钢的普通热处理及常见缺陷与补救措施
- 格式:doc
- 大小:505.50 KB
- 文档页数:15
四种常见不锈钢加工热处理缺陷介绍什么是不锈钢的热处理?这种不锈钢加工工艺是一种将不锈钢加热到一定温度并且继续保持一段时间后,用特定的方法将其冷却,从而得到加工要求的金属组织和既定性能。
作为常见的一种不锈钢加工工艺,自然也会有某些加工缺陷,下面就来讲下这些缺陷。
不锈钢热处理过热现象不锈钢热处理加工中一旦过热就非常容易使得奥氏体不锈钢晶粒粗大,降低零件的机械性能。
一般过热不锈钢加热温度过高或者过长时间在高温下保温,就容易引起奥氏体晶粒粗化称为过热。
粗大的奥氏体晶粒会导致降低不锈钢的韧性,脆性转变温度升高,会导致淬火时的变形开裂倾向增高。
导致过热的原因其实是炉温仪表失控或混料。
一般过热的金属组织可经退火、正火或多次高温回火后,通常能重新奥氏化使晶粒细化。
断口遗传有过热组织的不锈钢材,经重新加热淬火后,虽然能让奥氏体晶粒细化,但有时也仍然会出现粗大颗粒状断口。
产生断口遗传的原因有很多,争议也比较大,通常被认为曾因加热温度过高而使MnS之类的杂物溶入奥氏体并富集于晶接口,而冷却时这些夹杂物又会沿晶接口析出,受冲击时易沿粗大奥氏体晶界断裂。
粗大组织的遗传:有粗大马氏体、贝氏体、魏氏体组织的不锈钢件重新奥氏化时,以慢速加热到常规的淬火温度,甚至再低一些,不锈钢内的奥氏体晶粒仍然是粗大的,这被称为组织遗传性。
而要消除粗大组织的遗传性,可采用中间退火或多次高温回火处理。
过烧现象不锈钢热处理的加热温度过高,不但会导致奥氏体晶粒粗大,还会使得晶界局部出现氧化或熔化,使得不锈钢的晶界弱化,也被叫做过烧。
不锈钢过烧后的性能会严重恶化,淬火时形成龟裂。
并且过烧的金属组织是无法恢复,只能做报废。
所以在不锈钢加工中要尽量避免过烧情况。
脱碳和氧化不锈钢在进行加热时,表层的碳与介质(或气氛)中的氧、氢、二氧化碳及水蒸气等发生反应,会降低表层碳浓度,这称为脱碳,脱碳钢淬火后表面硬度、疲劳强度及耐磨性降低,并且表面形成残余拉应力易形成表面网状裂纹。
钢铁热处理缺陷的分析摘要:本文对钢铁进行热处理时常见缺陷进行了分析,也列举了若干个实例,以及避免缺陷出现的措施.关键词:过热淬火开裂热处理是很多机械零件在加工过程中要经历的一道工序.热处理一般分为三个阶段,即加热保温,冷却.在为了进行热处理而进行加热的初期,一般会出现如下一些问题:1.当零件加热过快时,尤其是大型零件,其表面温度快速升高,发生热膨胀,而内层温度升高缓慢,热膨胀与表层不同步,产生热应力;2.零件加热温度过高或者保温时间过长时,零件会发生显著的氧化,脱碳,甚至过烧3.用导热性差的纲制造的零件,当没有加热透就进行塑性加工,则零件的中心部位会产生裂纹;4.如果零件仅从一边或局部强烈地加热,会出现加热不均匀的现象;下面逐一进行分析:一.加热初期产生缺陷如果开始加热时,加热速度过快或者非整体加热,产生的缺陷会导致零件的损坏.例如,某传动装置中的小齿轮轴,材料是铬钼纲50crmo,在不大的弯曲应力作用下,仅仅使用了三个月,就破坏了.为了修理,在轴的中心加工了一个孔,发现在该轴内部还有第二个裂纹.破坏是从这第二个内部裂纹扩展到大部分断面的.以这个内部裂纹为起源.在使用载荷作用下,产生了两个疲劳裂纹.对该轴作纵断面的抛光检查,发现破坏的起始点是具有带状偏析的地方.这种带状偏析在大型锻件中经常出现,原因就是加热速度过快,原子没有来得及扩散均匀.在超载的情况下,偏析组织强度低,承受不住载荷的作用,产生了裂纹而使得齿轮轴破坏.某钢制厚壁容器,调质后在u型内侧的圆角处作为起点,产生了纵向裂纹.在容器的横断面的抛光面上进行鲍曼试验,证实容器的纯度很高.在裂纹及其附近可以明显地看到氧化皮,以及脱碳的现象.根据这个现象倒推,氧化皮和脱碳是在热处理(调质)时出现的.容器是在冷的状态下装进淬火炉的.加热过快,膨胀不一致导致产生了裂纹.对容器打孔是为了阻止薄弱区域的延伸,但是反而加剧了应力的集中.应该在热处理以后再打孔才是适宜的.用31CrMoV钢制的渗氮活塞杆,热处理后矫直时产生了破裂.根据裂纹的颜色,剖开后观察,活塞杆先是产生了纵向的弯曲裂纹,矫直时该弯曲裂纹进一步扩展,才最终造成了活塞杆的破坏.通过表面腐蚀可以看到,活塞杆的破坏处,有加热留下的小点状,这些小点状是调质组织发生了变化,析出了铁素体.由此可知,活塞杆矫直时的加热,温度超过了750度,氮化物聚集成球状,导致表面硬度有比较大的降低.总之,为了矫直活塞杆而对活塞杆进行快速加热的方法是不合适的.渗氮层回火到500度以下是稳定的.所以,矫直时,在低温下进行均匀的加热,是允许的.另外,一般对渗氮的零件,不需要矫正.原因是渗蛋温度比较低,渗氮后冷却也慢,所以残余应力小,能够防止零件产生变形.当然,在实际操作中,有些细节要加以注意,就是当零件装入渗氮炉时,要注意别使应力增加,要防止零件因自重而造成弯曲,最好在炉中吊装零件.尤其是高速钢,因为其导热型差,传热慢,在锻造和淬火时,必须进行整体缓慢而充分地加热.二.加热后出现氧化皮加热时零件表面通常都会产生氧化皮,如果只是在一定范围内,而且只是在加热时产生,一般不认为是损害事故,虽然零件表层因为氧化而失去了大量的金属.氧化皮的厚度随着时间以抛物线的规律增加.炉中的多种气体,不论是过剩的氧,还是二氧化碳,还是水蒸气,都可以发生氧化反应形成氧化皮,尤其是硫化氢会促进氧化皮的产生.氧化皮出现以后,可以通过酸洗去掉,也可以通过机械加工去除.但是也有特殊情况.就是,含铜的钢,用酸洗的方法很难除去氧化皮,而且还会使零件表面产生缺陷.城市煤气不含水蒸汽,氧很少,如果燃烧时温度高,工件表层容易形成鳞片层.原因是氧侵入奥氏体晶界,并与金属原子结合所致.宏观上,鳞片层呈桔皮状或者鳄鱼皮状,工件进行热锻或者冷塑性加工,表明附近很容易形成初期裂纹.如果钢中成分含有铜,会更严重.解决办法是,避免长时间加热及过热,把气体中氧的浓度控制在百分之一到百分之二,以及钢中含铜尽量低.如果加热温度过高或者时间过长,则会形成粗大的晶粒,并在晶界上析出微小氧化物,锻造时会造成开裂.这种现象称为过烧.过烧与过热不同,过烧不能通过热处理进行改善,只有通过热锻才可以消除.某钢丝直径5.8毫米,铅浴淬火后的组织发生了晶界氧化,拉拔时开裂.此钢含有0.16%的铜.最外面包围着条状奥氏体晶界,显微镜下呈褐色,是非金属夹杂物.开裂的原因正如上面的分析.某耐热钢15Mo3制成壁厚9毫米的无缝热拉锅炉水管,管子内填充沙子,进行热弯曲变形,拉拔生成的纤维组织处,产生了很多裂纹.分析其化学成分,碳0.13%,硅0.17%,锰0.53%,磷0.032%,硫0.022%,钼0.26%,以及无意添加的铜0.26%.管子的弯曲部分是含微量铁素体的粗大晶粒组织,管子的直线部分是铁素体加细晶粒的朱光体,所以导致弯曲时强烈过热了,并在表明附着了较多的鳞片组织,鳞片层下的铁中,有金属铜的析出,在母相附近的亚表面,有氧化物析出,也有细小的铜的析出,析出的氧化物沿着奥氏体晶界,深度达到3毫米.这种表层深处发生过烧并伴随铜的析出的缺陷被称为红热脆.三.加热后开裂某沸腾钢抗拉强度大于370兆帕,其使用无温控的锻造设备,钢棒发生过烧,把钢棒锻出刀刃时产生开裂.沿刀刃垂直剖开,晶粒很粗大,开裂发生在夹杂物覆盖的奥氏体晶界处.由此可以看出,刀刃在锻后淬火了,由于钢棒晶粒较粗,尽管含碳量不高,只有0.17%,锻后冷却时组织还是全部变成了马氏体.小结:钢铁产品进行热处理是非常普遍的,也非常重要,所以,在操作过程中,要特别注意预防各种缺陷,以免出现不必要的损失和浪费.。
热处理常见缺陷分析与对策时 间:2020.10.28 学习人:吴俊 部 门:试验检测中心基本知识点:1、热处理缺陷直接影响产品质量、使用性能和安全。
2、热处理缺陷中最危险的是:裂纹。
有:淬火裂纹、延迟裂纹、冷处理裂纹、回火裂纹、时效裂纹、磨削裂纹和电镀裂纹。
其中生产中最常见的裂纹是纵火裂纹。
3、热处理缺陷中最常见的是:热处理变形,它有尺寸变化和形状畸变。
4、淬火获得马氏体组织,以保证硬度和耐磨性。
淬火后应进行回火,以消除残余应力,如W6Mo5Cr4V2应进行一次回火。
5、亚共析钢淬火加热温度: +(30-50)度。
6、高速钢应采用调质处理即淬火+高温回火。
7、回火工艺若控制不当则会产生回火裂纹。
8、热处理过热组织可通过多次正火或退火消除,严重过热组织则应采用高温变形和退火联合作用才能消除。
9、渗氮零件基本组织为回火索氏体。
其原始组织中若有大块F 或表面严重脱碳,则易出现针状组织。
10、有色金属最有效的强化手段是固溶处理和固溶处理+时效处理。
11、疲劳破坏有疲劳源区、裂纹疲劳扩展和瞬时断裂三个阶段。
12、高速钢的热组织为:共晶莱氏体,也有可能晶界会熔化。
13、应力腐蚀开裂的必要条件之一是:存在拉应力。
14、65Mn 钢第二类回火脆性温度区间为250-380。
钼能有效抑制第二类回火脆性。
15、热处理时发生的组织变化中,体积比容变化最大的是马氏体。
16、防止淬裂的工艺措施:等温淬火、分级淬火、水-油淬火和水-空气双液淬火。
17、高温合金热处理产生的特殊热处理缺陷有:晶间氧化、表面成分变化、腐蚀点、晶粒粗大及混合晶粒等。
18、感应加热淬火缺陷有:表层硬度低、硬化层深度不合格、变形大、残留应力大、尖角过热及软点与软带。
19、弹簧钢的组织状态一般为:T+M 。
20、氢脆条件:氢的存在、三项应力和对氢敏感的组织。
21、断裂有脆性断裂和韧性断裂。
绝大多数热处理裂纹属脆性断裂。
22、高碳钢淬火前应进行球化退火。
23、时效变形的主要影响因素有:化学成分、回火温度和时效温度。
钢的热处理实验中存在的问题
钢的热处理是一种常见的工业处理方法,通过改变钢材的组织结构和化学元素的状态来改变其性能,进而满足不同的工业需求。
然而,在进行钢的热处理实验时,可能会遇到以下问题:
一、温度控制不准确
钢的热处理需要在严格的温度控制下进行,以保证其组织结构的改变和化学元素的状态转化达到预期。
但是,由于仪器设备的精度限制、操作人员的技术水平等原因,实验中可能存在温度控制不准确的问题。
这将导致钢材的热处理效果不理想,甚至无法达到预期的目的。
二、时间控制不准确
钢的热处理还需要在一定的时间范围内进行,以保证组织结构的改变和化学元素的状态转化得以完成。
但是,在实验中,可能会存在时间控制不准确的情况,这将影响钢材的热处理效果,使其性能无法满足工业需求。
三、冷却方式不合理
钢的热处理需要在一定的温度下进行冷却,以使钢材的组织结构和化学元素的状态得以稳定。
但是,在实验中,可能会存在冷却方式不合理的情况,如过快或过慢的冷却速度、不同部位采用不同的冷却方式等。
这将使钢材的组织结构和化学元素的状态无法达到理想的稳定状态,从而影响钢材的性能和质量。
四、样品处理不规范
在进行钢的热处理实验时,样品的处理过程需要规范,以保证实验结果的准确性和可重复性。
但是,在实验中,可能会存在样品处理不规范的情况,如样品的制备不均匀、样品的保存不当等。
这将导致实验结果的不可靠性和不确定性,影响钢材的性能和质量评估。
总之,钢的热处理实验中存在的问题主要包括温度控制不准确、时间控制不准确、冷却方式不合理、样品处理不规范等。
为了确保实验结果的准确性和可靠性,需要采取科学、规范、严谨的实验操作和管理措施。
钢的热处理缺陷分析(2学时)一、实验目的:1、了解热处理各种热处理缺陷产生的原因及防止措施,2、用金相显微镜观察及分析各种热处理缺陷,3、学会用金相显微镜测定脱碳层的方法。
二、实验内容:在各种热处理工艺中淬火缺陷最为常见,如硬度不足、软点、变形甚至开裂等,但产生的原因很多,须丛各个方面进行检查及分析。
其中金相检验较为方便,而占有重要地位。
(一)、热处理缺陷分析的一般步骤:首先应了解零件的技术要求,使用材料、热处理工艺等。
1、零件的外观检查;有无裂纹、裂纹的情况、分布状况及大小,断口形貌。
2、硬度测量:判断热处理硬度是否达到技术要求,为金相检验提供数据。
3、必要时进行材料的化学成分分析;判断材料是否混料而误用成其它材料。
4、正确的取样;选取有代表性的部位,否则将得出错误结论。
5、金相检验:试样经磨制抛光后,必要时可在浸蚀之前检查裂纹形态和夹杂物的情况,来判断是否是形成裂纹的原因。
6、作出结论:通过多方面的检验后,找出缺陷形成及产生的证据及原因,可能的话提出改进的建议。
三、常见的热处理缺陷有如下几种;1,、中碳钢及中碳合金钢淬火后正常组织是细小及中等粗细的马氏体。
当这种马氏体组织中有部分铁素体,就会使淬火马氏体的硬度下降,当铁素体数量越多硬度就越低,产生这种现象的主要原因是加热温度低于A C3。
所致。
2、另外在中碳钢及中碳合金钢淬火后正常组织是细小及中等粗细的马氏体。
当这种马氏体组织中夹有贝氏体或屈氏体,有时还伴有少量铁素体,就会使淬火马氏体的硬度下降,后两者的数量越多则硬度越低,产生这种现象的主要原因是冷却速度不够迅速。
马氏体+铁素体组织马氏体+屈氏体组织当马氏体太细小,同时又出现白色块状铁素体,这是淬火加热温度偏低所制。
2、高碳钢及高碳合金钢再淬火后的正常淬火组织应该是针状或细针状马氏体及均匀分布的小颗粒炭化物。
当组织中炭化物颗粒较多,这说明炭化物溶入不足,马氏体的碳及合金化浓度不够,甚至有部分未溶入奥氏体的珠光体小区域存在,这时还表现为硬度低或硬度不均匀。
钢板的热处理方法钢板是一种常见的金属材料,广泛应用于建筑、汽车、机械制造等领域。
为了改善钢板的物理和化学性能,常常需要进行热处理。
本文将介绍钢板的热处理方法及其影响。
一、钢板的热处理方法1.1 软化退火软化退火是一种常见的热处理方法,适用于高碳钢、低碳钢、不锈钢等钢板。
该方法通过加热钢板至一定温度,然后缓慢冷却,以使钢板结构发生改变,从而达到软化的效果。
软化退火的作用是消除应力、提高塑性和韧性、改善加工性能。
1.2 规定化处理规定化处理是一种针对低合金钢和合金钢的热处理方法。
该方法的作用是在加热到一定温度后,维持一定时间,然后快速冷却,使钢板的结构得到改善,从而提高钢板的硬度和强度。
规定化处理的优点是能够得到均匀的组织结构,提高钢板的耐磨性和耐腐蚀性。
1.3 淬火处理淬火处理是一种针对低碳钢、合金钢和不锈钢的热处理方法。
该方法通过将钢板加热到一定温度,然后迅速冷却,以使钢板的组织结构发生相变,从而获得高硬度和强度。
淬火处理的作用是提高钢板的耐磨性、耐腐蚀性和抗拉伸性。
1.4 回火处理回火处理是一种常见的热处理方法,适用于钢板和铸件。
该方法通过在淬火后将钢板加热到一定温度,然后冷却,以使钢板的组织结构得到调整,从而达到硬度和韧性的平衡。
回火处理的作用是提高钢板的韧性和抗冲击性。
二、钢板热处理的影响2.1 硬度和强度钢板的热处理对其硬度和强度具有显著的影响。
软化退火可以降低钢板的硬度和强度,而规定化处理和淬火处理可以提高钢板的硬度和强度。
回火处理可以平衡钢板的硬度和韧性,提高钢板的抗冲击性。
2.2 韧性和塑性钢板的热处理对其韧性和塑性也具有影响。
软化退火可以提高钢板的韧性和塑性,规定化处理和淬火处理可以降低钢板的韧性和塑性。
回火处理可以平衡钢板的硬度和韧性,提高钢板的抗冲击性。
2.3 耐磨性和耐腐蚀性钢板的热处理对其耐磨性和耐腐蚀性也具有影响。
规定化处理和淬火处理可以提高钢板的耐磨性和耐腐蚀性,而软化退火和回火处理则会降低钢板的耐磨性和耐腐蚀性。
经常遇到的钢材缺陷以及修复办法模具产品在生产的过程中,会因为钢材的原因,而出现很多的问题这些问题,在一定的程度上,会影响到我们的SUJ2模具钢加工环节,来看看常见的模具会有哪些问题:第一、模具内芯散热不良长芯子模具的散热性相当重要,选用适当的材料模具钢,SUJ2,SCM440,SCM440合金钢对于产品的外观和产品的产量很大的差距。
如选用含有铍和钴的铍铜等材料,经热处理后有较高的强度、硬度、耐疲劳性、耐磨性和很好传热性。
第二、模具加工变形钢材的特性上面,如果钢材特性没有选择对,会出现SUJ2钢材材料不对的影响,变形原因之一是由于制造商为了降低成本,实际采用模具的材料并非专用模具钢材,模板的刚性不足,厚度不够,造成的变形。
预防措施:对存在碳化物严重偏析的模具钢要进行合理锻造,来打碎碳化物晶块,降低碳化物不均匀分布的等级,消除性能的各向异性。
在制造精密复杂模具时,要尽量选择碳化物偏析较小的模具钢,不要图便宜,选用小钢厂生产的材质较差钢材。
对锻后的模具钢要进行调质热处理,使之获得碳化物分布均匀、细小和弥散的索氏体组织、从而减少精密复杂模具热处理后的变形。
第三、模具活动件磨损在模具生产完成之后,模具钢会有相应的影响,SUJ2模具中活动件位置硬度不够,有锋角,选材不当等也是造成磨损的原因。
对于腐蚀性强的制品和有相当硬度、有填料的塑料,我们选用地材料表面要耐腐蚀和表面硬度要高,具备了这些特性,我们就可以很好的把握这些趋势。
微信公众号:hcsteel第四、模具钢外层断裂在SUJ2模具钢选择之后,在锻打的过程中,会出现一定的压力差,锻打的模具材料由于温度控制不当,本身就已开裂,碰到这种情况,只有换模板。
生产中的开裂乃至断裂的模板,往往是选用的材料热处理硬度过高,应力过大造成的,这些过程,就是我们平常遇到的一些问题。
热处理常见缺陷和对策热处理的目的是通过加热和冷却使金属和合金获得期望的微观组织,以便改变材料的加工工艺性能或提高工件的使用性能,从而延长其使用寿命。
热处理工件的力学性能未能达到设计技术要求,是一种常见的热处理质量缺陷。
其原因有材料选择不当、材料有固有缺陷、热处理工艺不当、加热或冷却方式不当、热处理工艺执行不严等因素造成。
工件在使用过程中,承受不同载荷,在不同工作温度下工作,因而表现为不同的失效方式。
例如过量塑性变形、断裂、疲劳、蠕变、磨损、应力腐蚀等。
工件最重要的力学性能有硬度、抗拉强度、冲击韧度、蠕变性能、疲劳性能、耐腐蚀性能等。
这些性能合格与否,需要根据工件的服役条件和技术条件具体情况具体分析,热处理工作者要掌握热处理与这些性能指标的关系,清楚什么样的热处理工艺问题会引起什么样的性能缺陷,从而找到避免和解决问题的思路。
一、硬度不合格金属材料的硬度与其静拉伸强度和疲劳强度存在一定的经验关系,并与金属的冷成形性、切削加工性和焊接性能等加工工艺性能存在某种程度的关系;硬度试验不损坏工件,测试简单,数据直观,故而被广泛用作热处理工件的最重要的质量检验指标,不少工件还是其唯一的技术要求。
硬度不合格是最常见的热处理缺陷之一。
主要表现为硬度不足、淬火冷却速度不够、表面脱碳、钢材淬透性不够、淬火后残余奥氏体过多、回火不足等因素造成的。
淬火工件在局部区域出现硬度偏低的现象叫做软点。
软点区域的围观组织多为马氏体和沿原奥氏体晶界分布的托氏体混合组织。
软点或硬度不均匀通常是由于淬火加热不均匀或淬火冷却不均匀所引起。
加热时炉温不均匀,加热温度或保温时间不足是造成加热不均匀的主要原因。
冷却不均匀主要由于淬火冷时工件表面附着着淬火介质的气泡、淬火介质被污染(例如水中有油悬浮珠)或淬火介质搅动不充分所造成的。
此外,钢材组织过于粗大,存在严重偏析,大块碳化物或大块自由铁素体也会造成淬火不均匀形成软点。
1.1 软点淬火加热的目的是使工件在淬火过程中完成组织转变。
火力锅炉的热处理缺陷及预防措施热处理是火力锅炉制造过程中必不可少的一环,它可以改变钢材
的物理性质,提升其硬度、强度和耐腐蚀性等特性,提高锅炉的耐用
性和安全性。
然而,在热处理过程中也会存在一些缺陷,如果不及时
解决,就会对火力锅炉的质量和使用寿命产生不利影响。
一、热处理缺陷种类
1. 淬火裂纹:出现在淬火工艺中,使钢材表面出现开裂现象。
2. 热裂纹:出现在高温加热和冷却过程中,使钢材表面出现开裂。
3. 变形:由于热处理过程中的热膨胀和收缩,钢材会出现不同程
度的变形,使产品尺寸不符合要求。
二、预防措施
1. 合理设计:在热处理前,应该根据材料的特性和热处理工艺要
求合理设计工艺参数,减少变形、热裂纹和淬火裂纹的产生。
2. 严格监控:在热处理过程中,需要严格监控钢材的温度和冷却
速度,以及淬火工艺的水质和水温。
同时,应该对热处理设备进行定
期检查和维护,确保其正常运行。
3. 选择优质材料:选择优质的锅炉用钢材,可以有效降低热处理
缺陷的发生率,提高锅炉的质量和使用寿命。
综上所述,热处理缺陷虽然无法完全避免,但是在生产过程中可以通过加强管理和监督,优化工艺参数和选择优质材料等方法,最大限度地减少其产生。
浅析钢的热处理常见缺陷及其防止措施作者:桂德祥来源:《科学与财富》2017年第33期摘要:在如今高速发展的社会生活中,钢是我们不可缺少的材料,为了让其达到人们预期的性能和要求,对其进行热处理,同时也产生一些缺陷,如果不采取防止措施,会造成钢制零件的报废。
因此我们有必要浅析其中原因,及其采取的措施。
关键词:热处理;缺陷;措施钢在高温下的化学作用或加热温度及加热速度选择不当,以及装炉不当等,都是可以使工件在加热时产生各种缺陷甚至导致报废。
下面根据笔者多年的工作经验,浅析一下常见的几种缺陷及应对措施。
一、氧化和脱碳氧化是指钢表面的铁被氧化成氧化铁,钢被氧化的结果,不仅是金属材料被烧损,使工件不光洁,而且影响了工件的机械性能、切削性能、腐蚀性能。
脱碳是指钢表面的碳被氧化成CO、CH4等气体,使钢的表面的含碳量降低。
氧化使钢制工件表面烧损,影响工件尺寸和光沽度。
脱碳使工件表面碳贫化从而导致工件淬火硬度或耐磨性降低,严重的氧化脱碳会造成工件报废。
对需要控制氧化和脱碳的工件,可采用下列措施。
1控制加热温度和加热时间。
在保证工件淬火硬度和组织的前提下,尽量采用较低的加热温度,并采用最短的加热时间。
2采用盐炉加热。
3采用保护气氛或可控气氛加热。
此外,加热时将工件装入有保护剂的铁箱中或涂上保护涂料,也有一定的防氧化脱碳的效果。
二、过热和过烧加热温度过高,或在高温下加热时间过长,引起奥氏体晶粒粗化,淬火后得到粗针状马氏体的现象,称过热。
过热会增加钢的脆性,容易造成淬火开裂。
过热可以返修,返修前需进行一次细化组织的正火或退火,再按正确的方法重新淬火。
如果加热温度太高,以致奥氏体晶界出现了熔化和氧化现象,称过烧。
过烧组织晶粒极为粗大,晶界有氧化物网络,钢的性能急剧下降,这种缺陷无法挽救,工件只能报废。
三、淬火硬度不够硬度不够是指整个工件或较大区域内硬度达不到技术要求。
其原因如下:1欠热造成的原因是加热温度过低或保温时间不足,工艺错误,控温系统失灵,装炉量太多使各层工件温度不均。
钢的普通热处理实例解析与缺陷分析班级:姓名:学号:2012.5.31钢的普通热处理及常见缺陷与不救措施摘要:简单介绍钢的普通热处理工艺,以及常见缺陷的不救措施,最后举例说明热处理的简单应用(用T12钢制作剪板机刀片)关键字:热处理退火正火淬火回火缺陷补救 T12钢引言通过阅读了解热处理相关的知识,热处理是一种很重要的金属加工工艺方法,也是充分发挥金属材料性能潜力的重要手段。
热处理的主要目的是改变金属材料的性能,其中包括使用性能及工艺性能。
热处理是金属零件加工工艺中的一个重要环节。
原材料质量和工件结构以及焊接、电镀处理,校直和装配时产生的应力对热处理过程及工件质量有重要的影响,因此防止热处理缺陷必须对其生产工艺过程进行分析。
列举实例说明钢的热处理的简单应用。
1.钢的普通热处理1.1 退火将钢加热到适当温度,保持一定时间,然后缓慢冷却(通常为随炉冷却)至500℃以下空冷,从而获得接近平衡状态组织的热处理工艺称做退火。
1.1.1退火目的:1.调整硬度以便进行切削加工。
工件经铸造或锻造等热加工后,硬度偏高或偏低,且不均匀,严重影响切削加工。
适当退火或正火后可使工件的硬度调整到HB170~250且比较均匀,从而改善了切削加工性能。
2.消除残余内应力,以防止钢件在淬火时产生变形或开裂。
3.细化晶粒,改善组织,提高力学性能。
4.为最终热处理(淬火+回火)作好组织上的准备。
1.1.2退货常见类型A.完全退火:完全退火是将钢件或钢材加热到Ac3以上20℃~30℃,经完全奥氏体化后进行随炉缓慢冷却,以获得近于平衡组织的热处理工艺。
应用:用于亚共析钢的铸锻件、也用于焊接结构。
过共析钢不用该方法B.球化退火: 钢随炉升温加热到Ac1以上Accm以下的双相区,较长时间保温,并缓慢冷却的工艺。
这种工艺主要适用于共析或过共析的工模具钢,目的是让其中的碳化物球化(粒化)和消除网状的二次渗碳体,因此叫做球化退火。
应用:用于过共析钢,使FeC3球化。
若在退火前组织有严重的二次渗碳体网则用正火消除,保证退火效果。
C.去应力退火:一些铸铁件、焊接件和变形加工件会残存很大的内应力,为了消除由于变形加工以及铸造、焊接过程引起的残余内应力而进行的退火称为去应力退火。
应用:消除铸、锻件、焊件和冷冲压件的残余应力。
D.再结晶退火:一些经过冷变形的材料在加热到再结晶温度以上时,由于冷变形产生的缺陷基本消失,重新生成等轴均匀的晶粒,消除乐形变强化引起效应和残余应力的热处理工艺。
应用:用于经过冷变形的钢件。
E.扩散退火(均匀化退火)扩散退火是将工件加热到略低于固相线的温度(亚共析钢通常为1050℃~1150℃),长时间(一般10~20小时)保温,然后随炉缓慢冷却到室温。
扩散退火的主要目的是均匀钢内部的化学成分。
应用:主要适用于铸造后的高合金钢。
1.2正火将钢加热到Ac3或Accm上30~50℃,保温适当时间,出炉后在空气中冷却的热处理工艺。
亚共析钢的正火加热温度为Ac3+30℃~50℃;而过共析钢的正火加热温度则为Accm+30℃~50℃。
1.2.1正火的应用:1.消除或减少过共析钢的网状先共析渗碳体组织,为球化退火作组织准备。
2.改善亚共析钢的切削性能。
亚共析钢退火后,先共析铁素体数量多,珠光体分散度小,硬度偏低,切削时易产生“粘刀”现象。
正火可以增加珠光体的数量和分散度,提高硬度,从而改善切削加工性能。
3.正火可作为一般结构件的最终热处理。
由于正火组织较细,所以比退火状态有较好的综合力学性能,而且工艺过程较为简单,所以,对于某些要求不很高的结构件和大型件可用之。
4.对某些大型或形状复杂的零件,当淬火有开裂危险时,可用正火代替淬火、回火处理。
1.2.2退火与正火的适应性:从改善切削加工性能的角度出发,低碳钢宜采用正火;中碳钢即可采用退火,也可采用正火;过共析钢用正火消除网状渗碳体后再进行球化退火。
1.3淬火将钢件加热到Ac1(或Ac3)以上30℃~50℃,保温一定的时间,然后以大于临界冷却速度Vc冷却,以获得马氏体或贝氏体组织的热处理工艺。
其主要目的是为了提高钢的硬度和耐磨性。
1.3.1影响材料淬火后组织和性能的因素主要表现为:材料的淬火加热温度淬火的保温时间淬火的冷却方法和冷却速度1.3.2淬火常见方法:单液淬火:它是将奥氏体状态的工件放入一种淬火介质中一直冷却到室温的淬火方法。
等温淬火:它是将奥氏体化后的工件在稍高于Ms温度的盐浴或碱浴中冷却并保温足够时间,从而获得下贝氏体组织的淬火方法。
分级淬火:它是将奥氏体状态的工件首先淬入略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变。
双液淬火:它是先将奥氏体状态的工件在冷却能力强的淬火介质中冷却至接近Ms点温度时,再立即转入冷却能力较弱的淬火介质中冷却,直至完成马氏体转变。
1.4 回火回火一般是紧接淬火以后的热处理工艺,回火是淬火后再将工件加热到Ac1温度以下某一温度,保温后再冷却到室温的一种热处理工艺。
1.4.1回火目的:淬火后的钢铁工件处于高的内应力状态,不能直接使用,必须即时回火,否则会有工件断裂的危险。
淬火后回火目的在于降低或消除内应力,以防止工件开裂和变形;减少或消除残余奥氏体,以稳定工件尺寸;调整工件的内部组织和性能,以满足工件的使用要求。
1.4.2钢在回火时的转变:共析钢在淬火后,得到的马氏体和残余奥氏体组织是不稳定的,存在稳定组织转变的自发倾向。
回火加热可加速这种自发转变过程。
根据转变发生的过程和形成的组织,回火可分为五个阶段:第一阶段(20~100℃):碳原子的偏聚。
第二阶段(100~200℃):马氏体分解。
第三阶段(200℃~300℃):残余奥氏体分解。
第四阶段(200℃~350℃):碳化物的转变。
第五阶段(350℃以上):渗碳体的聚集长大与α相的再结晶。
1.4.3回火工艺:按照回火后性能要求,淬火以后的回火有低温回火,中温回火、高温回火。
低温回火中温回火高温回火2.热处理的常见缺陷及补救措施2.1氧化和脱碳:工件在加热过程中,由于周围的加热介质与钢表面所起的化学作用,会使钢发生氧化与脱碳,严重影响淬火工件的质量。
氧化:是指钢的表面与加热介质中的氧、氧化性气体、氧化性杂质相互作用形成氧化铁的过程。
由于氧化铁皮的形成,使工件的尺寸减小,表面光洁度降低,还会严重地影响到淬火时的冷却速度,致使工件表面产生软点和硬度不足。
钢的氧化虽然是化学反应,但是一旦在钢的表面出现一层氧化膜之后,氧化的速度主要取决于氧和铁原子通过氧化膜的扩散速度,如图2-53所示。
由图可见,随着加热温度的升高,原子扩散速度增大,钢的氧化速度便急剧地增大,特别是在570度以上,所形成的氧化膜是以是FeO为主,它是不致密的,结构疏松的。
因此,氧原子很容易透过已形成的表面氧化膜,继续与铁发生氧化反应,所以,当氧化膜中出现FeO时,钢的氧化速度大大增加,氧化层逐渐增厚。
在570度以下氧化膜则由比较致密的Fe3O4所构成,由于处于工件表面的这种氧化膜结构致密,与基体结合牢固,氧原子难以继续渗入,故氧化的速度比较缓慢。
脱碳:是指钢表层中的碳被氧化,使钢的表层含碳量降低,钢的加热温度越高,且钢的含碳量越多(特别具有高含量的硅、钼、铝等元素时),钢越容易脱碳。
由于碳的扩散速度较快,所以钢的脱碳速度总是大于其氧化速度。
在钢的氧化层下面,通常总是存在着一定厚度的脱碳层,由于脱碳使钢的表层碳含量下降,从而导致钢件淬火后表层硬度不足,疲劳强度下降,而且使钢在淬火时,容易形成表面裂纹。
为了防止氧化、脱碳,根据工件的技术要求和实际情况,可以采用保护气氛加热、真空加热,以及用工件表面涂料包装加热等方法。
在盐浴中加热时,可以采用经常加入脱氧剂的方法,并要求建立严格的脱氧制度。
此外,对普通箱式炉稍加改造后,采用滴入煤油的办法进行保护,可大大改善加热工件的表面质量。
2.2过热和过烧钢件进行奥氏体化加热时,如加热温度过高或加热时间过长,会引起奥氏体晶粒长大变粗,形成的马氏体也粗化,这种现象叫过热。
过热的工件几乎不能防止淬火裂纹产生。
因为在生成的马氏体中存在大量微裂纹,这种马氏体裂纹会发展为淬火裂纹。
在加热温度更高的情况下,钢的奥氏体晶粒进一步粗化,并产生晶界氧化,严重时还会引起晶界熔化,这种现象叫过烧。
产生过烧的工件,其性能急剧降低。
有过热缺陷的工件,可先进行一次细化组织的正火或退火,然后再按正常规范重新淬火。
有过烧缺陷的工件因无法挽救而只能报废。
2.3 软点:工件或钢材淬火硬化后,表面硬度偏低的小区域被称之为软点。
当用水作冷却介质时,工件表面因被传热很差的蒸气膜包住而造成冷却缓慢,所以淬火后工件的软点比较严重,在存在氧化皮和脱碳的部位也会出现软点。
软点可用锉刀检查,容易锉动的地方即是软点所在部位。
为了防止软点,应该使工件在无氧化、无脱碳条件下加热;其次是加强淬火介质在淬火过程中的机械搅拌;也可采用清水中加入盐、碱,或采用聚乙烯醇等水溶性有机溶液做淬火介质,使钢件在淬火时形成蒸气膜迅速破坏,不至于出现淬火软点。
2.4 淬火裂纹淬火裂纹是由于淬火内应力在工件表层的拉应力超过冷却时钢的断裂强度而引起的,这种裂纹是工件在进入冷却介质中不久之后,温度降至Ms点(大约为250度)以下时产生的。
这是因为工件从奥氏体化温度急冷至Ms点以下的过程中,因马氏体转变使塑性急剧降低,而组织应力急剧增大,所以容易形成裂纹。
最常见的淬火裂纹如图2-54所示,有纵向裂纹、横向裂纹、网状裂纹和应力集中裂纹几种。
对于淬火后未出现而在磨削后才出现的裂纹,要区别它究竟是淬火裂纹还是磨削裂纹。
磨削裂纹的方向总是垂直于磨削方向并呈平行线形样式,淬火裂纹则与磨削方向无关并呈刀割状开裂。
形成淬火裂纹的原因:1.导致淬火裂纹的原因很多,大体可归纳为三个方面。
热处理工艺:如过热、脱碳、冷速过快、冷却操作不当、淬火后未及时回火等。
2.原材料原因:如有大块或连续分布的非金属夹杂物、碳化物偏析、白点、气孔、锻造折叠等。
3.工件结构设计或选材不当:如工件壁厚相差悬殊,具有形成应力集中的尖角、凹角等。
在选材方面对形状复杂的零件选用淬透性较低的钢种,从而造成在激烈的冷却过程中开裂。
淬火裂纹的防止:淬火裂纹一旦产生便无法挽救,因此必须设法防止。
为了防止淬火裂纹,首先应改善零件结构设计的工艺性,并正确选用钢材。
在淬火技术方面,应特别注意在点以下Ms点以上快冷、在Ms慢冷,即遵守“先快后慢”的原则,如双介质淬火和分级淬火能有效防止淬火裂纹。
工件淬火后要注意立即回火,因为淬火工件中或多或少地存在一定量的残余奥氏体,这些奥氏体在室温下的放置过程中会转变成马氏体,从而因发生体积膨胀而导致开裂。
同时,淬火残余应力的存在会助长裂纹产生。