集合的三种表示方法
- 格式:ppt
- 大小:966.00 KB
- 文档页数:11
集合的三种表示法:
1.列举法:列举法就是将集合的元素逐一列举出来的方式。
例如,光学中的三原色可以
用集合{红,绿,蓝}表示;由四个字母a, b, c, d组成的集合A可用A={a,b,c,d}表示,如此等等。
列举法还包括尽管集合的元素无法- -一列举,但可以将它们的变化规律表示出来的情况。
2.描述法:描述法的形式为{代表元素|满足的性质}。
设集合S是由具有某种性质P的元
素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合: S={x|P(x)}。
图像法,图像法,又称韦恩图法、韦氏图法,是一种利用二维平面.上的点集表示集合的方法。
一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
3.符号法:有些集合可以用一些特殊符号表示,如: N: :非负整数集合或自然数集合
{0,1,2,3,.、Z:整数集合.-1,01,. Q:有理数集合、Q+: 正有理数集合、Q-: 负有理数集合、R:实数集合(包括有理数和无理数)。
集合及其表示知识要点1.集合概念(1)我们常常把能够确切指定的对象看作一个整体,这个整体就叫做集合,简称集。
集合中的各个对象叫做这个结合的元素。
集合常用大写字母A ,B ,C ……表示,集合中的元素用小写字母a b c ⋅⋅⋅、、表示。
例如:a 是集合A 中元素,记作a A ∈,a 不是A 中元素,记作a A ∉,分别读作“a 属于A ”,“a 不属于A ”。
(2)集合的分类:有限集、无限集和空集。
空集记作∅。
(3)特殊集合的表示:自然数:N ;不包括零的自然数:N *;整数:Z ;有理数:Q ;实数:R 。
2.集合的表示法(1)列举法:将集合中的元素一一列举出来(列举时不考虑元素的顺序)并且写在大括号内,这种表示集合的方法叫列举法。
(补充:比较适合个数较少的有限集)(2)描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所具有的共同特性,即{}A x x P =∈,这中表示集合的方法叫做描述法。
(3)图示法:用图形围成的区域来表示集合的方法叫做集合的图示法,通常用圆及圆内部表示集合。
3.集合元素的性质:确定性、互异性、无序性。
4.集合之间的关系(1)子集及子集相关定义:对于两个集合A 和B ,如果A 中任何一个元素都属于B ,那么集合A 叫做集合B 的子集。
记作A B ⊆或B A ⊇,读作“A 包含于B ”或“B 包含A ”。
我们规定∅是任何集合的子集。
对于集合A 、B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集,记作A B 或B A ,读作“A 真包含于B ”或“B 真包含A ”。
(2)相等的集合:两个集合A 、B ,如果A B ⊆且B A ⊆,那么叫做集合A 与集合B 相等,记作A=B 。
精选例题例1、 用适当的符号;;;;≠≠∈⊂∉=⊃填空. 3.14_______;Q {}0______0; ________;N ∅________;Z N +* 0________∅ 2;Q________;Q π {}2_______;-偶数 {}{}1________-奇数0.3_______;Q {}1________;质数{}{}21,_______21,x x k k Z t t k k Z =-∈=+∈ {}2_______20,;x x x R ∅+=∈{}{}24,_________,y y x x R z z x x R =∈=∈ 例2、用适当的方法表示下列集合:(1) 关于x 的不等式||5x <的整数的解集;(2) 所有奇数构成的集合;(3) 方程0)2)(1(22=---x x x 的解的集合;(4) 直角坐标平面上所有第三象限的点;(5) 函数3y x =- 的所有函数值组成的集合。
代数部分集合1.集合把某种共同性质的一些事物看作一个整体,就是一个集合。
集合里的各个事物叫做这个集合的元素。
集合一般用大写字母A,B,C......表示,集合的元数一般用小写字母a,b,c......表示。
自然数记作N;整数集记作Z;有理数集记作Q;实数集记作R。
不含任何元素的合集叫作空集。
空集通常记作∅。
如果a是合集A的元素,就说a属于集合A,记作a∈A;如果b不是合集A的元素,就说b不属于集合A,记作b∉A。
关于合集的概念,要注意以下几点:①确定性:对于一个给定的集合,它的元素是确定的。
这就是说,任何一个对象或者是这个合集的元素,或者不是它的元素,二者必具其一。
②互异性:对于一个给定的集合,集合中的元素是互异的。
这就是说集合中任何两个元素都是不同对象。
因此,集合中的元素没有重复现象。
③无序性:集合只与组成它的元素有关,而与它的元素顺序无关。
2.集合的表示法集合表示方法,常用的有以下三种:①列举法:把集合中的元素一一列举出来,写在一个大括号内。
例如:小于10的正偶数组成的集合可表示为{2468}。
②描述法:把合集中元素的公共属性描述出来,写在一个大括号内。
例如:所有直角三角形组成的集合可表示为{直角三角形};不等式x-5>2的解的集合可表示为{x | x-5>2}.③文氏图法:把集合中的全部元素用一条封闭的曲线圈起来(其实就是写在圆圈内),或用曲线内的平面表示集合。
如下图:二、集合之间的关系1.子集如果集合A中任何一个元素都是集合B的元素,那么集合A叫作集合B的子集,记作:A⊆B,或B⊇A它们分别读作:“A包含于B““B包含A“。
如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A就叫做集合B的真子集,表示为:A⊂B、B⊃ A空集是任何集合的子集对于两个集合A与B,如果A⊆B,同时B⊇A,我们就说这两个集合相等,记作:A=B2.交集对于给定的集合A,B,有同时属于A与B的所有元素组成的集合,叫作集合A与B的交集,记作:A∩B,读作:“A交B”。
1.1.2 集合的表示方法教材知识检索考点知识清单 1.列举法将集合中的元素____,写在____表示集合的方法. 2.描述法描述法的一般形式为 ,其意义是表示由集合I 中具r 有性质____的所有元素构成的集合.要点核心解读1.集合常用的表示方法有列举法、描述法(1)列举法,把集会中的元素一一列举出来,写在大括号内表示集合的方法,叫列举法,例,如,A={指南针:,造纸,火药,印刷}.列举法适合表示有限集,当集合中元素的个数较少时,用列举法表示这榉的集合较为方便,而且使人一目了然.(2)描述法,把集合中元素的公共 属性描述出来,写在大括号内表示集合的方法,叫做描述法 ,它的一般形式为)},(|{x P x 竖线前面的x 表示集合中元素的一般形式,而后面的P(x)表示集合元素x 的公共属性,例如,n {z n A ∈=}.8<n 在不引起混淆的情况下,为了简便,有些集合用描述法表示时,可省去竖线及左边的部分,例如由所有圆组成的集合,可表示为{圆}.如表示由直线y=x 上所有的点构成的集合,可用下列三种方法: ①文学语言形式:直线y=x 上所有的点构成的集合; ②符号语言形式:};|),{(x y y x =③图形语言形式:在平面直角坐标系内画出直线x y =(图略).2.对集合表示法的理解(1)列举法可以看清集合的元贰描述法可以看清集合元素的特征.(2)两种表示法里的“{ }”都有“全体”“集合”的含义,因此,{全体整数}中的“全体”二字是多余的,应改为{ 整数}.(3)除了用列举法和描述法来表示集合,还可以利用图形表示集合,也可以通过集合的运算来表示集合,例如 }2,1{=A ⋅}3,2{3.选择适当的方法表示集合的规律集合的常用表示方法:列举法和描述法,在集合的运算中经常用到,在具体解题中:要根据题目的特点,选用适当的方法表示集合.(1)对于有限集或元素间存在明显规律的无限集,可采用列举法.(2 )对于无明显规律的无限集,不能将它们一一列举出来,可以通过将集合中元素(只有这个集合才有)的共同特征描述出来,即采用描述法.(3)有些集合既可用列举法,又可用描述法.典例分类剖析考点1集合的表示方法[例1]用适当的方法表示下列集合: (1)所有非负偶数组成的集合;(2)所有小于20的既是奇数又是质数的正整数组成的集合;9)3(2-x 的一次因式组成的集合;(4)方程0)5)(2)(1(2=---x x x 的解组成的集合; (5)直角坐标系内第三象限的点组成的集合. [解析] };,8,6,4,2,0{},2|){1( 或N n n x x ∈=};3,3){3(};19,17,13,11,7,5,3){2(+-x x⋅<<-}0,0|),){(5(};5,5,2,1){4(y x y x[点拨]这里(1)中第二种表示法及(2)、(3)、(4)为列举法,而(1)中第一种表示法和(5)为描述法.实数的集合、点的集合是集合的两种重要形式,通过本例,读者要学会熟练地写出一定条件下的这两种形式的集合,为今后的学习奠定基础.母题迁徙1.分别用自然语言、图形语言、集合语言表示“直线y=x 上所有点构成的集合”. 考点2 列举法与描述法的转换[例2] (1)已知集合},16|{z xN x M ∈+∈=求M ; (2)已知集合},|16{N x z xC ∈∈+=求C . [解析] 集合M 、C 中元素的形式不一致,要正确认识。
集合的表示方法集合是数学中的一个重要概念,可以用来表示具有某种特定性质的对象的整体。
在集合论中,集合通常用一对大括号{}来表示,其中包含了集合中的元素,元素之间用逗号隔开。
另外,还可以通过描述性的方法来定义集合的特定性质。
一种常见的集合表示方法是列举法。
列举法是通过一一列举出集合中的全部元素来表示集合。
例如,集合A={1, 2, 3, 4, 5}表示的是一个包含了整数1、2、3、4和5的集合。
列举法直观明了,容易理解,但对于包含无限个元素的集合来说,用列举法表示是不可行的。
另一种常见的集合表示方法是描述性法。
描述性法是通过描述集合中元素的特定性质来表示集合。
例如,集合B={x | x是整数且x>0}表示的是所有大于0的整数组成的集合。
在描述性法中,可以使用变量、运算符和量词等数学符号来描述集合中元素的特性。
描述性法具有灵活性,可以表示各种类型的集合,但需要具备一定的数学基础才能理解和运用。
除了列举法和描述性法,还有一些特殊的集合表示方法。
例如,空集表示一个不包含任何元素的集合,用符号∅或{}表示;全集表示一个包含所有可能元素的集合,通常表示为U;单元素集合表示只包含一个元素的集合,如{1};子集表示一个集合中的元素都是另一个集合中的元素,用符号⊆表示。
在集合的表示方法中,还有一个重要的概念是集合的运算。
集合的运算包括并集、交集、差集和补集等。
并集表示两个或多个集合中的所有元素的集合,用符号∪表示。
交集表示两个或多个集合中共有的元素的集合,用符号∩表示。
差集表示一个集合减去另一个集合中的元素后剩下的元素的集合,用符号-表示。
补集表示在某个全集中除了集合中的元素之外的所有元素的集合,用符号'或C表示。
综上所述,集合的表示方法多种多样,可以用列举法、描述性法、空集、全集、单元素集合、子集以及集合运算等方法来表示。
不同的表示方法适用于不同的情况,灵活运用这些表示方法可以更好地描述和处理数学中的集合问题。
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
表示集合的三种基本方法
表示集合的三种基本方法是:子集构造法、并集构造法和规格语法(set-builder notation)。
子集构造法是指一个集合可以由他的子集来构成,其中一个集合A包含所有的子集B,C,D,…,那么它就可以用A = {B, C, D, …}来表示。
这种方法也可以把一个复杂的集合分解成几个子集来构造,比如说有一个集合S,它可以由S1和S2构成,那么它可以用S = S1∪S2来表示,它的意思就是S1和S2的并集就是S。
并集构造法是指一个集合可以由它的并集来构成,其中一个集合A包含所有的子集B,C,D,…,那么它就可以用A = ∪{B, C, D, …}来表示。
这种方法可以把一个复杂的集合分解成几个子集来构成,比如说有一个集合S,它可以由S1,S2,S3构成,那么它可以用S = S1∪S2∪S3来表示,它的意思就是S1,S2,S3的并集就是S。
规格语法(set-builder notation)是一种比较抽象的表示方式,它可以用来表示一个集合的成员,比如说有一个集合S={x | x是偶数},那么可以用S={x | x为偶数}来表示,它的意思就是集合S包含所有的偶数。
总之,表示集合的三种基本方法是子集构造法、并集构造法和规格语法(set-builder notation)。
子集构造法
可以将一个复杂的集合分解成几个子集来构成;并集构造法可以将一个复杂的集合由它的并集来构成;规格语法(set-builder notation)可以用来表示一个集合的成员。
常见集合的字母表示方法常见集合的字母表示方法在数学中,集合是由一组具有共同性质的对象组成的,这些对象被称为集合的元素。
为了方便表示和描述集合,人们使用了一种字母表示方法。
本文将介绍常见集合的字母表示方法,并探讨一些与之相关的概念和应用。
一、整数集合(Z)整数集合是所有整数的集合。
通常用大写字母Z表示整数集合,其中Z的定义如下:Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}其中"..."表示整数集合的无穷延伸。
整数集合是一个无限集合,包括负整数、零和正整数。
二、自然数集合(N)自然数集合是所有正整数的集合。
通常用大写字母N表示自然数集合,其中N的定义如下:N = {1, 2, 3, ...}自然数集合是一个无穷集合,包括所有大于等于1的整数。
三、实数集合(R)实数集合是包括有理数和无理数的集合。
通常用大写字母R表示实数集合,其中R的定义如下:R = {x | x是一个实数}实数集合是一个连续的集合,包括所有实数,无论是有理数还是无理数。
四、有理数集合(Q)有理数集合是可以表示为两个整数之比的数的集合。
通常用大写字母Q表示有理数集合,其中Q的定义如下:Q = {p/q | p和q是整数,且q≠0}有理数集合包括所有整数和所有可以表示为两个整数之比的数,如分数等。
五、正整数集合(Z+)正整数集合是所有大于零的整数的集合。
通常用大写字母Z+表示正整数集合,其中Z+的定义如下:Z+ = {1, 2, 3, ...}正整数集合是一个无穷集合,只包括大于零的整数。
在数学中,集合的字母表示方法不仅能够方便地表示和描述集合,还能够帮助我们更好地理解和应用集合的概念。
通过对常见集合的字母表示方法的介绍,我们可以更清楚地了解整数、自然数、实数、有理数和正整数等集合之间的关系和特点。
总结回顾:- 整数集合Z是包括负整数、零和正整数的集合。
- 自然数集合N是所有大于等于1的整数的集合。