高二(上)期末数学试卷(理科)
- 格式:doc
- 大小:635.38 KB
- 文档页数:24
辽宁省大连五校高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀>0,﹣ln>0,则¬p为()A.∀>0,﹣ln≤0 B.∀>0,﹣ln<0C.∃0>0,0﹣ln0>0 D.∃0>0,0﹣ln0≤02.(5分)设等差数列{a n}的前n项和为S n,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.543.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,则该双曲线的离心率是()A. B.C.D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.6.(5分)已知等比数列{a n}中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)7.(5分)已知变量,y满足约束条件,若目标函数=+2y的最小值为2,则m=()A.2 B.1 C.D.﹣28.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C. D.9.(5分)已知不等式y≤a2+2y2对任意∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)10.(5分)设椭圆与函数y=3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2]B.[2,6]C.D.11.(5分)设数列{a n}的前n项和S n,若+++…+=4n﹣4,且a n≥0,则S100等于()A.5048 B.5050 C.10098 D.1010012.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4±y=0 B.±4y=0 C.2±y=0 D.±2y=0二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:2+2﹣3>0,命题q:>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是.14.(5分)已知正项等比数列{a n}的公比为2,若,则的最小值等于.15.(5分)已知M是抛物线2=4y上一点,F为其焦点,点A在圆C:(+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和T n.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.19.(12分)已知数列{{a n}满足,.(1)求证:数列是等比数列;(2)若数列{b n}是单调递增数列,求实数λ的取值范围.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.21.(12分)已知过抛物线E:y2=2p(p>0)的焦点F,斜率为的直线交抛物线于A(1,y1),B(2,y2)(1<2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.22.(12分)如图,在平面直角坐标系oy中,已知圆C:(+1)2+y2=16,点A(1,0),点B (a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设命题p:∀>0,﹣ln>0,则¬p为()A.∀>0,﹣ln≤0 B.∀>0,﹣ln<0C.∃0>0,0﹣ln0>0 D.∃0>0,0﹣ln0≤0【解答】解:因为全称命题的否定是特称命题,所以命题“∀>0,﹣ln>0”的否定是∃>0,﹣ln≤0.故选:D.2.(5分)设等差数列{a n}的前n项和为S n,已知2a1+a13=﹣9,则S9=()A.﹣27 B.27 C.﹣54 D.54【解答】解:∵等差数列{a n}的前n项和为S n,2a1+a13=﹣9,∴3a1+12d=﹣9,∴a1+4d=﹣3,∴S9==9(a1+4d)=﹣27.故选:A.3.(5分)若a,b∈R,则“<”是“>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∀a,b∈R,a2+ab+b2=+b2≥0,当且仅当a=b=0时取等号.∴>0⇔(a﹣b)ab>0,⇔“<”.∴“<”是“>0”的充要条件.故选:C.4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,则该双曲线的离心率是()A. B.C.D.【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线方程为﹣2y=0,∴a=2b,∴c=b,∴双曲线的离心率是e==.故选:D.5.(5分)直三棱锥ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A. B.C.D.【解答】解:根据已知条件,分别以C1A1,C1B1,C1C所在直线为,y,轴,建立如图所示空间直角坐标系,设CA=2,则:A(2,0,2),N(1,0,0),B(0,2,2),A1(2,0,0),B1(0,2,0),M(1,1,0);∴;∴;∴BM与AN所成角的余弦值为.故选:D.6.(5分)已知等比数列{a n}中,a2=2,则其前三项和S3的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,0)∪(1,+∞)C.[6,+∞)D.(﹣∞,﹣2]∪[6,+∞)【解答】解:∵等比数列{a n}中,a2=2,∴其前三项和S3=,当q>0时,S3=≥2+2=6;当q<0时,S3=≤2﹣2=2﹣4=﹣2.∴其前三项和S3的取值范围是(﹣∞,﹣2]∪[6,+∞).故选:D.7.(5分)已知变量,y满足约束条件,若目标函数=+2y的最小值为2,则m=()A.2 B.1 C.D.﹣2【解答】解:由变量,y满足约束条件,作出可行域如图,化目标函数=+2y为y=﹣+,由图可知,当直线y=﹣+过A时,直线在y轴上的截距最小,有最小值为2.由,解得A(m,m),A代入=+2y,可得m+2m=2,解得m=.故选:C.8.(5分)60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知AB=4,AC=6,BD=8,则CD的长为()A.B.C. D.【解答】解:∵60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,∴=,∵AB=4,AC=6,BD=8,∴2=()2=+2=36+16+64+2×6×8×cos120°=68.∴CD的长为||=2.故选:B.9.(5分)已知不等式y≤a2+2y2对任意∈[1,2],y∈[4,5]恒成立,则实数a的取值范围是()A.[﹣1,+∞)B.[﹣6,+∞)C.[﹣28,+∞)D.[﹣45,+∞)【解答】解:由题意可知:不等式y≤a2+2y2对于∈[1,2],y∈[4,5]恒成立,即:a≥﹣2()2,对于∈[1,2],y∈[4,5]恒成立,令t=,则2≤t≤5,∴a≥t﹣2t2在[2,5]上恒成立,∵y=﹣2t2+t的对称轴为t=,且开口向下,∴y=﹣2t2+t在[2,5]单调递减,∴y ma=﹣2×22+2=﹣6,∴a≥﹣6,故选B.10.(5分)设椭圆与函数y=3的图象相交于A,B两点,点P为椭圆C上异于A,B的动点,若直线PA的斜率取值范围是[﹣3,﹣1],则直线PB的斜率取值范围是()A.[﹣6,﹣2]B.[2,6]C.D.【解答】解:∵椭圆C:与函数y=3的图象相交于A,B两点,∴A,B两点关于原点对称,设A(1,y1),(﹣1,﹣y1),则,即.设P(0,y0),则,可得:.∴.∵直线PA的斜率1的取值范围[﹣3,﹣1],∴﹣3≤≤﹣1,得,∴直线PB的斜率取值范围是[].故选:D.11.(5分)设数列{a n}的前n项和S n,若+++…+=4n﹣4,且a n≥0,则S100等于()A.5048 B.5050 C.10098 D.10100【解答】解:当n=1时,=0,则a1=0.当n≥2时,+++…++=4n﹣4,①+++…+=4n﹣8,②+++…++=4n,③由①﹣②得到:=4,∵a n≥0,∴a n=2n,由③﹣①得到:=4,=2n+2,∴a n+1﹣a n=2,∴a n+1∴数列{a n}是等差数列,公差是2,综上所述,a n=,∴S100=S1+S2+S3++…+S100=0+×(100﹣1)=10098.故选:C.12.(5分)已知双曲线Γ:﹣=1(a>0,b>0)的上焦点F(0,c)(c>0),M是双曲线下支上的一点,线段MF与圆2+y2﹣y+=0相切于点D,且|MF|=3|DF|,则双曲线Γ的渐近线方程为()A.4±y=0 B.±4y=0 C.2±y=0 D.±2y=0【解答】解:由2+y2﹣y+=0,得2+(y﹣)2=,则该圆的圆心坐标为(0,),半径为.设切点D(0,y0)(y0>0),则由2+y2﹣y+=0与(0,y0﹣c)•(0,y0﹣)=0,解得:0=,y0=.∴D(,),由|MF|=3|DF|,得=3,得M(,﹣),代入双曲线Γ:﹣=1(a>0,b>0)整理得b=2a,∴双曲线Г的渐近线方程为y=±.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知命题p:2+2﹣3>0,命题q:>a,若¬p是¬q的充分不必要条件,则实数a的取值范围是[1,+∞).【解答】解:由2+2﹣3>0得>1或<﹣3,若¬p是¬q的充分不必要条件,则q是p的充分不必要条件,∵q:>a,∴a≥1,即实数a的取值范围是[1,+∞),故答案为:[1,+∞).14.(5分)已知正项等比数列{a n}的公比为2,若,则的最小值等于.【解答】解:正项等比数列{a n}的公比为2,若,可得(a1•2m﹣1)(a1•2n﹣1)=4(2a1)2,即有m﹣1+n﹣1=4,则m+n=6,可得=(m+n)()=(2+++)≥(+2)=×=.当且仅当m=2n=4,都不是取得等号,则的最小值为.故答案为:.15.(5分)已知M是抛物线2=4y上一点,F为其焦点,点A在圆C:(+1)2+(y﹣6)2=1上,则|MA|+|MF|的最小值是6.【解答】解:抛物线2=4y的焦点F(0,1),准线方程为y=﹣1,如图所示:利用抛物线的定义知:|MP|=|MF|,当A,M,P三点共线时,|MA|+|MF|的值最小.即CM⊥轴,此时|MA|+|MF|=|AP|=|CP|﹣1=7﹣1=6,故答案为:6.16.(5分)如图,在直三棱柱A1B1C1﹣ABC中,,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是.【解答】解:以A为原点,AB为轴,AC为y轴,AA1为轴,建立如图所示的空间直角坐标系,则A(0,0,0),E(0,1,),G(,0,1),F(,0,0),D(0,y,0),=(﹣,y,﹣1),=(,﹣1,﹣),∵GD⊥EF,∴=﹣=0,即+2y﹣1=0∴DF===,∵0<<1,0<y<1,∴0<y<,当y=时,线段DF长度的最小值=,当y=0时,线段DF长度的最大值是1,而不包括端点,故y=0不能取1.∴线段DF的长度的取值范围是[,1).故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知数列{a n}是等比数列,首项a1=1,公比q>0,其前n项和为S n,且S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前n项和T n.【解答】解:(1)因为S1+a1,S3+a3,S2+a2成等差数列,所以2(S3+a3)=(S1+a1)+(S2+a2),所以(S3﹣S1)+(S3﹣S2)+2a3=a1+a2,所以4a3=a1,因为数列{a n}是等比数列,所以,又q>0,所以,所以数列{a n}的通项公式.(2)由(1)知,,,所以,=20+21+22+…+2n﹣1﹣n•2n,=.故.18.(12分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(1)证明:AC⊥D1E;(2)求DE与平面AD1E所成角的正弦值.【解答】(1)证明:连接BD,∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC,在长方形ABCD中,AB=BC,∴BD⊥AC,又BD∩D1D=D,∴AC⊥平面BB1D1D,而D1E⊂平面BB1D1D,∴AC⊥D1E;(2)如图,以D为坐标原点,以DA,DC,DD1所在的直线为,y,轴建立空间直角坐标系,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),,设平面AD 1E的法向量为,则,令=1,则,∴,所以DE与平面AD1E所成角的正弦值为.19.(12分)已知数列{{a n}满足,.(1)求证:数列是等比数列;(2)若数列{b n}是单调递增数列,求实数λ的取值范围.【解答】解:(1)因为数列{a n}满足,所以,即,又a1=1,所以,所以数列是以2为首项,公比为2的等比数列.(2)由(1)可得,所以,因为b1=﹣λ符合,所以.>b n,即(n﹣λ)•2n>(n﹣1﹣λ)•2n﹣1,因为数列{b n}是单调递增数列,所以b n+1化为λ<n+1,所以λ<2.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且平面PAD⊥平面ABCD,E为PD中点,AD=2.(Ⅰ)求证:平面AEC⊥平面PCD.(Ⅱ)若二面角A﹣PC﹣E的平面角大小θ满足cosθ=,求四棱锥P﹣ABCD的体积.【解答】(Ⅰ)证明:取AD中点为O,BC中点为F,由侧面PAD为正三角形,且平面PAD⊥平面ABCD,得PO⊥平面ABCD,故FO⊥PO,又FO⊥AD,则FO⊥平面PAD,∴FO⊥AE,又CD∥FO,则CD⊥AE,又E是PD中点,则AE⊥PD,由线面垂直的判定定理知AE⊥平面PCD,又AE⊂平面AEC,故平面AEC⊥平面PCD;(Ⅱ)解:如图所示,建立空间直角坐标系O﹣y,令AB=a,则P(0,0,),A(1,0,0),C(﹣1,a,0).由(Ⅰ)知=()为平面PCE的法向量,令=(1,y,)为平面PAC的法向量,由于=(1,0,﹣),=(2,﹣a,0)均与垂直,∴,解得,则,由cos θ=||=,解得a=.故四棱锥P﹣ABCD的体积V=S ABCD•PO=•2••=2.21.(12分)已知过抛物线E:y2=2p(p>0)的焦点F,斜率为的直线交抛物线于A(1,y1),B(2,y2)(1<2)两点,且|AB|=6.(1)求该抛物线E的方程;(2)过点F任意作互相垂直的两条直线l1,l2,分别交曲线E于点C,D和M,N.设线段CD,MN的中点分别为P,Q,求证:直线PQ恒过一个定点.【解答】解:(1)抛物线的焦点,∴直线AB的方程为:联立方程组,消元得:,∴∴,解得p=±2.∵p>0,∴抛物线E的方程为:y2=4.(2)证明:设C,D两点坐标分别为(1,y1),(2,y2),则点P的坐标为.由题意可设直线l1的方程为y=(﹣1)(≠0).由,得22﹣(22+4)+2=0.△=(22+4)﹣44=162+16>0因为直线l1与曲线E于C,D两点,所以.所以点P的坐标为.由题知,直线l2的斜率为,同理可得点Q的坐标为(1+22,﹣2).当≠±1时,有,此时直线PQ的斜率.所以,直线PQ的方程为,整理得y2+(﹣3)﹣y=0.于是,直线PQ恒过定点(3,0);当=±1时,直线PQ的方程为=3,也过点(3,0).综上所述,直线PQ恒过定点(3,0).22.(12分)如图,在平面直角坐标系oy中,已知圆C:(+1)2+y2=16,点A(1,0),点B (a,0)(|a|>3),以B为圆心,|BA|的半径作圆,交圆C于点P,且的∠PBA的平分线次线段CP于点Q.(I)当a变化时,点Q始终在某圆锥曲线τ是运动,求曲线τ的方程;(II)已知直线l过点C,且与曲线τ交于M、N两点,记△OCM面积为S1,△OCN面积为S2,求的取值范围.【解答】解:(I)如图,∵BA=BP,BQ=BQ,∠PBQ=∠ABQ,∴△QAB≌△QPB,∴QA=QP,∵CP=CQ+QP=QC+QA,QC+QA=4,由椭圆的定义可知,Q点的轨迹是以C,A为焦点,2a=4的椭圆,故点Q的轨迹方程为(II)由题可知,设直线l:=my﹣1,不妨设M(1,y1),N(2,y2)∵,,∵,∴(3m2+4)y2﹣6my﹣9=0,△=144m2+144>0,∴,∵,即∈(﹣,0],∈(﹣3,﹣),∴=﹣∈(,3).。
高二理科数学(考试时间:120分钟 试卷满分:150分)第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.对于命题:p x ∃∈R ,使得210x x ++<,则p ⌝是 A .:p x ⌝∀∈R ,210x x ++> B .:p x ⌝∃∈R ,210x x ++≠ C .:p x ⌝∀∈R ,210x x ++≥D .:p x ⌝∃∈R ,210x x ++<2.已知点(1,2,1)A -,点C 与点A 关于平面xOy 对称,点B 与点A 关于x 轴对称,则||BC =A .B .C .D .43.过点(2,0)且与直线230x y -+=垂直的直线方程是 A .220x y --= B .220x y +-= C .240x y +-= D .220x y +-=4.已知双曲线22116y x m-=的离心率为2,则双曲线的渐近线方程为A .y x =B .y x =C .y =D .y =5.若,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是A .若,m αββ⊥⊥,则//m αB .若//,m n m α⊥,则n α⊥C .若//,//,,m n m n ααββ⊂⊂,则//αβD .若m ∥β,m ⊂α,α⋂β=n ,则//m n 6.设x ∈R ,若“2)og (l 11x -<”是“221x m >-”的充分不必要条件,则实数m 的取值范围是A .[B .(1,1)-C .(D .[1,1]-7.若圆C 的半径为2,圆心在x 轴的正半轴上,直线3440x y ++=与圆C 相切,则圆C 的方程为 A .22230x y x +--= B .2240x y x ++= C .2240x y x +-=D .22230x y x ++-=8.已知F 是椭圆C :22195x y +=的左焦点,P 为C 上一点,4(1,)3A ,则||||PA PF +的最小值为 A .10B .11C .4 D .139.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A .4π643-B .64-4πC .64-6πD .64-8π10.已知直线3y kx =+与圆22(2)(3)4x y -+-=相交于M N 、两点,若||MN ≥k 的取值范围是A .3[,0]4-B .3(,][0,)4-∞-+∞C .[D .2[,0]3-11.如图,在直三棱柱111ABC A B C -中,∠BAC =90°,AB =AC =2,AA 1,则AA 1与平面AB 1C 1所成的角为A .π6B .π4C .π3D .π212.已知抛物线22(0)y px p =>的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK △的面积为A .4B .8C .16D .32第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.命题“若实数a 、b 满足5a b +≤,则2a ≤或3b ≤”是________命题(填“真”或“假”).14.若1a >,则双曲线22213x y a -=的离心率的取值范围是___________. 15.已知四棱锥-P ABCD 的顶点都在球O 的球面上,底面ABCD 是边长为2的正方形,且PA ⊥平面ABCD ,四棱锥-P ABCD 的体积为163,则该球的体积为___________. 16.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=的周长,则22(2)(2)a b -+-的最小值为___________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知命题p :二次函数2()76f x x x =-+在区间[,)m +∞上是增函数;命题q :双曲线22141x y m m -=--的离心率的取值范围是)+∞.(1)分别求命题p ,命题q 均为真命题时,m 的取值范围;(2)若“p 且q ” 是假命题,“p 或q ”是真命题,求实数m 的取值范围.18.(本小题满分12分)已知圆C 经过原点O (0,0)且与直线y =2x ﹣8相切于点P (4,0). (1)求圆C 的方程;(2)已知直线l 经过点(4, 5),且与圆C 相交于M ,N 两点,若|MN|=2,求出直线l 的方程. 19.(本小题满分12分)已知直线:2l y x b =+与抛物线21:2C y x =. (1)若直线与抛物线相切,求实数b 的值.(2)若直线与抛物线相交于A 、B 两点,且|AB |=10,求实数b 的值.20.(本小题满分12分)在平面直角坐标系xOy 中,∆ABC 顶点的坐标分别为A (−1,2)、B (1,4)、C(3,2).(1)求∆ABC 外接圆E 的方程;(2)若直线l 经过点(0,4),且与圆E 相交所得的弦长为l 的方程;(3)在圆E 上是否存在点P ,满足22||2||PB PA =12,若存在,求出点P 的坐标;若不存在,请说明理由.21.(本小题满分12分)如图,已知四棱锥S -ABCD ,底面梯形ABCD 中,BC ∥AD ,平面SAB ⊥平面ABCD ,SAB △是等边三角形,已知AC =2AB =4,BC =2AD =2DC =(1)求证:平面SAB ⊥平面SAC ; (2)求二面角B-SC-A 的余弦值.22.(本小题满分12分)设椭圆C :x 2a 2+y 2b 2=1(a >b >0),右顶点是A(2,0),离心率为12. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于两点,M N (,M N 不同于点A ),且AM ⃑⃑⃑⃑⃑⃑ ∙AN ⃑⃑⃑⃑⃑⃑ =0,求证:直线l 过定点,并求出定点坐标.。
2022~2023学年度上期期末高二年级调研考试数学(理科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线2214y x -=的渐近线方程为( ) A .14y x =± B .12y x =± C .4y x =± D .2y x =±2.在空间直角坐标系Oxyz 中,点(4,1,9)P 到点(2,4,3)Q 的距离为( )A .5B .6C .7D .83.在一次游戏中,获奖者可以获得5件不同的奖品,这些奖品要从编号为1-50号的50种不同奖品中随机抽取确定,用系统抽样的方法为获奖者抽取奖品编号,则5件奖品的编号可以是( ) A .3,13,23,33,43 B .11,21,31,41,50 C .3,6,12,24,48D .3,19,21,27,504.命题“0m ∀∈≤N ”的否定是( )A .00m ∃∉≥NB .00m ∃∈>NC .00m ∃∈≤ND .0m ∀∈>N5.若,,a b c ∈R ,则“a b >”是“a c b c +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知直线:0l Ax By C ++=(A ,B 不同时为0),则下列说法中错误的是( ) A .当0B =时,直线l 总与x 轴相交 B .当0C =时,直线l 经过坐标原点O C .当0A C ==时,直线l 是x 轴所在直线 D .当0AB ≠时,直线l 不可能与两坐标轴同时相交7.执行如图所示的程序语句,若输入5x =,则输出y 的值为( )B .7C .22-D .28-8.已知F 是抛物线24y x =的焦点,M 是抛物线上一点,且满足120OFM ∠=︒(O 为坐标原点),则FM 的值为( )A .4B .3C .D .29.已知圆221:(2)(1)9O x y -+-=和直线:10l x y -+=.若圆2O 与圆1O 关于直线l 对称,则圆2O 的方程为( ) A .22(3)9x y -+=B .22(3)9x y +-= C .22(2)(3)9x y -+-=D .22(3)(2)9x y -+-=10.已知13,22m ⎡⎤∈-⎢⎥⎣⎦,命题2:2320p m m --≤,命题22:1623x y q m m +=--表示焦点在x 轴上的椭圆.则下列命题中为假命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∨ D .p q ⌝∨11.在平面直角坐标系xOy 内,对任意两点()11,A x y ,()22,B x y ,定义A ,B 之间的“曼哈顿距离”为1212AB x x y y =-+-,记到点O 的曼哈顿距离小于或等于1的所有点(,)x y 形成的平面区域为Ω.现向221x y +=的圆内随机扔入N 粒豆子,每粒豆子落在圆内任何一点是等可能的,若落在Ω内的豆子为M 粒,则下面各式的值最接近圆周率的是( ) A .NMB .2NMC .3NMD .4NM12.已知有相同焦点1F ,2F 的椭圆22122:1(0)x y C a b a b +=>>与双曲线22222:1(0,0)x y C m n m n -=>>在第一象限的交点为A ,若2AOF △(O 为坐标原点)是等边三角形,则ab mn的值为( )A .2+B .2-CD 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知椭圆22110036x y +=上一点P 到一个焦点的距离为6,那么点P 到另一个焦点的距离为______. 14.为了解某校高三学生的数学成绩,随机地抽查了该校100名高三学生的期中考试数学成绩,得到频率分布直方图如图所示.请根据以上信息,估计该校高三学生数学成绩的中位数为______.(结果保留到小数点后两位)15.甲,乙两人下棋,若两人下成和棋的概率是13,甲获胜的概率是14,则乙获胜的概率是______.16.已知双曲线22221(0,0)x y a b a b-=>>的左,右焦点1F ,2F ,经过1F 斜率为l 与双曲线的左支相交于P ,Q 两点.记12PF F △的内切圆的半径为a ,则双曲线的离心率为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知点(4,2)P -,直线:3450l x y --=. (Ⅰ)求经过点P 且与直线l 平行的直线的方程; (Ⅱ)求经过点P 且与直线l 垂直的直线的方程. 18.(本小题满分12分)甲,乙两台机床同时生产一种零件,统计5天中两台机床每天所出的次品件数,数据如下图:(Ⅰ)判断哪台机床的性能更稳定,请说明理由;(Ⅱ)从甲机床这五天的数据中任意抽取两天的数据,求至多有一天的次品数超过1件的概率. 19.(本小题满分12分)已知圆22:60A x y x +-=与直线32x =相交于M ,N 两点. (Ⅰ)求||MN 的长;(Ⅱ)设圆C 经过点M ,N 及(2,2)B .若点P 在圆C 上,点Q 在圆A 上,求||PQ 的最大值. 20.(本小题满分12分)某工厂统计2022年销售网点数量与售卖出的产品件数的数据如下表:(Ⅰ)求2022年售卖出的产品件数y (单位:万件)关于销售网点数x (单位:个)的线性回归方程; (Ⅱ)根据(Ⅰ)中求出的线性回归方程,预测2022年该工厂建立40个销售网点时售卖出的产品件数.参考公式:()()()1122211ˆnnii i ii i nni ii i xx y y x ynxy bx x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(本小题满分12分)已知椭圆2222:1(0)x y E a b a b +=>>经过点12⎫⎪⎭(Ⅰ)求椭圆E 的方程;(Ⅱ)设经过右焦点2F 的两条互相垂直的直线分别与椭圆E 相交于A ,B 两点和C ,D 两点.求四边形ACBD 的面积的最小值. 22.(本小题满分12分)已知点(1,0)F ,经过y 轴右侧一动点A 作y 轴的垂线,垂足为M ,且||||1AF AM -=.记动点A 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设经过点(1,0)B -的直线与曲线C 相交于P ,Q 两点,经过点(1,)((0,2)D t t ∈,且t 为常数)的直线PD 与曲线C 的另一个交点为N ,求证:直线QN 恒过定点.。
黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。
高二年级理科数学试题考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的学校、姓名、班级、准考证号用0.5毫米黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“条形码粘贴处”。
2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效。
3.考试结束后由监考老师将答题卡收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过点(0,2)-,且与已知直线0x y +=垂直的直线方程为 A .20x y +-= B .20x y --= C .20x y ++=D .20x y -+=2.若一个圆的标准方程为221)4x y +(-=,则此圆的圆心与半径分别是 A .1,0)4(-; B .1,0)2(; C .0,1)4(-;D .0,1)2(;3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x = A .2 B .3 C .4D .54.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是 A .简单随机抽样 B .先用分层抽样,再用随机数表法 C .分层抽样D .先用抽签法,再用分层抽样 5.若x ∈R ,则“44x -<<”是“22x x <”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题*1:2p x x x∀∈+R ,…,则p ⌝为 A .*00012x x x ∃∈+R ,… B .*00012x x x ∃∈+<R , C .*00012x x x ∃∉+<R ,D .12x x x∀∈+<R , 7.下列命题正确的是A .若0a b <<,则11a b<B .若ac bc >,则a b >C .若a b >,c d >,则a c b d ->-D .若22ac bc >,则a b >8.已知双曲线的上、下焦点分别为120,5)0,5)F F ((-,,P 是双曲线上一点且满足126||PF ||PF ||-=,则双曲线的标准方程为A .221169x y -=B .221916x y -=C .221169y x -=D .221916y x -=9.已知O e 的圆心是坐标原点O 0y --=截得的弦长为6,则O e 的方程为A .224x y +=B .228x y +=C .2212x y +=D .22216x y +=10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a b ,分别为39,27,则输出的a = A .1 B .3 C .5D .711.若两个正实数x y ,满足311x y+=,则3x y +的最小值为A .6B .9C .12D .1512.直线l 过抛物线220)y px p =(>的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2|4|PF |QF |==,,M 为RS 的中点,则|MF |=A .BC .D .2二、填空题:本题共4小题,每小题5分,共20分。
高二圆月期末考数学试题(理科)一,选择题:本大题共12步题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.若,,则是地 ( )A .充分非必要款件B .必要非充分款件C .充要款件D .非充分非必要款件2.向量=, =,若, 且,则地值为( )A . B .C . D .3.若两直线与平行,则它们之间地距离为( )A .B .C .D.4.某中学高二(5)班共有学生56人,座号分别为1,2,3,…,56,现依据座号,用系统抽样地方式,抽取一个容量为4地样本.已知3号,17号,45号同学在样本中,那么样本中另外一个同学地座号是( )A.30B.31C.32D.335.若直线和圆O :没有交点,则过点地直线与椭圆地交点个数为( )A .至多一个 B .0个 C .1个 D .2个6.某班班会准备从含甲,乙地6名学生中选取4人发言,要求甲,乙2人中至少有一人参加,且若甲,乙同时参加,则他们发言时顺序不能相邻,那么不同地发言顺序地种数为( )A .720B .520C .600D .2647.圆与圆地公共弦长为( )A C ..8.一个算法地程序框图如图所示,该程序输出地结果为,则空白处应填入地款件是( )0>x 0>y 1>+y x 122>+y x a (1,2,)x b (2,,1)y -||a a b ⊥x y +2-21-10343=++y x 016=++my x 5522552214mx ny +=224x y +=(,)m n 22194x y +=2250x y +=22126400x y x y +--+=5536A. B. C. D.9.函数地图象向左平移个单位后为偶函数,设数列地通项公式为,则数列地前2019项之和为( )A. 0B.1C.D. 210.如图,在四棱锥中,侧面为正三角形,底面为正方形,侧面底面,为底面内地一个动点,且满足,则点在正方形内地轨迹为( )A .B .C .D .11.春节期间,5位同学各自随机从“三峡明珠,山水宜昌”,“荆楚门户,秀丽荆门”,“三国故里,风韵荆州”三个城市中选择一个旅游,则三个城市都有人选地概率是( )A.B.C.D.12.椭圆地右焦点为,其右准线与轴地交点为,在椭圆上存在点满足线段地垂直平分线过点,则椭圆离心率地取值范围是( )A .B . C.D .二,填空题:本大题共4小题,每小题5分,共20分.把结果填在题中横一上.?9≤i ?6≤i ?9≥i ?8≤i ()sin(2)(2f x x πϕϕ=+<6π{}n a ()6n n a f π={}n a 32P ABCD -PAD ABCD PAD ⊥ABCD M ABCD MP MC =M ABCD 50812081811252712522221(0)x y a b a b+=>>F A PAP F 1(0,]21,1)-1[,1)213.已知变量满足约束款件,则y x z +=4地最大值为 .14.给下面三个结论:○1命题“”地否定是“”。
北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y 2=2,则其圆心和半径分别为( )A .(1,0),2B .(﹣1,0),2C .D .2.抛物线x 2=4y 的焦点到准线的距离为( )A .B .1C .2D .43.双曲线4x 2﹣y 2=1的一条渐近线的方程为( )A .2x+y=0B .2x+y=1C .x+2y=0D .x+2y=14.在空间中,“直线a ,b 没有公共点”是“直线a ,b 互为异面直线”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知A ,B 为圆x 2+y 2=2ax 上的两点,若A ,B 关于直线y=2x+1对称,则实数a=( )A .B .0C .D .16.已知直线l 的方程为x ﹣my+2=0,则直线l ( )A .恒过点(﹣2,0)且不垂直x 轴B .恒过点(﹣2,0)且不垂直y 轴C .恒过点(2,0)且不垂直x 轴D .恒过点(2,0)且不垂直y 轴7.已知直线x+ay ﹣1=0和直线ax+4y+2=0互相平行,则a 的取值是( )A .2B .±2C .﹣2D .08.已知两直线a ,b 和两平面α,β,下列命题中正确的为( )A .若a ⊥b 且b ∥α,则a ⊥αB .若a ⊥b 且b ⊥α,则a ∥αC .若a ⊥α且b ∥α,则a ⊥bD .若a ⊥α且α⊥β,则a ∥β9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : . 12.椭圆x 2+9y 2=9的长轴长为 .13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 .14.如图,在四棱锥P ﹣ABCD 中,底面四边形ABCD 的两组对边均不平行.①在平面PAB 内不存在直线与DC 平行;②在平面PAB 内存在无数多条直线与平面PDC 平行;③平面PAB 与平面PDC 的交线与底面ABCD 不平行;上述命题中正确命题的序号为 .15.已知向量,则与平面BCD 所成角的正弦值为 .16.若某三棱锥的三视图如图所示,则该棱锥的体积为 ,表面积为 .三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC 的三个顶点坐标为A (0,0),B (8,4),C (﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.19.已知椭圆G:的离心率为,经过左焦点F1(﹣1,0)的直线l与椭圆G相交于A,B两点,与y轴相交于C点,且点C在线段AB上.(Ⅰ)求椭圆G的方程;(Ⅱ)若|AF1|=|CB|,求直线l的方程.北京市海淀区2019-2020学年高二上学期期末考试理科数学试卷参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆(x+1)2+y2=2,则其圆心和半径分别为()A.(1,0),2 B.(﹣1,0),2 C.D.【考点】圆的标准方程.【分析】利用圆的标准方程的性质求解.【解答】解:圆(x+1)2+y2=2的圆心为(﹣1,0),半径为.故选:D.2.抛物线x2=4y的焦点到准线的距离为()A.B.1 C.2 D.4【考点】抛物线的简单性质.【分析】直接利用抛物线方程求解即可.【解答】解:抛物线x2=4y的焦点到准线的距离为:P=2.故选:C.3.双曲线4x2﹣y2=1的一条渐近线的方程为()A.2x+y=0 B.2x+y=1 C.x+2y=0 D.x+2y=1【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,求得a,b,由双曲线的渐近线方程y=±x,即可得到所求结论.【解答】解:双曲线4x2﹣y2=1即为﹣y2=1,可得a=,b=1,由双曲线的渐近线方程y=±x,可得所求渐近线方程为y=±2x.故选:A.4.在空间中,“直线a,b没有公共点”是“直线a,b互为异面直线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】空间中直线与直线之间的位置关系.【分析】利用空间中两直线的位置关系直接求解.【解答】解:“直线a,b没有公共点”⇒“直线a,b互为异面直线或直线a,b为平行线”,“直线a,b互为异面直线”⇒“直线a,b没有公共点”,∴“直线a,b没有公共点”是“直线a,b互为异面直线”的必要不充分条件.故选:B.5.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=()A.B.0 C.D.1【考点】直线与圆的位置关系.【分析】根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.【解答】解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,∴圆心C(a,0)在直线y=2x+1上,∴2a+1=0,解之得a=﹣故选:A.6.已知直线l的方程为x﹣my+2=0,则直线l()A.恒过点(﹣2,0)且不垂直x轴 B.恒过点(﹣2,0)且不垂直y轴C.恒过点(2,0)且不垂直x轴D.恒过点(2,0)且不垂直y轴【考点】直线的一般式方程.【分析】由直线l的方程为x﹣my+2=0,令y=0,解得x即可得出定点,再利用斜率即可判断出与y轴位置关系.【解答】解:由直线l的方程为x﹣my+2=0,令y=0,解得x=﹣2.于是化为:y=﹣x﹣1,∴恒过点(﹣2,0)且不垂直y轴,故选:B.7.已知直线x+ay﹣1=0和直线ax+4y+2=0互相平行,则a的取值是()A.2 B.±2 C.﹣2 D.0【考点】直线的一般式方程与直线的平行关系.【分析】由直线的平行关系可得1×4﹣a•a=0,解得a值排除重合可得.【解答】解:∵直线x+ay﹣1=0和直线ax+4y+2=0互相平行,∴1×4﹣a•a=0,解得a=2或a=﹣2,经验证当a=﹣2时两直线重合,应舍去故选:A8.已知两直线a,b和两平面α,β,下列命题中正确的为()A.若a⊥b且b∥α,则a⊥α B.若a⊥b且b⊥α,则a∥αC.若a⊥α且b∥α,则a⊥b D.若a⊥α且α⊥β,则a∥β【考点】空间中直线与平面之间的位置关系.【分析】利用空间线面平行、线面垂直以及面面垂直的性质定理和判定定理对选项分别分析选择.【解答】解:对于A,若a⊥b且b∥α,则a与α位置关系不确定;故A错误;对于B,若a⊥b且b⊥α,则a与α位置关系不确定;可能平行、可能在平面内,也可能相交;故B 错误;对于C,若a⊥α且b∥α,根据线面垂直和线面平行的性质定理,可以得到a⊥b;故C正确;对于D ,若a ⊥α且α⊥β,则a ∥β或者a 在平面β内,故D 错误;故选:C .9.已知点A (5,0),过抛物线y 2=4x 上一点P 的直线与直线x=﹣1垂直且交于点B ,若|PB|=|PA|,则cos ∠APB=( )A .0B .C .D .【考点】抛物线的简单性质.【分析】求出P 的坐标,设P 在x 轴上的射影为C ,则tan ∠APC==,可得∠APB=120°,即可求出cos ∠APB .【解答】解:由题意,|PB|=|PF|=PA|,∴P 的横坐标为3,不妨取点P (3,2),设P 在x 轴上的射影为C ,则tan ∠APC==, ∴∠APC=30°,∴∠APB=120°,∴cos ∠APB=﹣. 故选:C .10.如图,在边长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足B 1P ⊥D 1E ,则线段B 1P 的长度的最大值为( )A .B .2C .D .3【考点】点、线、面间的距离计算.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出线段B 1P 的长度的最大值.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设P (a ,b ,0),则D 1(0,0,2),E (1,2,0),B 1(2,2,2),=(a ﹣2,b ﹣2,﹣2),=(1,2,﹣2), ∵B 1P ⊥D 1E ,∴=a ﹣2+2(b ﹣2)+4=0,∴a+2b ﹣2=0,∴点P 的轨迹是一条线段,当a=0时,b=1;当b=0时,a=2,设CD 中点F ,则点P 在线段AF 上,当A 与P 重合时,线段B 1P 的长度为:|AB 1|==2; 当P 与F 重合时,P (0,1,0),=(﹣2,﹣1,﹣2),线段B 1P 的长度||==3, 当P 在线段AF 的中点时,P (1,,0),=(﹣1,﹣,﹣2),线段B 1P 的长度||==. ∴线段B 1P 的长度的最大值为3.故选:D .二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.已知命题p :“∀x ∈R ,x 2≥0”,则¬p : ∃x ∈R ,x 2<0 . 【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题p :“∀x ∈R ,x 2≥0”,则¬p :∃x ∈R ,x 2<0. 故答案为:∃x ∈R ,x 2<0.12.椭圆x 2+9y 2=9的长轴长为 6 .【考点】椭圆的简单性质.【分析】将椭圆化为标准方程,求得a=3,即可得到长轴长2a .【解答】解:椭圆x 2+9y 2=9即为+y 2=1,即有a=3,b=1,则长轴长为2a=6.故答案为:6.13.若曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为 (2,+∞) .【考点】双曲线的简单性质.【分析】将双曲线的方程化为标准方程,由题意可得m >0且m ﹣2>0,解不等式即可得到所求范围.【解答】解:曲线C :mx 2+(2﹣m )y 2=1是焦点在x 轴上的双曲线,可得﹣=1,即有m>0,且m﹣2>0,解得m>2.故答案为:(2,+∞).14.如图,在四棱锥P﹣ABCD中,底面四边形ABCD的两组对边均不平行.①在平面PAB内不存在直线与DC平行;②在平面PAB内存在无数多条直线与平面PDC平行;③平面PAB与平面PDC的交线与底面ABCD不平行;上述命题中正确命题的序号为①②③.【考点】棱锥的结构特征.【分析】①用反证法利用线面平行的性质即可证明.②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,即可判断;③用反证法利用线面平行的性质即可证明.【解答】解:①用反证法.设在平面PAB内存在直线与DC平行,则CD∥平面PAB,又平面ABCD∩平面PAB=AB,平面ABCD∩平面PCD=CD,故CD∥AB,与已知矛盾,故原命题正确;②设平面PAB∩平面PDC=l,则l⊂平面PAB,且在平面PAB中有无数无数多条直线与l平行,故在平面PAB内存在无数多条直线与平面PDC平行,命题正确;③用反证法.设平面PAB与平面PDC的交线l与底面ABCD平行,则l∥AB,l∥CD,可得:AB∥CD,与已知矛盾,故原命题正确.故答案为:①②③.15.已知向量,则与平面BCD所成角的正弦值为.【考点】直线与平面所成的角.【分析】求出平面BCD的法向量,利用向量法能求出与平面BCD所成角的正弦值.【解答】解:∵向量,∴==(﹣1,2,0),==(﹣1,0,3),设平面BCD的法向量为=(x,y,z),则,取x=6,得=(6,3,2),设与平面BCD所成角为θ,则sinθ===.∴与平面BCD所成角的正弦值为.故答案为:.16.若某三棱锥的三视图如图所示,则该棱锥的体积为,表面积为3.【考点】由三视图求面积、体积.【分析】几何体为三棱锥,棱锥底面为等腰三角形,底边为2,底边的高为1,棱锥的高为.棱锥顶点在底面的射影为底面等腰三角形的顶点.【解答】解:由三视图可知几何体为三棱锥,棱锥顶点在底面的射影为底面等腰三角形的顶点,棱锥底面等腰三角形的底边为2,底边的高为1,∴底面三角形的腰为,棱锥的高为.∴V==,S=+××2+=3.故答案为,三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的三个顶点坐标为A(0,0),B(8,4),C(﹣2,4).(1)求证:△ABC 是直角三角形;(2)若△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,求m 的值.【考点】直线与圆的位置关系;直线的斜率;圆的一般方程.【分析】(1)证明•=﹣16+16=0,可得⊥,即可证明△ABC 是直角三角形;(2)求出△ABC 的外接圆的方程,利用△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,可得圆心到直线的距离d=4,即可求m 的值.【解答】(1)证明:∵A (0,0),B (8,4),C (﹣2,4),∴=(8,4),=(﹣2,4),∴•=﹣16+16=0,∴⊥,∴ABC 是直角三角形;(2)解:△ABC 的外接圆是以BC 为直径的圆,方程为(x ﹣3)2+(y ﹣4)2=25,∵△ABC 的外接圆截直线4x+3y+m=0所得弦的弦长为6,∴圆心到直线的距离d=4=,∴m=﹣4或﹣44.18.如图所示的几何体中,2CC 1=3AA 1=6,CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,正方形ABCD 的边长为2,E 为棱A 1D 中点,平面ABE 分别与棱C 1D ,C 1C 交于点F ,G .(Ⅰ)求证:AE ∥平面BCC 1;(Ⅱ)求证:A 1D ⊥平面ABE ;(Ⅲ)求二面角D ﹣EF ﹣B 的大小,并求CG 的长.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)推导出CC 1∥AA 1,AD ∥BC ,从而平面AA 1D ∥平面CC 1B ,由此能证明AE ∥平面CC 1B . (Ⅱ)法1:推导出AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD ,以AB ,AD ,AA 1分别x ,y ,z 轴建立空间直角坐标系,利用向量法能证明A 1D ⊥平面ABE .法2:推导出AA 1⊥AB ,AB ⊥AD ,从而AB ⊥A 1D ,再由AE ⊥A 1D ,能证明A 1D ⊥平面ABE .(Ⅲ)推导出平面EFD ⊥平面ABE ,从而二面角D ﹣EF ﹣B 为90°,设,且λ∈[0,1],则G (2,2,3λ),再由A 1D ⊥BG ,能求出CG 的长.【解答】证明:(Ⅰ)因为CC 1⊥平面ABCD ,且AA 1⊥平面ABCD ,所以CC 1∥AA 1,因为ABCD 是正方形,所以AD∥BC,因为AA1∩AD=A,CC1∩BC=C,所以平面AA1D∥平面CC1B.因为AE⊂平面AA1D,所以AE∥平面CC1B.(Ⅱ)法1:因为AA1⊥平面ABCD,所以AA1⊥AB,AA1⊥AD,因为ABCD是正方形,所以AB⊥AD,以AB,AD,AA1分别x,y,z轴建立空间直角坐标系,则由已知可得B(2,0,0),D(0,2,0),A1(0,0,2),E(0,1,1),,,因为,所以,所以A1D⊥平面ABE.法2:因为AA1⊥平面ABCD,所以AA1⊥AB.因为ABCD是正方形,所以AB⊥AD,所以AB⊥平面AA1D,所以AB⊥A1D.因为E为棱A1D中点,且,所以AE⊥A1D,所以A1D⊥平面ABE.(Ⅲ)因为A1D⊥平面ABE,且A1D⊂平面EFD,所以平面EFD⊥平面ABE.因为平面ABE即平面BEF,所以二面角D﹣EF﹣B为90°.设,且λ∈[0,1],则G(2,2,3λ),因为A1D⊥平面ABE,BG⊂平面ABE,所以A1D⊥BG,所以,即,所以.19.已知椭圆G :的离心率为,经过左焦点F 1(﹣1,0)的直线l 与椭圆G 相交于A ,B 两点,与y 轴相交于C 点,且点C 在线段AB 上.(Ⅰ)求椭圆G 的方程;(Ⅱ)若|AF 1|=|CB|,求直线l 的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆焦距为2c ,运用离心率公式和a ,b ,c 的关系,即可得到椭圆方程;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),代入椭圆方程,运用韦达定理和向量共线的坐标表示,解方程即可得到所求方程.【解答】解:(Ⅰ)设椭圆焦距为2c ,由已知可得,且c=1,所以a=2,即有b 2=a 2﹣c 2=3,则椭圆G 的方程为;(Ⅱ)由题意可知直线l 斜率存在,可设直线l :y=k (x+1),由消y ,并化简整理得(4k 2+3)x 2+8k 2x+4k 2﹣12=0,由题意可知△>0,设A (x 1,y 1),B (x 2,y 2),则,因为点C ,F 1都在线段AB 上,且|AF 1|=|CB|,所以,即(﹣1﹣x 1,﹣y 1)=(x 2,y 2﹣y C ),所以﹣1﹣x 1=x 2,即x 1+x 2=﹣1,所以,解得,即.所以直线l的方程为或.。
N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。
高二(上)期末数学试卷(理科)一、选择题:(共大题共10小题,每小题5分,共50分)1.已知a,b为非零实数,且a<b,则下列结论一定成立的是()A.a2<b2B.a3<b3C.>D.ac2<bc22.命题:“∀x∈[0,+∞),x3+2x≥0”的否定是()A.∀x∈(﹣∞,0),x3+2x<0 B.∃x∈[0,+∞),x3+2x<0C.∀x∈(﹣∞,0),x3+2x≥0 D.∃x∈[0,+∞),x3+2x≥03.“x<0”是“<0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.﹣4 B.﹣6 C.﹣8 D.﹣105.在△ABC中,内角A,B,C的对边分别是a,b,c,且满足bcosC=a,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形6.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:4x﹣3y+20=0,且双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=17.已知四面体ABCD,=,=,=,点M在棱DA上,=2,N为BC中点,则=()A.﹣﹣﹣B.﹣++C.++D.﹣﹣8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,可求得该女子第4天所织布的尺数为”()A.B.C.D.9.对任意实数x,若不等式4x﹣m•2x+1>0恒成立,则实数m的取值范围是()A.m<2 B.﹣2<m<2 C.m≤2 D.﹣2≤m≤210.抛物线y2=2px(p>0)的焦点为F,准线为l,A、B为抛物线上的两个动点,且满足∠AFB=,设线段AB的中点M在l上的投影为N,则的最大值为()A.1 B.2 C.3 D.4二、填空题:(本大题共5小题,每小题5分,共25分)11.已知焦点在x轴上的椭圆+=1的离心率e=,则实数m=.12.设实数x,y满足条件,则z=y﹣2x的最大值为.13.在△ABC中,内角A、B、C的对边分别为a,b,c,若b,c,a成等比数列,且a=2b,则cosA=.14.过抛物线C:y2=8x的焦点F作直线l交抛物线C于A,B两点,若A到抛物线的准线的距离为6,则|AB|=.15.给出下列四个命题:①命题“若θ=﹣,则tanθ=﹣”的否命题是“若θ≠﹣,则tanθ≠﹣”;②在△ABC中,“A>B”是“sinA>sinB的充分不必要条件”;③定义:为n个数p1,p2,…,p n的“均倒数”,已知数列{a n}的前n项的“均倒数”为,则数列{a n}的通项公式为a n=2n+1;④在△ABC中,BC=,AC=,AB边上的中线长为,则AB=2.以上命题正确的为(写出所有正确的序号)三、解答题:(本大题共6小题,共75分)16.已知向量=(x,1,2),=(1,y,﹣2),=(3,1,z),∥,⊥.(1)求向量,,;(2)求向量(+)与(+)所成角的余弦值.17.在△ABC中,内角A、B、C的对边分别为a,b,c,且=1.(1)求∠C;(2)若c=,b=,求∠B及△ABC的面积.18.已知p:方程方程+=1表示焦点在y轴上的椭圆;q:实数m满足m2﹣(2a+1)m+a2+a<0且¬q是¬p的充分不必要条件,求实数a的取值范围.19.中国海警辑私船对一艘走私船进行定位:以走私船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度).中国海警辑私船恰在走私船正南方18海里A处(如图).现假设:①走私船的移动路径可视为抛物线y=x2;②定位后中国海警缉私船即刻沿直线匀速前往追埔;③中国海警辑私船出发t小时后,走私船所在的位置的横坐标为2t.(1)当t=1,写出走私船所在位置P的纵坐标,若此时两船恰好相遇,求中国海警辑私船速度的大小;(2)问中国海警辑私船的时速至少是多少海里才能追上走私船?20.已知数列{a n}是等差数列,其前n项和为S n,且满足a1+a5=10,S4=16;数列{b n}满足:b1+3b2+32b3+...+3n﹣1b n=,(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=a n b n+,求数列{c n}的前n项和T n.21.已知椭圆E:+=1(a>b>0)经过点(0,),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过左焦点F任作一直线l,交椭圆E于P、Q两点.(i)求•的取值范围;(ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM于点N,证明:点N在一条定直线上.高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:(共大题共10小题,每小题5分,共50分)1.已知a,b为非零实数,且a<b,则下列结论一定成立的是()A.a2<b2B.a3<b3C.>D.ac2<bc2【考点】不等式的基本性质.【专题】转化思想;不等式的解法及应用;简易逻辑.【分析】A.取a=﹣3,b=﹣2,即可判断出正误;B.令f(x)=x3,(x∈R),利用导数研究其单调性即可判断出正误C.取a=﹣2,b=1,即可判断出正误;D.取c=0,即可判断出正误.【解答】解:A.取a=﹣3,b=﹣2,不成立;B.令f(x)=x3,(x∈R),f′(x)=3x2≥0,∴函数f(x)在R上单调递增,又a<b,∴a3<b3,因此正确;C.取a=﹣2,b=1,不正确;D.取c=0,不正确.故选:B.【点评】本题考查了不等式的性质、函数的性质,考查了推理能力与计算能力,属于中档题.2.命题:“∀x∈[0,+∞),x3+2x≥0”的否定是()A.∀x∈(﹣∞,0),x3+2x<0 B.∃x∈[0,+∞),x3+2x<0C.∀x∈(﹣∞,0),x3+2x≥0 D.∃x∈[0,+∞),x3+2x≥0【考点】命题的否定.【专题】集合思想;数学模型法;简易逻辑.【分析】由全称命题的否定的规则可得.【解答】解:∵命题:“∀x∈[0,+∞),x3+2x≥0”为全称命题,故其否定为特称命题,排除A和C,再由否定的规则可得:“∃x∈[0,+∞),x3+2x<0”故选:B.【点评】本题考查全称命题的否定,属基础题.3.“x<0”是“<0”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;不等式的解法及应用;简易逻辑.【分析】由<0,化为x(x+1)<0,解出即可判断出.【解答】解:∵<0,∴x(x+1)<0,解得﹣1<x<0,∴“x<0”是“<0”的必要不充分条件,故选:B.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.﹣4 B.﹣6 C.﹣8 D.﹣10【考点】等差数列;等比数列.【专题】等差数列与等比数列.【分析】利用已知条件列出关于a1,d的方程,求出a1,代入通项公式即可求得a2.【解答】解:∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴a32=a1•a4,即(a1+4)2=a1×(a1+6),解得a1=﹣8,∴a2=a1+2=﹣6.故选B.【点评】本题考查了等差数列的通项公式和等比数列的定义,比较简单.5.在△ABC中,内角A,B,C的对边分别是a,b,c,且满足bcosC=a,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形【考点】正弦定理;余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】已知等式利用余弦定理化简,整理可得:a2+c2=b2,利用勾股定理即可判断出△ABC的形状.【解答】解:在△ABC中,∵bcosC=a,∴由余弦定理可得:cosC==,整理可得:a2+c2=b2,∴利用勾股定理可得△ABC的形状是直角三角形.故选:C.【点评】此题考查了三角形形状的判断,考查了余弦定理以及勾股定理的应用,熟练掌握公式及定理是解本题的关键,属于基础题.6.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:4x﹣3y+20=0,且双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】由已知推导出=,双曲线的一个焦点为F(5,0),由此能求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:4x﹣3y+20=0,∴=.∵双曲线的一个焦点在直线l:4x﹣3y+20=0上,∴由y=0,得x=5,∴双曲线的一个焦点为F(5,0),∴,解得a=3,b=4,∴双曲线的方程为﹣=1.故选:A.【点评】本题考查双曲线方程的求法,是中档题,解题时要认真审题,注意双曲线性质的合理运用.7.已知四面体ABCD,=,=,=,点M在棱DA上,=2,N为BC中点,则=()A.﹣﹣﹣B.﹣++C.++D.﹣﹣【考点】空间向量的加减法.【专题】数形结合;定义法;空间向量及应用.【分析】根据题意,利用空间向量的线性表示与运算,用、与表示出.【解答】解:连接DN,如图所示,四面体ABCD中,=,=,=,点M在棱DA上,=2,∴=,又N为BC中点,∴=(+);∴=+=﹣++=﹣++.故选:B.【点评】本题考查了空间向量的线性表示与运算问题,是基础题目.8.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,可求得该女子第4天所织布的尺数为”()A.B.C.D.【考点】等比数列的通项公式.【专题】方程思想;综合法;等差数列与等比数列.【分析】由题意可得每天的织布数量构成公比为2的等比数列,由等比数列的求和公式可得首项,进而由通项公式可得.【解答】解:设该女第n天织布为a n尺,且数列为公比q=2的等比数列,则由题意可得=5,解得a1=,故该女子第4天所织布的尺数为a4=a1q3=,故选:D.【点评】本题考查等比数列的通项公式和求和公式,属基础题.9.对任意实数x,若不等式4x﹣m•2x+1>0恒成立,则实数m的取值范围是()A.m<2 B.﹣2<m<2 C.m≤2 D.﹣2≤m≤2【考点】指、对数不等式的解法.【专题】计算题;转化思想;综合法;不等式的解法及应用.【分析】由已知(2x)2﹣m•2x+1>0恒成立,由此利用根的判别式能求出实数m的取值范围.【解答】解:∵对任意实数x,不等式4x﹣m•2x+1>0恒成立,∴(2x)2﹣m•2x+1>0恒成立,∴△=m2﹣4<0,解得﹣2<m<2.故选:B.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.10.抛物线y2=2px(p>0)的焦点为F,准线为l,A、B为抛物线上的两个动点,且满足∠AFB=,设线段AB的中点M在l上的投影为N,则的最大值为()A.1 B.2 C.3 D.4【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣3ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.【解答】解:设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos60°=a2+b2﹣ab,配方得,|AB|2=(a+b)2﹣3ab,又∵ab≤,∴(a+b)2﹣3ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).∴≤1,即的最大值为1.故选:A.【点评】本题在抛物线中,利用定义和余弦定理求的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.二、填空题:(本大题共5小题,每小题5分,共25分)11.已知焦点在x轴上的椭圆+=1的离心率e=,则实数m=12.【考点】椭圆的简单性质.【专题】方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】直接利用已知条件求出椭圆的几何量a,b,c,利用离心率公式计算求解即可.【解答】解:焦点在x轴上的椭圆+=1,可知a=,b=3,c=,∵离心率是e=,∴==,解得m=12.故答案为:12.【点评】本题考查椭圆的方程和性质,注意运用椭圆的基本量和离心率公式,考查运算能力,属于基础题.12.设实数x,y满足条件,则z=y﹣2x的最大值为5.【考点】简单线性规划.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】作出可行域,变形目标函数,平移直线y=2x结合图象可得结论.【解答】解:作出条件所对应的可行域(如图△ABC),变形目标函数可得y=2x+z,平移直线y=2x可知:当直线经过点A(﹣1,3)时,直线的截距最大,此时目标函数z取最大值z=3﹣2(﹣1)=5故答案为:5.【点评】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.13.在△ABC中,内角A、B、C的对边分别为a,b,c,若b,c,a成等比数列,且a=2b,则cosA=﹣.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由b,c,a成等比数列,利用等比数列的性质列出关系式,再将a=2b代入,开方用b表示出c,然后利用余弦定理表示出cosB,将表示出的a和c代入,整理后即可得到cosB的值.【解答】解:在△ABC中,∵b,c,a成等比数列,∴c2=ab,又a=2b,∴c2=2b2,即c=b,则cosA===﹣.故答案为:﹣.【点评】此题考查了余弦定理,以及等比数列的性质,熟练掌握余弦定理是解本题的关键,属于中档题.14.过抛物线C:y2=8x的焦点F作直线l交抛物线C于A,B两点,若A到抛物线的准线的距离为6,则|AB|=9.【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】先求出A的坐标,可得直线AB的方程,代入抛物线C:y2=8x,求出B的横坐标,利用抛物线的定义,即可求出|AB|.【解答】解:抛物线C:y2=8x的准线方程为x=﹣2,焦点F(2,0).∵A到抛物线的准线的距离为6,∴A的横坐标为4,代入抛物线C:y2=4x,可得A的纵坐标为±4,不妨设A(4,4),则k AF=2,∴直线AB的方程为y=2(x﹣2),代入抛物线C:y2=4x,可得4(x﹣2)2=4x,即x2﹣5x+4=0,∴x=4或x=1,∴B的横坐标为1,∴B到抛物线的准线的距离为3,∴|AB|=6+3=9.故答案为:9.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.15.给出下列四个命题:①命题“若θ=﹣,则tanθ=﹣”的否命题是“若θ≠﹣,则tanθ≠﹣”;②在△ABC中,“A>B”是“sinA>sinB的充分不必要条件”;③定义:为n个数p1,p2,…,p n的“均倒数”,已知数列{a n}的前n项的“均倒数”为,则数列{a n}的通项公式为a n=2n+1;④在△ABC中,BC=,AC=,AB边上的中线长为,则AB=2.以上命题正确的为①③④(写出所有正确的序号)【考点】命题的真假判断与应用.【专题】综合题;转化思想;定义法;简易逻辑.【分析】①根据否命题的定义进行判断.②根据充分条件和必要条件的定义进行判断.③根据数列{a n}的前n项的“均倒数”为,即可求出S n,然后利用裂项法进行求和即可.④根据余弦定理进行求解判断.【解答】解:①命题“若θ=﹣,则tanθ=﹣”的否命题是“若θ≠﹣,则tanθ≠﹣”;故①正确,②在△ABC中,“A>B”等价于a>b,等价为sinA>sinB,则,“A>B”是“sinA>sinB的充分必要条件”;故②错误,③∵数列{a n}的前n项的“均倒数”为,∴=,即S n=n(n+2)=n2+2n,=n2+2n﹣(n﹣1)2﹣2(n﹣1)=2n+1,∴当n≥2时,a n=S n﹣S n﹣1当n=1时,a1=S1=1+2=3,满足a n=2n+1,∴数列{a n}的通项公式为a n=2n+1,故③正确,④在△ABC中,BC=,AC=,AB边上的中线长为,设AB=2x,则cos∠AOC=﹣cos∠BOC,即=﹣,即x2﹣4=﹣x2,即x2=2,则x=,则AB=2.故④正确,故答案为:①③④【点评】本题主要考查命题的真假判断,涉及四种命题,充分条件和必要条件以及解三角形的应用,综合性较强,难度中等.三、解答题:(本大题共6小题,共75分)16.已知向量=(x,1,2),=(1,y,﹣2),=(3,1,z),∥,⊥.(1)求向量,,;(2)求向量(+)与(+)所成角的余弦值.【考点】空间向量的数量积运算.【专题】对应思想;向量法;空间向量及应用.【分析】(1)根据空间向量的坐标表示与∥,且⊥,列出方程组求出x、y、z的值即可;(2)根据空间向量的坐标运算与数量积运算,利用公式求出(+)与(+)所成角的余弦值.【解答】解:(1)∵向量=(x,1,2),=(1,y,﹣2),=(3,1,z),且∥,⊥,∴,解得x=﹣1,y=﹣1,z=1;∴向量=(﹣1,1,2),=(1,﹣1,﹣2),=(3,1,1);(2)∵向量(+)=(2,2,3),(+)=(4,0,﹣1),∴(+)•(+)=2×4+2×0+3×(﹣1)=5,|+|==,|+|==;∴(+)与(+)所成角的余弦值为cosθ===.【点评】本题考查了空间向量的坐标运算与数量积的应用问题,是基础题目.17.在△ABC中,内角A、B、C的对边分别为a,b,c,且=1.(1)求∠C;(2)若c=,b=,求∠B及△ABC的面积.【考点】余弦定理;正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)由已知条件化简变形可得:a2+b2﹣c2=ab,利用余弦定理可得cosC,结合范围C∈(0°,180°),即可得解C的值.(2)利用已知及正弦定理可得sinB,利用大边对大角可求角B的值,利用两角和的正弦函数公式可求sinA 的值,利用三角形面积公式即可求值得解.【解答】(本题满分为12分)解:(1)由已知条件化简可得:(a+b)2﹣c2=3ab,变形可得:a2+b2﹣c2=ab,由余弦定理可得:cosC==,∵C∈(0°,180°),∴C=60°…6分(2)∵c=,b=,C=60°,∴由正弦定理可得:sinB===,又∵b<c,∴B<C,∴B=45°,在△ABC中,sinA=sin(B+C)=sinBcoC+cosBsinC==,∴S△ABC=bcsinA==…12分【点评】本题主要考查了余弦定理,正弦定理,大边对大角,两角和的正弦函数公式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.已知p:方程方程+=1表示焦点在y轴上的椭圆;q:实数m满足m2﹣(2a+1)m+a2+a<0且¬q是¬p的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;不等式的解法及应用;简易逻辑.【分析】由p可得:2﹣m>m﹣1>0,解得m范围.由q:实数m满足m2﹣(2a+1)m+a2+a<0化为:(m ﹣a)[m﹣(a+1)]<0,解得m范围.又¬q是¬p的充分不必要条件,可得p⇒q.【解答】解:由p可得:2﹣m>m﹣1>0,解得.由q:实数m满足m2﹣(2a+1)m+a2+a<0化为:(m﹣a)[m﹣(a+1)]<0,解得a<m<a+1.又¬q是¬p的充分不必要条件,∴p⇒q.则,解得.经过检验a=或1时均适合题意.故a 的取值范围是.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.19.中国海警辑私船对一艘走私船进行定位:以走私船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度).中国海警辑私船恰在走私船正南方18海里A 处(如图).现假设:①走私船的移动路径可视为抛物线y=x 2;②定位后中国海警缉私船即刻沿直线匀速前往追埔;③中国海警辑私船出发t 小时后,走私船所在的位置的横坐标为2t .(1)当t=1,写出走私船所在位置P 的纵坐标,若此时两船恰好相遇,求中国海警辑私船速度的大小; (2)问中国海警辑私船的时速至少是多少海里才能追上走私船?【考点】函数模型的选择与应用.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】(1)t=1时,确定P 的横坐标,代入抛物线方程可得P 的纵坐标,利用|AP|,即可确定中国海警辑私船速度的大小;(2)设中国海警辑私船的时速为v 海里,经过t 小时追上走私船,此时位置为(2t ,9t 2),从而可得v关于t 的关系式,利用基本不等式,即可得到结论.【解答】解:(1)t=1时,P 的横坐标x P =2,代入抛物线方程y=x 2中,得P 的纵坐标y P =9.由A (0,﹣18),可得|AP|=,得中国海警辑私船速度的大小为海里/时;(2)设中国海警辑私船的时速为v 海里,经过t 小时追上失事船,此时位置为(2t ,9t 2).由vt=|AP|=,整理得v 2=81(t 2+)+352因为t 2+≥4,当且仅当t=时等号成立,所以v 2≥81×4+352=262,即v ≥26.因此,中国海警辑私船的时速至少是26海里才能追上走私船.【点评】本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.20.已知数列{a n}是等差数列,其前n项和为S n,且满足a1+a5=10,S4=16;数列{b n}满足:b1+3b2+32b3+...+3n﹣1b n=,(n∈N*).(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=a n b n+,求数列{c n}的前n项和T n.【考点】数列的求和;数列递推式.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】(Ⅰ)通过联立a1+a5=10、S4=16可知首项和公差,进而可知a n=2n﹣1;通过作差可知当n≥2时b n=,进而可得结论;(Ⅱ)通过(I)及错位相减法计算可知数列{a n b n}的前n项和和为P n=1﹣(n+1),通过裂项、利用并项相加法可知数列{}的前n项和Q n=,进而计算可得结论.【解答】解:(Ⅰ)依题意,,解得:,∴a n=1+2(n﹣1)=2n﹣1;∵b1+3b2+32b3+…+3n﹣1b n=,=(n≥2),∴b1+3b2+32b3+…+3n﹣2b n﹣1两式相减得:3n﹣1b n=﹣=,∴b n=(n≥2),又∵b1=满足上式,∴数列{b n}的通项公式b n=;(Ⅱ)记p n=a n b n=(2n﹣1),其前n项和和为P n,则P n=1•+3•+…+(2n﹣1),P n=1•+3•+…+(2n﹣3)+(2n﹣1),两式相减得:P n=+2(++…+)﹣(2n﹣1)=2•﹣﹣(2n﹣1)=[1﹣(n+1)],∴P n=1﹣(n+1),∵q n===(﹣),∴其前n项和Q n=(1﹣+﹣+…+﹣)=(1﹣)=,∵c n=a n b n+,∴T n=P n+Q n=1﹣(n+1)+.【点评】本题考查数列的通项及前n项和,考查错位相减法、裂项相消法,注意解题方法的积累,属于中档题.21.已知椭圆E:+=1(a>b>0)经过点(0,),离心率为,点O为坐标原点.(Ⅰ)求椭圆E的标准方程;(Ⅱ)过左焦点F任作一直线l,交椭圆E于P、Q两点.(i)求•的取值范围;(ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM于点N,证明:点N在一条定直线上.【考点】椭圆的简单性质.【专题】方程思想;分析法;平面向量及应用;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,可得a,进而得到椭圆方程;(Ⅱ)(i)求得F(﹣2,0),讨论直线的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和向量的数量积的坐标表示,以及不等式的性质,即可得到所求范围;(ii)可设PQ:y=k(x+2),FN:y=﹣(x+2),设M(x0,y0),运用中点坐标公式,求得M的坐标,进而得到直线OM方程,求得直线FN和OM的交点N,即可得证.【解答】解:(Ⅰ)由题意可得b=,e==,又a2﹣b2=c2,解得a=,c=2,即有椭圆方程为+=1;(Ⅱ)(i)F(﹣2,0),当直线的斜率不存在时,设P(x1,y1),Q(x2,y2),直线方程为x=﹣2,可得P(﹣2,),Q(﹣2,﹣),•=4﹣=;当直线的斜率存在,设l:y=k(x+2),设P(x1,y1),Q(x2,y2),代入椭圆方程x2+3y2=6,可得(1+3k2)x2+12k2x+12k2﹣6=0,x1+x2=﹣,x1x2=,•=x1x2+y1y2=x1x2+k2(x1+2)(x2+2)=(1+k2)x1x2+2k2(x1+x2)+4k2=(1+k2)•+2k2•(﹣)+4k2==﹣,由k2≥0,3k2+1≥1,可得﹣6≤•<,综上可得,•的取值范围是[﹣6,];(ii)证明:由直线l的斜率一定存在,且不为0,可设PQ:y=k(x+2),FN:y=﹣(x+2),设M(x0,y0),则x0=,由x1+x2=﹣,可得x0=,y0=k(x0+2)=,直线OM的斜率为k OM==﹣,直线OM:y=﹣x,由可得,即有k取何值,N的横坐标均为﹣3,则点N在一条定直线x=﹣3上.【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查向量的数量积的坐标表示,注意运用联立直线方程和椭圆方程,运用韦达定理,同时考查点在定直线上的求法,注意运用直线方程求交点,考查运算能力,属于中档题.。