根式与分数指数幂的运算问题,解题时应细心计算,是易错题.10.【答案】A【解析】试题分析:由方程,两边平方得,即,所x y-++=(1)(1)1x-=2211x-=22以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.11.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.12.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.二、填空题13.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键. 14.【答案】 0 .【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n}是周期为6的周期数列,∴b2016=b336×6=b6=0,故答案为:0.【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题. 15.【答案】3-【解析】作出可行域如图所示:作直线:,再作一组平行于的直线:,当直线0l 30x y +=0l l 3x y z a +=-经过点时,取得最大值,∴,所以,故l 5(,2)3M 3z a x y -=+max 5()3273z a -=⨯+=max 74z a =+=.3a =-16.【答案】 相交 【分析】由已知得PQ ∥A 1D ,PQ=A 1D ,从而四边形A 1DQP 是梯形,进而直线A 1P 与DQ 相交.【解析】解:∵在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,∴PQ ∥A 1D ,∵直线A 1P 与DQ 共面,∴PQ=A 1D ,∴四边形A 1DQP 是梯形,∴直线A 1P 与DQ 相交.故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. 17.【答案】31λ-<<【解析】由,…2211111123(1)2222n n n S n n --=+⨯+⨯++-⋅+L g 211112222n S =⨯+⨯+,两式相减,得,所以,111(1)22n n n n -+-⋅+⋅2111111212222222n n n n n S n -+=++++-⋅=-L 1242n n n S -+=-于是由不等式对一切恒成立,得,解得.12|142n λ-+<-|N n *∈|12λ+<|31λ-<<18.【答案】16π【解析】如图所示,∵,∴为直角,即过△的小圆面的圆心为的中点,222AB AC BC +=CAB ∠ABCBC O 'ABC △和所在的平面互相垂直,则球心O 在过的圆面上,即的外接圆为球大圆,由等边三角DBC △DBC △DBC △形的重心和外心重合易得球半径为,球的表面积为2R =24π16πS R ==三、解答题19.【答案】【解析】Ⅰ∵ ∴:C ρθ=2:sin C ρθ=∴,即圆的标准方程为.22:0C x y+-=C 22(5x y += 直线的普通方程为.30x y +--=所以,圆 .CⅡ由,解得或22(53x y y x ⎧+=⎪⎨=-⎪⎩12x y =⎧⎪⎨=⎪⎩21x y =⎧⎪⎨=+⎪⎩所以20.【答案】(1)a =【解析】||||PA PB +==(2) .{}{}1,2,1,2A A B ==U ①无实根,, 解得;()()22,2150B x a x a =∅+-+-=0∆<3a >② 中只含有一个元素,仅有一个实根,B ()()222150x a x a +-+-=故舍去;{}{}0,3,2,2,1,2a B A B ∆===-=-U ③中只含有两个元素,使 两个实根为和,B ()()222150x a x a +-+-=需要满足方程组无根,故舍去, 综上所述]()2212121=a 5a ⎧+=--⎪⎨⨯-⎪⎩3a >考点:集合的运算及其应用.21.【答案】【解析】【解析】(Ⅰ)得,()2x a f x -=≤22a x a -≤≤+由题意得,故,所以 …… 5分2042a a -≤⎧⎨≤+⎩22a ≤≤2a =(Ⅱ),,,Q 03a ≤≤∴112a -≤-≤∴12a -≤()()2f ax af x ax a a x a ax a ax a -=---=---()()2212ax a ax a a a a a a ≤---=-=-≤,Q ()()()2222f x a f x a x a x x a x a a -++=-+≥--==.…… 10分∴()()()(f x a f x a f ax af x -++≥-22.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y 关于工作年限x 的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时, =0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.23.【答案】(1);(2).[]1,212k ≥【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再()'f x =()()31x x k --分和两种情况进行讨论;1k ≤1k >试题解析:(1)解: 时,3k =()32691f x x x x =-++ 则()()()23129313f x x x x x =-+=--'令得列表()0f x '=121,3x x ==x 0()0,11()1,33()3,53()f x '+0 -0+()f x 1单调递增5单调递减1单调递增21由上表知函数的值域为()f x []1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以()()()min 31113132f x f k k ==-+++= 即(舍) 53k =②当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以()()()322min 313132f x f k k k k k ==-+++=化简得:32340k k -+=即()()2120k k +-=所以或(舍)1k =-2k =注:也可令()3234g k k k =-+则()()23632g k k k k k =='--对()()1,2,0k g k ∀∈'≤在单调递减()3234g k k k =-+()1,2k ∈所以不符合题意()02g k <<综上所述:实数取值范围为k 2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分②当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以不符合题意()()min 23f x f <=③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以不符合题意()()()min 23f x f k f =<=综上所述:实数取值范围为k 2k ≥24.【答案】(1)或;(2).{|1x x ≤8}x ≥[3,0]-【解析】试题解析:(1)当时,,当时,由得,解得;3a =-25,2()1,2325,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩2x ≤()3f x ≥253x -+≥1x ≤当时,,无解;当时,由得,解得,∴的解集为23x <<()3f x ≥3x ≥()3f x ≥253x -≥8x ≥()3f x ≥或.{|1x x ≤8}x ≥(2),当时,,()|4||4||2|||f x x x x x a ≤-⇔---≥+[1,2]x ∈|||4|422x a x x x +≤-=-+-=∴,有条件得且,即,故满足条件的的取值范围为.22a x a --≤≤-21a --≤22a -≥30a -≤≤[3,0]-考点:1、绝对值不等式的解法;2、不等式恒成立问题.。
2024——2025学年第一学期学科素养课堂提升练习二年级数学(建议时长:40分钟)说明:①本练习仅供学校巩固课堂知识练习使用:②本练习设置A、B、C、D四个评价等级。
第一部分学科素养第二部分综合运用综合等级题号一二三四五等级第一部分学科素养 (68%)一、我会填空。
(每空2%,共26%)1. 在67 +18-20中, 先算( )法, 再算( ) 法, 结果是( )。
2. 妈妈买一幅油画花了41元,买一幅国画比一幅油画贵9元,买一幅油画和一幅国画一共需要多少元? 列式为( )。
3. 亮亮和爸爸去快餐店就餐,爸爸付给售货员100元,买1个鸡腿汉堡和1杯可乐,应找回( )元。
4. 最小的三位数减去最大的两位数,再加上最大的一位数,结果是 ( )。
5. 一件上衣4229元,估一估,买一套衣服大约要花( )元钱,算一算,实际要花( )元钱。
6. 今年妈妈37岁,丽丽8岁,5年后妈妈比丽丽大( )岁。
7. 在○里填上“>”、“<”或“=”。
48-19-27 ◯48~ 27-1955 +26-9◯55+26 -1962-18+23 ◯ 62-18-2372-28+15◯ 72+15-28二、我会计算。
(共30%)1. 直接写出得数。
(10%)35+6=56+30=38-7=90 -39 =56-50=24-14=26+68=6+30=25-9 =44+18=2. 在□里填上合适的数。
(8%)70−□=26□+14=69□−28=3055+□= 603. 列竖式计算。
(12%)35+14+27=38+62-44=87-34-26=三、我会连线。
(共12%)第二部分综合运用 (32%)四、我会看图列式。
(共8%)○○○○□=□(本)□○□○□=□(米)五、我会解决问题。
(共24%)1. 航模组有多少人? (3%)2. 美术课上同学们用易拉罐做灯笼和花朵,做灯笼用了38个易拉罐,做花朵比做灯笼多用了19个易拉罐,做灯笼和做花朵一共用了多少个易拉罐? (5%)参加植树的学生中一年级有29人,二年级有35人。
二年级数学上册月考试卷【可打印】(考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 分数:__________一、单选题(每小题2分,共计20分)1、下列正确的是()。
A .5cm>13cmB .2米>19厘米C .60厘米>60米2、和1米一样长的是()。
A .10厘米B .100厘米C .1厘米3、下面的测量方法不对的是()。
A .B .C .4、教室门高约2()A .分米B .厘米C .米5、40米-4米=()米A .36B .32C .9D .146、一枝铅笔长约()A .20毫米B .20厘米C .20分米7、可以用来计量操场跑道长度的单位是()。
A .时B .元C .分D .米8、圆珠笔大约长()A .13厘米B .13米C .1厘米D .1米9、一根日光灯灯管长150()A .米B .厘米C .分米10、看书时眼睛距离书本约()。
A .30厘米B .30毫米C .30米二、多选题(每小题1分,共计3分)1、下列说法正确的是()A .小学数学课堂练习册的宽是13米.B .一间教室长10米.C .一枝铅笔长18厘米.D .老师的身高是1米68厘米.2、下面说法正确的是()A .1米小于89厘米B .1米大于99厘米C .98厘米加2厘米等于1米D .米和厘米都是长度单位3、100厘米=()A .1米B .20厘米+70厘米C .50厘米+30厘米D .60厘米+40厘米三、填空题(每小题2分,共计40分)123、在横线上填上合适的单位。
一座楼房大约高18 。
小红的身高约 145 。
一张木床长 2 。
教室长 9 。
4、填上合适的单位。
杯子高约8教室门高约25、在横线上填上“米”或“厘米”。
树高约10身高是130大楼高约156、在横线上填上合适的长度单位。
(米、厘米)7、在横线上填“>”“<”或“=”。
8、在横线上填上“>”“<”或“=”。
小学二年级数学上学期月考质量评估(真题)人教版姓名:_______ 班级:_______ 满分:(100分+20分) 考试时间:90分钟题序一二三四五六总分得分一、根据题意填空。
1. 婷婷有23张明信片,丽丽有11张明信片,婷婷给丽丽(______)张后,两人一样多。
2. 按时间的长短排列顺序。
35秒 6分 6时 49分 3秒______﹤ ______﹤ ______﹤ ______﹤______3. 6×3+6=________×________ B+B+B+B+B=________×________4. 汽车方向盘的运动是(______)现象,开关推拉窗是(______)现象。
5. 看图填空。
体育馆在学校的______面,商场在学校的______面,医院在学校的______面,邮局在学校的______面。
6. 找规律,填一填。
(1)752,762,______,782,792,______。
(2)4896,4897,4898,4899,______,______。
(3)3254,3154,3054,______ ,______。
7. 在()里填上“米”或“厘米”。
数学书长21(______)黑板长4(______)旗杆高10(______)图钉约长1(______)大树高6(______)小明身高1(______)30(______)8. 在括号里填上合适的单位或数字。
小明身高128_____ 晚上睡眠10_____ 半小时=_____分旗杆高15_____ 1米-_____厘米=_____厘米二、选择题。
1. 3乘5的积再减去9,差是()。
A.4B.5C.62. 京津铁路大约长( )A.145米B.145分米C.145千米3. 小红8:20出发去外婆家,9:40分到达,小红走了()。
A.1小时B.60分钟C.1小时20分4. 下面算式中,得数比60小的是()。
1. 若复数z 满足一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有湖南省长沙市2024-2025学年高三上学期11月月考数学检测试卷一项是符合题目要求的)1i34i z +=-,则z =()A.B.25C.D.【答案】C 【解析】【分析】根据复数除法运算求出复数z ,计算其模,即得答案.【详解】由1i34i z+=-可得()()()()1i 34i 1i 17i 34i 34i 34i 25z+++-+===--+,则z =故选:C2. 已知数列{}n a 的前n 项和22n S n n =-,则345a a a ++等于( )A. 12B. 15C. 18D. 21【答案】B 【解析】【分析】利用52S S -即可求得345a a a ++的值.【详解】因为数列{}n a 的前n 项和22n S n n =-,所以34552=a a a S S ++-()2252522215=-⨯--⨯=.故选:B.3. 抛物线24y x =的焦点坐标为( )A. (1,0)B. (1,0)-的C. 1(0,)16-D. 1(0,)16【答案】D 【解析】【分析】先将抛物线方程化为标准方程,从而可求出其焦点坐标【详解】解:由24y x =,得214x y =,所以抛物线的焦点在y 轴的正半轴上,且124p =,所以18p =,1216p =,所以焦点坐标为1(0,16,故选:D4. 如图是函数()sin y x ωϕ=+的部分图象,则函数的解析式可为( )A. πsin 23y x ⎛⎫=- ⎪⎝⎭B. πsin 3y x ⎛⎫=+ ⎪⎝⎭C. πsin 26y x ⎛⎫=+ ⎪⎝⎭ D. 5πcos 26y x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】观察图象,确定函数()sin y x ωϕ=+的周期,排除B ,由图象可得当5π12x =时,函数取最小值,求ϕ由此判断AC ,结合诱导公式判断D.【详解】观察图象可得函数()sin y x ωϕ=+的最小正周期为2ππ2π36T ⎛⎫=-=⎪⎝⎭,所以2ππω=,故2ω=或2ω=-,排除B ;观察图象可得当π2π5π63212x +==时,函数取最小值,当2ω=时,可得5π3π22π+122k ϕ⨯+=,Z k ∈,所以2π2π+3k ϕ=,Z k ∈,排除C ;当2ω=-时,可得5ππ22π122k ϕ-⨯+=-,Z k ∈,所以π2π+3k ϕ=,Z k ∈,取0k =可得,π3ϕ=,故函数的解析式可能为πsin 23y x ⎛⎫=-⎪⎝⎭,A 正确;5ππππcos 2cos 2sin 26233y x x x ⎛⎫⎛⎫⎛⎫=-=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 错误故选:A.5. 1903年,火箭专家、航天之父康斯坦丁・齐奥尔科夫斯基就提出单级火箭在不考虑空气阻力和地球引力的理想情况下的最大速度v 满足公式:1201lnm m v v m +=,其中12,m m 分别为火箭结构质量和推进剂的质量,0v 是发动机的喷气速度.已知某单级火箭结构质量是推进剂质量的2倍,火箭的最大速度为8km /s ,则火箭发动机的喷气速度为( )(参考数据:ln20.7≈,ln3 1.1,ln4 1.4≈≈)A. 10km /s B. 20km /sC.80km /s 3D. 40km /s【答案】B 【解析】【分析】根据实际问题,运用对数运算可得.【详解】由题意122m m =,122200122lnln 82m m m m v v v m m ++===,得03ln 82v =,故0888203ln3ln 2 1.10.7ln 2v ==≈=--,故选:B6.若83cos 5αβ+=,63sin 5αβ-=,则()cos αβ+的值为( )A. B.C.D.【答案】C 【解析】【分析】已知两式平方相加,再由两角和的余弦公式变形可得.【详解】因为83cos 5αβ=,63sin 5αβ=,所以25(3cos 4)62αβ=,2(3sin )2536αβ=,即所以2259cos co 6s 1042cos ααββ++=,229sin sin +10sin 2536ααββ-=,两式相加得9)104αβ+++=,所以cos()αβ+=,故选:C .7. 如图,一个质点从原点O 出发,每隔一秒随机向左或向右移动一个单位长度,向左的概率为23,向右的概率为13,共移动4次,则该质点共两次到达1的位置的概率为( )A.427B.827C.29D.49【答案】A 【解析】【分析】根据该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以求解.【详解】共移动4次,该质点共两次到达1的位置的方式有0101→→→和0121→→→,且两种方式第4次移动向左向右均可以,所以该质点共两次到达1的位置的概率为211124333332713⨯⨯+⨯⨯=.故选:A.8. 设n S 为数列{a n }的前n 项和,若121++=+n n a a n ,且存在*N k ∈,1210k k S S +==,则1a 的取值集合为( )A. {}20,21-B. {}20,20-C. {}29,11-D. {}20,19-【答案】A 【解析】【分析】利用121++=+n n a a n 可证明得数列{}21n a -和{}2n a 都是公差为2的等差数列,再可求得()2=21n S n n +,有了这些信息,就可以从k 的取值分析并求解出结果.【详解】因为121++=+n n a a n ,所以()()()()()()212342123+41=++++++37+41=212n n n n n S a a a a a a n nn --⋅⋅⋅=++⋅⋅⋅-=+,假设()2=21=210n S n n +,解得=10n 或21=2n -(舍去),由存*N k ∈,1210k k S S +==,所以有19k =或20k =,由121++=+n n a a n 可得,+1223n n a a n ++=+,两式相减得:22n n a a +-=,当20k =时,有2021210S S ==,即210a =,根据22n n a a +-=可知:数列奇数项是等差数列,公差为2,所以()211+11120a a =-⨯=,解得120a =-,当19k =时,有1920210S S ==,即200a =,根据22n n a a +-=可知:数列偶数项也是等差数列,公差为2,所以()202+10120a a =-⨯=,解得218a =-,由已知得123a a +=,所以121a =.故选:A.二、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,至少有两项是符合题目要求,若全部选对得6分,部分选对得部分分,选错或不选得0分)9. 如图,在正方体1111ABCD A B C D -中,点E ,F 分别为1AD ,DB 的中点,则下列说法正确的是( )在A. 直线EF 与11D B 为异面直线B. 直线1D E 与1DC 所成的角为60oC. 1D F AD ⊥D. //EF 平面11CDD C 【答案】ABD 【解析】【分析】直接根据异面直线及其所成角的概念可判断AB ,利用反证法可判断C ,利用线面平行判定定理可判断D.【详解】如图所示,连接AC ,1CD ,EF ,由于E ,F 分别为1AD ,DB 的中点,即F 为AC 的中点,所以1//EF CD ,EF ⊄面11CDD C ,1CD ⊆面11CDD C ,所以//EF 平面11CDD C ,即D 正确;所以EF 与1CD 共面,而1B ∉1CD ,所以直线EF 与11D B 为异面直线,即A 正确;连接1BC ,易得11//D E BC ,所以1DC B ∠即为直线1D E 与1DC 所成的角或其补角,由于1BDC 为等边三角形,即160DC B ∠=,所以B 正确;假设1D F AD ⊥,由于1AD DD ⊥,1DF DD D = ,所以AD ⊥面1D DF ,而AD ⊥面1D DF 显然不成立,故C 错误;故选:ABD.10. 已知P 是圆22:4O x y +=上的动点,直线1:cos sin 4l x y θθ+=与2:sin cos 1l x y θθ-=交于点Q ,则( )A. 12l l ⊥ B. 直线1l 与圆O 相切C. 直线2l 与圆O截得弦长为 D. OQ的值为【答案】ACD 【解析】【分析】选项A 根据12l l ⊥,12120A A B B +=可判断正确;选项B 由圆心O 到1l 的距离不等半径可判断错误;选项C 根据垂直定理可得;选项D 先求出()4sin cos ,4cos sin Q θθθθ-+,根据两点间的距离公式可得.【详解】选项A :因()cos sin sin cos 0θθθθ+-=,故12l l ⊥,A 正确;选项B :圆O 的圆心O 的坐标为()0,0,半径为2r =,圆心O 到1l的距离为14d r ==>,故直线1l 与圆O 相离,故B 错误;选项C :圆心O 到1l 的距离为21d ==,故弦长为l==,故C 正确;选项D :由cos sin 4sin cos 1x y x y θθθθ+=⎧⎨-=⎩得4cos sin 4sin cos x y θθθθ=+⎧⎨=-⎩,故()4cos sin ,4sin cos Q θθθθ+-,故OQ ==,故D 正确故选:ACD11. 已知三次函数()32f x ax bx cx d =+++有三个不同的零点1x ,2x ,()3123x x x x <<,函数()()1g x f x =-也有三个零点1t ,2t ,()3123t t t t <<,则( )A. 23b ac>B. 若1x ,2x ,3x 成等差数列,则23bx a=-C. 1313x x t t +<+D. 222222123123x x x t t t ++=++【答案】ABD 【解析】【分析】对于A ,由题意可得()0f x '=有两个不同实根,则由0∆>即可判断;对于B ,若123,,x x x 成等差数列,则(x 2,f (x 2))为()f x 的对称中心,即可判断;对于C ,结合图象,当0a >和0a <时,分类讨论即可判断;对于D ,由三次函数有三个不同的零点,结合韦达定理,即可判断.【详解】因为()32f x ax bx cx d =+++,则()232f x ax bx c '=++,0a ≠,对称中心,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,对于A ,因为()f x 有三个不同零点,所以()f x 必有两个极值点,即()2320f x ax bx c =++='有两个不同的实根,所以2Δ4120b ac =->,即23b ac >,故A 正确;对于B ,由123,,x x x 成等差数列,及三次函数的中心对称性,可知(x 2,f (x 2))为()f x 的对称中心,所以23bx a=-,故B 正确;对于C ,函数()()1g x f x =-,当g (x )=0时,()1f x =,为则1y =与y =f (x )的交点的横坐标即为1t ,2t ,3t ,当0a >时,画出()f x 与1y =的图象,由图可知,11x t <,33x t <,则1313x x t t +<+,当0a <时,则1313x x t t +>+,故C 错误;对D ,由题意,得()()()()()()32123321231a x x x x x x ax bx cx da x t x t x t ax bx cx d ⎧---=+++⎪⎨---=+++-⎪⎩,整理,得123123122331122331b x x x t t t ac x x x x x x t t t t t t a ⎧++=++=-⎪⎪⎨⎪++=++=⎪⎩,得()()()()2212312233112312233122x x x x x x x x x t t t t t t t t t ++-++=++-++,即222222123123x x x t t t ++=++,故D 正确.故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用交点式得到三次方程的韦达定理式再计算即可.三、填空题(本大题共3个小题,每小题5分,共15分)12. 已知随机变量X 服从二项分布(),B n p ,若()3E X =,()2D X =,则n =_____.【答案】9【解析】【分析】根据二项分布的期望、方差公式,即可求得答案.【详解】由题意知随机变量X 服从二项分布(),B n p ,()3E X =,()2D X =,则()3,12np np p =-=,即得1,93p n ==,故答案为:913. 已知平面向量a ,b 满足2a = ,1= b ,且b 在a上投影向量为14a - ,则ab + 为______.的【解析】【分析】由条件结合投影向量公式可求a b ⋅ ,根据向量模的性质及数量积运算律求a b +.【详解】因为b 在a上的投影向量为14a - ,所以14b a a a aa ⋅⋅=- ,又2a =,所以1a b ⋅=-,又 1= b ,所以a b +====14. 如图,已知四面体ABCD 体积为32,E ,F 分别为AB ,BC 的中点,G ,H 分别在CD ,AD 上,且G ,H 是靠近D 点的四等分点,则多面体EFGHBD 的体积为_____.【答案】11【解析】【分析】连接,EG ED ,将多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -,利用题设条件找到小棱锥底面面积与四面体底面面积的数量关系,以及小棱锥的高与四面体的高的数量关系,结合四面体的体积即可求得多面体EFGHBD 的体积.【详解】如图,连接,EG ED ,则多面体EFGHBD 被分成三棱锥G EDH -和四棱锥E BFGD -.因H 是AD 上靠近D 点的四等分点,则14DHE AED S S = ,又E 是AB 的中点,故11114428DHE AED ABD ABD S S S S ==⨯= ,因G 是CD 上靠近D 点的四等分点,则点G 到平面ABD 的距离是点C 到平面ABD的距离的14,的故三棱锥G EDH -的体积1113218432G EDH C ABD V --=⨯=⨯=;又因点F 是BC 的中点,则133248CFGBCD BCD S S S =⨯= ,故58BFGD BCD S S = ,又由E 是AB 的中点知,点E 到平面BCD 的距离是点A 到平面BCD 的距离的12,故四棱锥E BFGD -的体积51532108216E BFGD A BCD V V --=⨯=⨯=,故多面体EFGHBD 的体积为11011.G EDH E BFGD V V --+=+=故答案为:11.【点睛】方法点睛:本题主要考查多面体的体积求法,属于较难题.一般的求法有两种:(1)分割法:即将多面体通过连线,作面的垂线等途径,将其分成若干可以用公式求解;(2)补形法:即将多面体通过辅助线段构造柱体,锥体或台体,利用整体体积减去个体体积等间接方法求解.四、解答题(本大题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤)15. 设ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos 0a B A =.(1)求A ;(2)若sin sin 2sin B C A +=,且ABC V ,求a 的值.【答案】(1)π3A = (2)2a =【解析】【分析】(1)利用正弦定理的边角变换得到tan A =,从而得解;(2)利用正弦定理的边角变换,余弦定理与三角形面积公式得到关于a 的方程,解之即可得解.【小问1详解】因为sin cos 0a B A =,即sin cos a B A =,由正弦定理得sin sin cos A B B A ⋅=⋅,因为sin 0B ≠,所以sin A A =,则tan A =,又()0,πA ∈,所以π3A =.【小问2详解】因为sin sin 2sin B C A +=,由正弦定理得2b c a +=,因为π3A =,所以11sin 22ABC S bc A bc === 4bc =,由余弦定理2222cos a b c bc A =+-⋅,得224b c bc +-=,所以()234b c bc +-=,则()22344a -⨯=,解得2a =.16. 设()()221ln 2f x x ax x x =++,a ∈R .(1)若0a =,求()f x 在1x =处的切线方程;(2)若a ∈R ,试讨论()f x 的单调性.【答案】(1)4230--=x y (2)答案见解析【解析】【分析】(1)由函数式和导函数式求出(1)f 和(1)f ',利用导数的几何意义即可写出切线方程;(2)对函数()f x 求导并分解因式,根据参数a 的取值进行分类讨论,由导函数的正负推得原函数的增减,即得()f x 的单调性.【小问1详解】当0a =时,()221ln 2f x x x x =+,()2(ln 1)f x x x '=+,因1(1),(1)22f f '==,故()f x 在1x =处的切线方程为12(1)2y x -=-,即4230--=x y ;【小问2详解】因函数()()221ln 2f x x ax x x =++的定义域为(0,)+∞,()(2)ln 2(2)(ln 1)f x x a x x a x a x '=+++=++,① 当2a e ≤-时,若10e x <<,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在1(0,)e上单调递增;若1e x >,由20x a +=可得2a x =-.则当1e 2a x <<-时,20x a +<,ln 10x +>,故()0f x '<,即函数()f x 在1(,)e 2a-上单调递减;当2a x >-时,ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在(,)2a-+∞上单调递增;② 当20e a -<<时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若12e a x -<<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(,)2ea -上单调递减;若02a x <<-,则ln 10,20x x a +<+<,故()0f x '>,即函数()f x 在(0,)2a-上单调递增,③当2ea =-时,()0f x '≥恒成立,函数()f x 在()0,∞+上单调递增,④当0a ≥时,若1e x >,则ln 10,20x x a +>+>,故()0f x '>,即函数()f x 在1(,)e+∞上单调递增;若10e x <<,则ln 10,20x x a +<+>,故()0f x '<,即函数()f x 在1(0,e上单调递减;综上,当2e a <-时,函数()f x 在1(0,)e上单调递增,在1(,)e 2a -上单调递减,在(,)2a -+∞上单调递增;当2ea =-时,函数()f x 在()0,∞+上单调递增;当20e a -<<时,函数()f x 在(0,2a -上单调递增,在1(,2e a -上单调递减,在1(,)e+∞上单调递增;当0a ≥时,函数()f x 在1(0,e 上单调递减,在1(,)e+∞上单调递增.17. 已知四棱锥P ABCD -,底面ABCD 为菱形,,PD PB H =为PC 上的点,过AH 的平面分别交,PB PD 于点,M N ,且BD ∥平面AMHN .(1)证明:MN PC ⊥;(2)当H 为PC 的中点,,PA PC PA ==与平面ABCD 所成的角为60︒,求平面PAM 与平面AMN 所成的锐二面角的余弦值.【答案】(1)证明见详解(2【解析】【分析】(1)根据线面垂直可证BD ⊥平面PAC ,则BD PC ⊥,再根据线面平行的性质定理可证BD ∥MN ,进而可得结果;(2)根据题意可证⊥PO 平面ABCD ,根据线面夹角可知PAC 为等边三角形,建立空间直角坐标系,利用空间向量求面面夹角.【小问1详解】设AC BD O = ,则O 为,AC BD 的中点,连接PO ,因为ABCD 为菱形,则ACBD ⊥,又因为PD PB =,且O 为BD 的中点,则PO BD ⊥,AC PO O = ,,AC PO ⊂平面PAC ,所以BD ⊥平面PAC ,且PC ⊂平面PAC ,则BD PC ⊥,又因为BD ∥平面AMHN ,BD ⊂平面PBD ,平面AMHN 平面PBD MN =,可得BD ∥MN ,所以MN PC ⊥.【小问2详解】因为PA PC =,且O 为AC 的中点,则PO AC ⊥,且PO BD ⊥,AC BD O = ,,AC BD ⊂平面ABCD ,所以⊥PO 平面ABCD ,可知PA 与平面ABCD 所成的角为60PAC ∠=︒,即PAC 为等边三角形,设AH PO G =I ,则,G AH G PO ∈∈,且AH ⊂平面AMHN ,PO ⊂平面PBD ,可得∈G 平面AMHN ,∈G 平面PBD ,且平面AMHN 平面PBD MN =,所以G MN ∈,即,,AH PO MN 交于一点G ,因为H 为PC 的中点,则G 为PAC 的重心,且BD ∥MN ,则23PM PN PG PB PD PO ===,设2AB =,则11,32PA PC OA OC AC OB OD OP ========,如图,以,,OA OB OP 分别为,,x y z 轴,建立空间直角坐标系,则)()22,0,0,3,0,,1,0,,133AP M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,可得()24,1,0,,0,33AM NM AP ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u uu r ,设平面AMN 的法向量()111,,x n y z =,则1111203403n AM y z n NM y ⎧⋅=++=⎪⎪⎨⎪⋅==⎪⎩,令11x =,则110,y z ==,可得(n =,设平面PAM 的法向量()222,,m x y z =,则2222220330m AM y z mAP z ⎧⋅=++=⎪⎨⎪⋅=+=⎩,令2x =,则123,1y z ==,可得)m =u r,可得cos ,n m n m n m⋅===⋅r u rr u r r u r ,所以平面PAM 与平面AMN.18. 已知双曲线22:13y x Γ-=的左、右焦点为1F ,2F ,过2F 的直线l 与双曲线Γ交于A ,B 两点.(1)若AB x ⊥轴,求线段AB 的长;(2)若直线l 与双曲线的左、右两支相交,且直线1AF 交y 轴于点M ,直线1BF 交y 轴于点N .(i )若11F AB F MN S S = ,求直线l 的方程;(ii )若1F ,2F 恒在以MN 为直径的圆内部,求直线l 的斜率的取值范围.【答案】(1)线段AB 的长为6; (2)(i )直线l的方程为2x y =±+;(ii )直线l的斜率的取值范围为33()(44- .【解析】【分析】(1)直接代入横坐标求解纵坐标,从而求出的值;(2)(i )(ii )先设直线和得到韦达定理,在分别得到两个三角形的面积公式,要求相等,代入韦达定理求出参数的值即可.【小问1详解】由双曲线22:13y x Γ-=的方程,可得221,3a b ==,所以1,2a b c ====,所以1(2,0)F -,2(2,0)F ,若AB x ⊥轴,则直线AB 的方程为2x =,代入双曲线方程可得(2,3),(2,3)A B -,所以线段AB 的长为6;【小问2详解】(i )如图所示,若直线l 的斜率为0,此时l 为x 轴,,A B 为左右顶点,此时1,,F A B 不构成三角形,矛盾,所以直线l 的斜率不为0,设:2l x ty =+,1122()A x y B x y ,,(,),联立22132y x x ty ⎧-=⎪⎨⎪=+⎩,消去x 得22(31)1290t y ty -++=,t 应满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,由根与系数关系可得121222129,3131t y y y y t t +=-=--,直线1AF 的方程为110(2)2y y x x -=++,令0x =,得1122y y x =+,点112(0,2y M x +,直线1BF 的方程为220(2)2y y x x -=++,令0x =,得2222y y x =+,点222(0,2y N x +,121122221111|||||2||2|F F F B A A F B F S y F S S F y y y -=⨯-==-,111212221||||||222F M N M F MN N S y y x y y y y x x =-=-=-++ 12122112212121212222(4)2(4)8()||||||44(4)(4)4()16y y y ty y ty y y ty ty ty ty t y y t y y +-+-=-==+++++++,由11F AB F MN S S = ,可得1212212128()||2||4()16y y y y t y y t y y -=-+++,所以21212|4()16|4t y y t y y +++=,所以222912|4()16|43131tt t t t ⨯+-+=--,解得22229484816||431t t t t -+-=-,22916||431t t -=-,解得22021t =,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以t =所以直线l的方程为2x y =±+;(ii )由1F ,2F 恒在以MN 为直径的圆内部,可得2190F MF >︒∠,所以110F F N M < ,又112211,22(2,)(2,22F y y N x x M F =+=+ ,所以1212224022y y x x +⨯<++,所以121210(2)(2)y y x x +<++,所以1221212104()16y y t y y t y y +<+++,所以2222931109124()163131t t t t t t -+<⨯+-+--,所以22970916t t -<-,解得271699t <<43t <<或43t -<<,经检验,满足222310Δ14436(31)0t t t ⎧-≠⎨=-->⎩,所以直线l的斜率的取值范围为33((44- .【点睛】方法点睛:圆锥曲线中求解三角形面积的常用方法:(1)利用弦长以及点到直线的距离公式,结合12⨯底⨯高,表示出三角形的面积;(2)根据直线与圆锥曲线的交点,利用公共底或者公共高的情况,将三角形的面积表示为12211||||2F F y y ⨯-或121||||2AB x x ⨯-.19. 已知{}n a 是各项均为正整数的无穷递增数列,对于*k ∈N ,设集合{}*k i B i a k =∈<N ∣,设k b 为集合k B 中的元素个数,当k B =∅时,规定0k b =.(1)若2n a n =,求1b ,2b ,17b 的值;(2)若2n n a =,设n b 的前n 项和为n S ,求12n S +;(3)若数列{}n b 是等差数列,求数列{}n a 的通项公式.【答案】(1)12170,1,4b b b === (2)1(1)22n n +-⨯+ (3)n a n =【解析】【分析】(1)根据集合新定义,利用列举法依次求得对应值即可得解;(2)根据集合新定义,求得12,b b ,121222i i i b b b i +++==== ,从而利用分组求和法与裂项相消法即可得解.(3)通过集合新定义结合等差数列性质求出11a =,然后利用反证法结合数列{}n a 的单调性求得11n n a a +-=,利用等差数列定义求解通项公式即可;【小问1详解】因为2n a n =,则123451,4,9,16,25a a a a a =====,所以{}*11i B i a =∈<=∅N ∣,{}*22{1}i B i a =∈<=N ∣,{}*1717{1,2,3,4}i B i a =∈<=N ∣,故12170,1,4b b b ===.【小问2详解】因为2n n a =,所以123452,4,8,16,32a a a a a =====,则**12{|1},{|2}i i B i a B i a =∈<=∅=∈<=∅N N ,所以10b =,20b =,当122i i k +<≤时,则满足i a k <的元素个数为i ,故121222i i i b b b i +++==== ,所以()()()1112345672122822n n n n S b b b b b b b b b b b ++++=++++++++++++ 1212222n n =⨯+⨯++⨯ ,注意到12(1)2(2)2n n n n n n +⨯=-⨯--⨯,所以121321202(1)21202(1)2(2)2n n nS n n ++=⨯--⨯+⨯-⨯++-⨯--⨯ 1(1)22n n +=-⨯+.【小问3详解】由题可知11a ≥,所以1B =∅,所以10b =,若12a m =≥,则2B =∅,1{1}m B +=,所以20b =,11m b +=,与{}n b 是等差数列矛盾,所以11a =,设()*1n n n d a a n +=-∈N,因为{}n a 是各项均为正整数的递增数列,所以*n d ∈N ,假设存在*k ∈N 使得2k d ≥,设k a t =,由12k ka a +-≥得12k a t++≥,由112k k a t t t a +=<+<+≤得t b k <,21t t b b k ++==,与{}n b 是等差数列矛盾,所以对任意*n ∈N 都有1n d =,所以数列{}n a 是等差数列,1(1)n a n n =+-=.【点睛】方法点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.。
人教版二年级数学2024年小学上学期月考质量评估必考题姓名:_______ 班级:_______ 满分:(100分+20分) 考试时间:90分钟题序一二三四五六总分得分一、根据题意填空。
1. 下午上课的时间是2∶30,明明从家到学校要走20分钟,明明最慢要______时______分从家里出发。
现在的时间是1∶57,再过3分是______。
现在时间是上午7时45分,再过______分是8时整。
2:10再过30分钟后是______时______分。
早上上课的时间是______时______分;放学的时间是______时______分。
2. 时针走一大格是(_______)时,分针走一大格是(_______)分,时针走一大格,分针正好走(_______),1时=(_______)分。
3. 在米尺上从刻度4到刻度8是(______)厘米,从刻度0到刻度100是(______)厘米,也就是(______)米。
4. 在算式30÷5=6中,被除数是(______),除数是(______),商是(______)。
5. 书店一天销售图书情况是:故事书20册,教辅书45册,连环画40册,科技书35册,请你完成调查表。
①______ ②______ ③______ ④______6. 24棵白菜,平均放在8个篮子里,求每个篮子放几棵,列式为24÷8。
方法一:24-(______)-(______)-(______)=0(棵)。
方法二:(______)× 8=24,所以每个篮子放(______)棵。
方法三:还可以用(______)计算。
7. 聪聪在做一道减法题时,不细心,把被减数十位上的6看成了9,把减数个位上的9看成了6,结果得49.原来正确的得数是_______.8. 把一根竹竿插入水中,水面以上部分是68厘米,水面以下部分32厘米,那么这根竹竿长(______)。
二、选择题。
1. 下面的数一个零都不读的是()。
伊金霍洛旗第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合,且使中元素和中的元素{}{}421,2,3,,4,7,,3A k B a a a ==+*,,a N x A y B ∈∈∈B 31y x =+A 对应,则的值分别为( )x ,a k A . B . C . D .2,33,43,52,52. 集合,是的一个子集,当时,若有,则称为的一个“孤立{}5,4,3,2,1,0=S A S A x ∈A x A x ∉+∉-11且x A 元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个B S B B B A.4 B. 5 C.6 D.73. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( )A .f ′(x 0)<0B .f ′(x 0)=0C .f ′(x 0)>0D .f ′(x 0)的符号无法确定4. 函数f (x ﹣)=x 2+,则f (3)=( )A .8B .9C .11D .105. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .26. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .27. 若复数z 满足iz=2+4i ,则在复平面内,z 对应的点的坐标是( )A .(2,4)B .(2,﹣4)C .(4,﹣2)D .(4,2)8. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .﹣2B .2C .﹣98D .989. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.31210.已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是()A .B .C .(﹣,)D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知三个社区分别有低收入家C B A ,,庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从社C 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.12.高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( )A .720B .270C .390D .300二、填空题13.已知为抛物线上两个不同的点,为抛物线的焦点.若线段的中点的纵坐标为2,M N 、24y x =F MN ,则直线的方程为_________.||||10MF NF +=MN14有两个不等实根,则的取值范围是.()23k x =-+15.在三角形ABC 中,已知AB=4,AC=3,BC=6,P 为BC 中点,则三角形ABP 的周长为 . 16.【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函()f x xlnx ax =-+()0e ,数,函数,当时,函数g (x )的最大值M 与最小值m 的差为,则a 的值()22xa g x e a =-+[]03x ln ∈,32为______.17.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .18.设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= .三、解答题19.已知函数f (x )=x 2﹣(2a+1)x+alnx ,a ∈R (1)当a=1,求f (x )的单调区间;(4分)(2)a >1时,求f (x )在区间[1,e]上的最小值;(5分)(3)g (x )=(1﹣a )x ,若使得f (x 0)≥g (x 0)成立,求a 的范围.20.函数f (x )=sin 2x+sinxcosx .(1)求函数f (x )的递增区间;(2)当x ∈[0,]时,求f (x )的值域.21.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈(1)当时,求的单调区间;1m =()f x (2)令,区间,为自然对数的底数。
文成县第三中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)2. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是()A .﹣3<a <﹣1B .﹣3≤a ≤﹣1C .a ≤﹣3或a ≥﹣1D .a <﹣3或a >﹣13. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .1﹣B .﹣C .D .4. 函数f (x )=ax 2+bx 与f (x )=logx (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A .B .C .D.5. 已知函数f (x )是定义在R 上的奇函数,若f (x )=,则关于x 的方程f(x )+a=0(0<a <1)的所有根之和为( )A .1﹣()aB .()a ﹣1C .1﹣2aD .2a ﹣16. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A .B .C .D .班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=;④对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小.其中正确的说法的个数是()A.1B.2C.3D.48.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0B.2x+y﹣1=0C.x﹣2y﹣5=0D.2x+y﹣5=09.函数f(x)=log2(x+2)﹣(x>0)的零点所在的大致区间是()A.(0,1)B.(1,2)C.(2,e)D.(3,4)10.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.11.极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,则|PQ|的最小值为()A.1B.C.D.212.满足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的个数为()A.1B.2C.3D.4二、填空题13.设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为 .14.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
杞县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若如图程序执行的结果是10,则输入的x 的值是( )A .0B .10C .﹣10D .10或﹣102. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( ) A .1B.C.D.3. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.4. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( ) A. B.或C.D.或5. 在△ABC 中,b=,c=3,B=30°,则a=( ) A.B .2C.或2D .26. i是虚数单位, =( )A .1+2iB .﹣1﹣2iC .1﹣2iD .﹣1+2i7. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( ) A.B.C.D.8. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( ) A .1B.C .e ﹣1D .e+1班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________9. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D . 10.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x11.已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )A .2B .C .D .12.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .8640二、填空题13.若等比数列{a n }的前n 项和为S n ,且,则= .14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e e xxf x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.15.在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,则|AC|= .16.函数y=sin 2x ﹣2sinx 的值域是y ∈ .17.在(2x+)6的二项式中,常数项等于 (结果用数值表示).18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________.【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.20.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.21.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB 、AD 的斜率分别为k 1,k 2,试问:是否存在实数λ,使得k 1+λk 2=0成立?若存在,求出λ的值;否则说明理由.22. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.23.已知椭圆:+=1(a >b >0)的一个顶点为A (2,0),且焦距为2,直线l 交椭圆于E 、F 两点(E 、F 与A 点不重合),且满足AE ⊥AF . (Ⅰ)求椭圆的标准方程;(Ⅱ)O 为坐标原点,若点P 满足2=+,求直线AP 的斜率的取值范围.24.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.杞县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,当x<0,时﹣x=10,解得:x=﹣10当x≥0,时x=10,解得:x=10故选:D.2.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.3.【答案】B【解析】4.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B5.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.6.【答案】D【解析】解:,故选D.【点评】本小题考查复数代数形式的乘除运算,基础题.7.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.8.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.9.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.10.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.11.【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=﹣2x+z,由图可知z max=2×1+1=3,z min=2a+a=3a,由6a=3,得a=. 故选:B .【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.12.【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15, 又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320. 故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.二、填空题13.【答案】 .【解析】解:∵等比数列{a n }的前n 项和为S n ,且, ∴S 4=5S 2,又S 2,S 4﹣S 2,S 6﹣S 4成等比数列,∴(S 4﹣S 2)2=S 2(S 6﹣S 4), ∴(5S 2﹣S 2)2=S 2(S 6﹣5S 2),解得S 6=21S 2,∴==.故答案为:.【点评】本题考查等比数列的求和公式和等比数列的性质,用S 2表示S 4和S 6是解决问题的关键,属中档题.14.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0x xf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 15.【答案】 1 .【解析】解:在△ABC 中,A=60°,|AB|=2,且△ABC 的面积为,所以,则|AC|=1.故答案为:1.【点评】本题考查三角形的面积公式的应用,基本知识的考查.16.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.17.【答案】240【解析】解:由(2x+)6,得=.由6﹣3r=0,得r=2.∴常数项等于.故答案为:240.18.【答案】【解析】三、解答题19.【答案】【解析】解:(1)z为实数⇔m2+2m﹣3=0,解得:m=﹣3或m=1;(2)z为纯虚数⇔,解得:m=0;(3)z所对应的点在第四象限⇔,解得:﹣3<m<0.20.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.21.【答案】【解析】解:(Ⅰ)∵,∴a=c,∴b2=c2∴椭圆方程为+=1又点A(1,)在椭圆上,∴=1,∴c2=2∴a=2,b=,∴椭圆方程为=1 …(Ⅱ)设直线BD方程为y=x+b,D(x,y1),B(x2,y2),1与椭圆方程联立,可得4x2+2bx+b2﹣4=0△=﹣8b2+64>0,∴﹣2<b<2x1+x2=﹣b,x1x2=∴|BD|==,设d为点A到直线y=x+b的距离,∴d=∴△ABD面积S=≤=当且仅当b=±2时,△ABD的面积最大,最大值为…(Ⅲ)当直线BD过椭圆左顶点(﹣,0)时,k==2﹣,k2==﹣21此时k1+k2=0,猜想λ=1时成立.证明如下:k 1+k 2=+=2+m=2﹣2=0当λ=1,k 1+k 2=0,故当且仅当λ=1时满足条件…【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应用,考查分析问题解决问题的能力.22.【答案】 【解析】(Ⅰ)(3,0)F在圆22:(16M x y +=内,∴圆N 内切于圆.MNM NF +∴轨迹E 的方程为4(11OA OC =2(14)(14k k ++≤当且仅当182,5>∴∆23.【答案】【解析】解:(Ⅰ)由题意可得a=2,2c=2,即c=1, b==,则椭圆的标准方程为+=1;(Ⅱ)设直线AE 的方程为y=k (x ﹣2),代入椭圆方程,可得(3+4k 2)x 2﹣16k 2x+16k 2﹣12=0,由2+x E=,可得x E=,y E=k(x E﹣2)=,由于AE⊥AF,只要将上式的k换为﹣,可得x F=,y F=,由2=+,可得P为EF的中点,即有P(,),则直线AP的斜率为t==,当k=0时,t=0;当k≠0时,t=,再令s=﹣k,可得t=,当s=0时,t=0;当s>0时,t=≤=,当且仅当4s=时,取得最大值;当s<0时,t=≥﹣,综上可得直线AP的斜率的取值范围是[﹣,].【点评】本题考查椭圆的方程的求法,考查直线和椭圆方程联立,运用韦达定理,考查直线的斜率的取值范围的求法,注意运用基本不等式,考查运算能力,属于中档题.24.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.。
上学期11月月考 二 年 级 数 学
(时间:60分钟 满分100分 其中卷面分3分) 制卷人: 审核人:
题 号
一
二
三
四
五
六
七
卷面分
总 分
得 分 【卷首语】又一个月结束了,大家认真完成下面各题,看看这个月的收获,祝大家都取得一个满意的分数。
一、口算。
(16分)
9×6= 7×8= 9×5= 8×4= 9×5+5= 6×3= 6×6= 7×6= 3×8= 8×7-20= 9×2= 8×5= 7×1= 2×6= 7+7+7+7= 1×8-4=
二、填一填(1、2、3、5题每空1分,4、6、
7
、8
题每空2
分,共34分) 1、将算式补充完整。
6×□=42 3×4=6×□ 9-□=5+2 5×8=□+5 □×9=6×3 20-□=8×2 2、在○里填上“>”、“<”或“=”。
8×5○8+5 6×6○4×9 7×1○7+1 7×7○14 3、看谁填得对。
七( )五十六 三( )二十四 ( )九二十七 五( )四十五 六( )五十四 ( )八六十四 4、( )里最大能填几?
7×( ) <
38 45>8×( ) 3×( ) <25 52>9×( )
5、请写出4个积是24的乘法算式。
6、认真看图,填一填。
7、下面哪幅图是小丽看到的,打“√”。
8、如图,从正面看,我们看到的是一个( )形。
三、判断。
对的在( )里画“√”,错的画“×”。
(6分)
1、8+8+8=3×8=8×3 ( )
2、6个星期一共有30天。
( )
3、求8个6相加的和是多少的算式是8+6。
( )
4、一串葡萄有7个,5串葡萄有12个。
( )
5、5个8的和与8个5的和相等。
( )
6、3个小朋友比高矮,帆帆比亮亮矮,晶晶比亮亮高,他们从高到矮排列为:帆帆、亮亮、晶晶。
( ) 四、看图列式。
(6分) 1、一共有多少个○? ○○○○○○○○○ ○○○○○○○○○
○○○○○○○○○ 算式:
2、
算式:
五、摆一摆,填一填、算一算。
(8分)
1、摆△,△的个数是○的3倍。
(4分)○○○○○○○
算式:
2、摆一个△要()根小棒,
摆一个要()根小棒,摆一个要()跟小棒,每次增加一个△,只需增加()根小棒。
(每空1分)
六、解决问题。
(22分)
1.老师买了8盒彩色粉笔,买的白粉笔是彩色粉笔的4倍,老师买了多少盒白粉笔?(4分)
2.二(1)班女同学排2行队,一行有8人,另一行有9人,一共有几个女同学?(4分)
3.二(2)班买9个毽子和一辆玩具汽车,一共要付多少钱?(4分)
9元2元
4.小王有9张5元的钞票,够不够买下图中的裙子?(4分)
48元
5.我校靠近路边的围墙上每隔8米插一面小彩旗,从头到尾插7面,这面墙有多长?(6分)
七、拓展延伸(5分)
一种布每米8元,妈妈要买10米这种布,一共需要多少钱?。