杨氏模量实验数据处理(动态法)
- 格式:xls
- 大小:31.00 KB
- 文档页数:4
动态法测量固体材料的杨氏模量动态法测量固体材料的杨氏模量被测样品的固有频率时,试样的振动振幅很小,拾振器的振幅也很小甚至检测不到振动,在示波器上无法合成李萨如图形,只能看到激振器的振动波形;只有当激振器的振动频率调节到试样的固有频率达到共振时,拾振器的振幅突然很大,输入示波器的两路信号才能合成李萨如图形。
3.外延法精确测量基频共振频率理论上试样在基频下共振有两个节点,要测出试样的基频共振频率,只能将试样悬挂或支撑在和的两个节点处。
但是,在两个节点处振动振幅几乎为零,悬挂或支撑在节点处的试样难以被激振和拾振。
实验时于悬丝或支撑架对试样的阻尼作用,所以检测到的共振频率是随悬挂点或支撑点的位置变化而变化的。
悬挂点偏离节点越远,可检测的共振信号越强,但试样所受到的阻尼作用也越大,离试样两端自这一定解条件的要求相差越大,产生的系统误差就越大。
于压电陶瓷换能器拾取的是悬挂点或支撑点的加速度共振信号,而不是振幅共振信号,因此所检测到的共振频率随悬挂点或支撑点到节点的距离增大而变大。
为了消除这一系统误差,测出试样的基频共振频率,可在节点两侧选取不同的点对称悬挂或支撑,用外延测量法找出节点处的共振频率。
所谓的外延法,就是所需要的数据在测量数据范围之外,一般很难直接测量,采用作图外推求值的方法求出所需要的数据。
外延法的适用条件是在所研究的范围内没有突变,否则不能使用。
本实验中就是以悬挂点或支撑点的位置为横坐标、以相对应的共振频率为纵坐标做出关系曲线,求出曲线最低点所对应的共振频率即试样的基频共振频率。
4.基频共振的判断实验测量中,激发换能器、接收换能器、悬丝、支架等部件都有自己共振频率,可能以其本身的基频或高次谐波频率发生共振。
另外,根据实验原理可知,试样本身也不只在一个频率处发生共振现象,会出现几个共振峰,以致在实验中难以确认哪个是基频共振峰,但是上述计算杨氏模量的公式~只适用于基频共振的情况。
因此,正确的判断示波器上显示出的共振信号是否为试样真正共振信号并且是否为基频共振成为关键。
实验三 动态法测量金属杨氏模量杨氏模量是描述固体材料弹性形变的一个重要的物理量,它是反映材料形变与内应力关系的物理量,也是反映工程材料的一个重要物理参数。
测定杨氏模量的方法很多,通常采用静态法、动态法、 波速测量法等。
我们学过的拉伸法属于静态法,这种方法在拉伸时由于载荷大,加载速度慢,含有驰豫过程,所以不能真实地反映材料内部结构的变化,而且不能对脆性材料进行测量。
另一种通常采用的方法是动态共振法,它的适用范围大(不同的材料,不同的温度),试验结果稳定、误差小。
所以更具有实用性,也是国家标准GB/T2105-91所推荐使用的测量方法。
一、实验目的1.学习用动态悬挂法测定金属材料的杨氏模量。
2.培养学生综合运用物理实验仪器的能力。
3.进一步了解信号发生器和示波器的使用方法。
二、实验仪器动态杨氏模量试样加热炉、信号发生器(含频率计、信号放大器)、数显温控仪、示波器、游标卡尺、千分尺、天平、待测试样等。
三、实验原理悬挂法是将试样(圆棒或矩形棒)用两根悬线悬挂起来并激发它作横振动。
在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏模量。
如果在实验中测出试样在不同温度下的固有频率,就可以计算出试样在不同温度下的杨氏模量。
根据杆的横振动方程式02244=∂∂+∂∂tyEJS xy ρ (1)式中ρ为杆的密度,S 为杆的截面积,⎰=sdS y J 2称为惯量矩(取决于截面的形状),E即为杨氏模量。
求解该方程,对圆形棒得(见附录)2436067.1fdm l E =式中:l 为棒长;d 为棒的直径;m 为棒的质量;f 为试样共振频率。
对于矩形棒得:23394644.0fbhm l E =式中: b 和h 分别为矩形棒的宽度和厚度;m 为棒的质量;f 为试样共振频率。
在国际单位制中杨氏模量E 的单位为2-∙mN 。
本实验的基本问题是测量在一定温度下试样的固有频率f 。
实验中采用如图1所示装置。
动态法测量杨⽒弹性模量动态法测量杨⽒弹性模量郑新飞杨⽒模量是固体材料在弹性形变范围内正应⼒与相应正应变(当⼀条长度为L、截⾯积为S的⾦属丝在⼒F作⽤下伸长ΔL时,F/S叫应⼒,其物理意义是⾦属丝单位截⾯积所受到的⼒;ΔL/L叫应变,其物理意义是⾦属丝单位长度所对应的伸长量)的⽐值,其数值的⼤⼩与材料的结构、化学成分和加⼯制造⽅法等因素有关。
杨⽒模量的测量是物理学基本测量之⼀,属于⼒学的范围。
根据不同的测量对象,测量杨式模量有很多种⽅法,可分为静态法、动态法、波传播法三类。
⼀、实验⽬的1、理解动态法测量杨⽒模量的基本原理。
2、掌握动态法测量杨⽒模量的基本⽅法,学会⽤动态法测量杨⽒模量。
3、了解压电陶瓷换能器的功能,熟悉信号源和⽰波器的使⽤。
4、培养综合运⽤知识和使⽤常⽤实验仪器的能⼒。
⼆、实验仪器1、传感器I(激振):把电信号转变成机械振动。
2、试样棒:由悬线把机械振动传给试样,使试样受迫做共振动。
3、传感器II(拾振):机械振动⼜转变成电信号。
4、⽰波器:观察传感器II转化的电信号⼤⼩。
三、实验原理理论上可以得出⽤动态悬挂法测定⾦属材料的杨⽒模量,为2436067.1f dm l E = (1)式中l 为棒长,d 为棒的直径,m 为棒的质量。
如果在实验中测定了试样(棒)在不同温度时的固有频率f ,即可计算出试样在不同温度时的杨⽒模量E 。
四、实验内容1、测定试样的长度l 、直径d 和质量m 。
每个物理量各测六次,列表记录。
2、在室温下不锈钢和铜的杨⽒模量分别为211102m N ?和211102.1m N ?,先由公式(1)估算出共振频率f ,以便寻找共振点。
3、把试样棒⽤细钢丝挂在测试台上,试样棒的位置约距离端⾯l 224.0和l 776.0处,悬挂时尽量避开这两个位置。
4、把2-YM 型信号发⽣器的输出与2-YM 型测试台的输⼊相连,测试台的输出与放⼤器的输⼊相接,放⼤器的输出与⽰波器的1CH(或CH)的输⼊相接。
动态法测杨氏模量数据处理模板
动态法测杨氏模量数据处理模板如下:
1. 数据采集: 使用动态法进行杨氏模量实验时,需要采集以下数据:质量(m),长度(L),横截面面积(A),振动频率(f),共振频率(fr)和样品直径(d)。
2. 计算平均值: 对于每组实验数据,计算质量、长度、横截面面积、振动频率和共振频率的平均值。
同时,计算样品直径的平均值。
3. 计算模量: 使用以下公式计算样品的杨氏模量(E):
E = 4π²mL²f²/Ad²
其中,m为质量的平均值,L为长度的平均值,A为横截面面积的平均值,f为振动频率的平均值,d为样品直径的平均值。
4. 数据分析与结果: 对于每组实验数据,计算并记录样品的杨氏模量。
可以将不同样品的杨氏模量进行比较,分析其差异和规律。
根据需要,可以绘制图表或进行统计分析。
5. 计算不确定度: 对于每个测量量,计算其不确定度并进行合成计算,得到最终杨氏模量的不确定度。
根据需要,可以进行不确定度的传递和展示。
以上是一种基本的动态法测杨氏模量数据处理模板,根据具体实验条件和要求,可能会有所调整和变化。
动态法测杨氏模量班级:姓名:学号:一.实验原理:实验原理1.杆的弯曲振动基本方程:对一长杆作微小横振动时可建立如下方程:(1)式中E为杨氏模量。
I为转动惯量,ρ为密度。
对二端自由的杆,其边界条件为::;用分离变数的试探解:以及上述边界条件带入(1)得超越方程ChHCosH=1 (2)解这个超越方程。
经数值计算得到前n个H的值是,, n>2.因振动频率若取基频可推导对圆棒于是有:(3)同理对b为宽度,h为厚度的矩形棒有:(4)式中:尺寸用m,质量用Kg,频率用Hz为单位。
计算出杨氏模量E的单位为N/m22.理论推导表明,杆的横振动节点与振动级次有关,Hn值第1,3,5……数值对应于对称形振动,第2,4,6……对应于反对称形振动。
最低级次的对称振动波形如图3所示。
图3 二端自由杆基频弯曲振动波形表1 振动级次――-节点位置―――频率比表中L为杆的长度由表1可见,基频振动的理论节点位置为0.224L(另一端为0.776L)。
理论上吊扎点应在节点,但节点处试样激发接收均困难。
为此可在试样节点和端点之间选不同点吊扎,用外推法找出节点的共振频率。
不作修正此项系统误差一般不大于0.2%。
推荐采用端点激发接收方式非常有利于室温及高温下的测定。
3.须注意(3)式是在d<<1时推出,否则要作修正,E(修正)=KE(未修正),当材料泊松比为0.25时,K值如下表:径长比d/L 0.02 0.04 0.06 0.08 0.10修正系数K 1.002 1.008 1.019 1.033 1.051二.实验目的1.测量材料在常温下的杨氏模量;2.测量材料在不同温度下的杨氏模量;三.实验所用仪器函数信号发生器,换能器,温控器,示波器,加热炉。
四.实验数据记录及数据处理常温下共振频率试棒参数:f 1 f2 f3 f/Hz764 765 764 764E=215GPa高温(变温条件)下杨氏模量的测量 试棒参数:t/C 50 100 150 200 250 300 f/Hz762755 747 740 734 726 E/GPa 214210206 202198194t-E 图18018519019520020521021522050100150200250300系列1五.思考题对于相同材料的,长度和截面积都相等的圆截面试样和方截面试样,哪一种共振频率更高?答:方截面试样的共振频率更高。
动态法测量杨氏模量实验报告一、实验目的1、学会用动态法测量杨氏模量。
2、掌握共振频率的测量方法。
3、了解实验仪器的使用和数据处理方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
动态法测量杨氏模量的基本原理是基于振动系统的共振特性。
一根细长的棒,作微小横振动(弯曲振动)时,其振动方程为:$Y=\frac{4ml^3f^2}{d^4}$其中,$Y$为杨氏模量,$m$为棒的质量,$l$为棒的长度,$d$为棒的直径,$f$为棒的共振频率。
当棒在某一频率下发生共振时,振幅达到最大值。
通过测量棒的共振频率、质量、长度和直径,就可以计算出杨氏模量。
三、实验仪器1、动态杨氏模量测量仪:包括激振器、拾振器、示波器等。
2、游标卡尺:用于测量棒的长度和直径。
3、电子天平:用于测量棒的质量。
四、实验步骤1、测量棒的尺寸用游标卡尺在棒的不同位置测量其长度$l$,多次测量取平均值。
在棒的两端和中间部位测量直径$d$,同样多次测量取平均值。
2、安装实验装置将棒的一端固定在支架上,另一端通过细绳连接激振器。
拾振器安装在棒的适当位置,与示波器相连。
3、寻找共振频率开启激振器,逐渐改变其输出频率,同时观察示波器上的信号。
当示波器上显示的振幅达到最大值时,此时的频率即为共振频率$f$。
4、测量质量用电子天平测量棒的质量$m$。
5、重复测量改变拾振器的位置,重复上述步骤,测量多组数据。
五、实验数据记录与处理1、实验数据记录|测量次数|长度$l$ (mm) |直径$d$ (mm) |共振频率$f$ (Hz) |质量$m$ (g) ||::|::|::|::|::|| 1 |______ |______ |______ |______ || 2 |______ |______ |______ |______ || 3 |______ |______ |______ |______ |2、数据处理计算长度$l$、直径$d$、共振频率$f$和质量$m$的平均值。
实验四 动态法测定材料氏模量氏模量是工程材料的一个重要物理参数,它标志着材料抵抗弹性形变的能力。
氏模量测量方法有多种,最常用的有拉伸法测量金属材料的氏模量,这属于静态法测量,这种方法一般仅适用于测量形变较大、延展性较好的材料,对如玻璃及瓷之类的脆性材料就无法用此方法测量。
动态法由于其在测量上的优越性,在实际应用中已经被广泛采用,也是国家标准指定的一种氏模量的测量方法。
本实验用悬挂、支撑二种"动态法"测出试样振动时的固有基频,并根据试样的几何参数测得材料的氏模量。
一、实验目的1.理解动态法测量氏模量的基本原理。
2.掌握动态法测量氏模量的基本方法,学会用动态法测量氏模量。
3.培养综合运用知识和使用常用实验仪器的能力。
4.进一步了解信号发生器和示波器的使用方法。
二、实验原理长度L 远远大于直径d 〔L>>d 的一细长棒,作微小横振动〔弯曲振动时满足的动力学方解以上方程的具体过程如下〔不要求掌握: 用分离变量法:令)()(),(t T x X t x y =代入方程〔1得: 2244d d 1d d 1tTT YJ s x X X ρ-= 等式两边分别是x 和t 的函数,这只有都等于一个常数才有可能,设该常数为4K ,于是得: 这两个线形常微分方程的通解分别为: 于是解振动方程式得通解为:其中式〔2称为频率公式:214⎥⎦⎤⎢⎣⎡=s YJ K ρω <2该公式对任意形状的截面,不同边界条件的试样都是成立的。
我们只要用特定的边界条件定出常数K ,并将其代入特定截面的转动惯量J ,就可以得到具体条件下的计算公式了。
如果悬线悬挂<支撑点>在试样的节点附近,则其边界条件为自由端横向作用力:弯矩 : 022=∂∂=x yYJ M 即x d Xd 0x 33==0x d X d lx 33==将通解代入边界条件,得到1cos =KLchKL ,用数值解法求得本征值K 和棒长L 应满足:420.20 ,279.17 ,137.14 ,9956.10 ,8532.7 ,7300.4 ,0=KL ,由于其中第一个根"0"对应于静态情况,故将其舍去。