有限元法的基本原理
- 格式:pdf
- 大小:1.83 MB
- 文档页数:16
有限元方法的基本原理
有限元方法是一种数值分析方法,用于求解复杂结构的力学问题。
其基本原理如下:
1. 将结构离散化:首先将结构分割成许多小的单元(有限元),每个单元可视作一个简单的结构部件。
这样可以将原始连续结构的复杂问题简化为每个小单元的简单问题。
2. 定义弯曲关系:对每个单元建立力学模型,包括定义材料的弹性模量、泊松比、截面积等力学性质参数。
3. 建立单元的位移方程:利用有限元方法,采用适当的形函数,建立每个单元的位移方程,一般为不定位移分析。
4. 组装全局方程:将所有单元的位移方程组装成整个结构的全局方程。
5. 求解方程组:通过数值方法(如高斯消元法、迭代法等),求解结构的位移和应力等力学量。
6. 分析结果:根据结构的位移和应力等力学量,可对结构的强度、刚度、振动等进行分析和评价。
有限元方法的基本原理是将复杂结构的力学问题通过离散化处理,化为易于计算的小单元问题,再通过数值方法求解整个结构的力学行为。
有限元法的基本原理有限元法(Finite Element Method)是一种用于求解工程和物理问题的数值计算方法。
它将复杂的结构或物理系统分割成若干个小的、简单的部分,这些部分被称为有限元。
通过对每个有限元进行数学建模和描述,再根据各个有限元之间的相互关系,最终得到整个系统的数学模型,并通过求解模型得到所需的结果。
有限元法的基本原理可以总结为以下几个步骤:1.离散化:将需要分析的实际物体或系统划分为多个小的部分,每个小部分称为有限元。
每个有限元都有自己的几何形状和物理特性。
2.建立方程:对每个有限元进行数学建模,设定适当的假设和方程,并将其转化为一个或多个待求解的方程。
这些方程描述了物体各点之间的关系和行为。
3.组装和边界条件:将所有有限元的方程组合起来形成整个系统的方程。
在这个过程中,考虑到边界条件,如约束和加载,以使系统模型更接近实际情况。
4.求解方程:通过数值解法或迭代算法,对系统方程进行求解。
常用的方法有直接法、迭代法、矢量或矩阵求逆等。
5.后处理:根据求解结果,得到所需的物理量和信息,并进行数据分析和可视化,以获得更深入的认识。
有限元法的最大优点之一是其适用性广泛。
它可以应用于各种复杂的结构和物理系统,包括静力学、动力学、热传导、电磁学等。
通过适当的选择有限元类型和参数,可以对各种材料和结构进行准确的分析和预测。
此外,有限元法对于学术和工程研究的意义也非常重大。
它提供了一种理论和实践相结合的方法,可以对实际问题进行数值模拟和优化设计。
通过对有限元模型的分析,可以预测物体或系统的行为和响应,从而为实际工程项目的决策提供有力的支持。
然而,有限元法也存在一些局限性和挑战。
首先,有限元法在建立数学模型和求解方程时需要一定的理论基础和数值计算技术。
其次,模型的精确性和结果的准确性依赖于有限元的选择和划分,以及材料参数和边界条件的准确性。
最后,有限元法的计算量通常很大,特别是对于复杂的结构和多物理场问题,需要高性能计算和有效的算法来提高计算效率。
有限元分析的基本原理有限元分析法是一种通用的数值分析技术,它利用有限数目的计算元素来对结构的应力、变形以及失效的可能性进行分析,它简化了复杂的工程结构在实际受力情况下的模拟计算,可以预测出构件的性能、变形和可能失效等。
有限元分析是用数学模型来模拟生活用来模拟工程中结构抗压、抗弯、抗剪、抗疲劳等性能。
有限元分析有三个基本原理:结构变形、力学方程和材料本构方程。
首先,有限元分析的基础原理是结构变形。
结构变形是指在施加外力作用下,受力的结构的空间变形和大小的变化,它是有限元分析的基础,该原理说明了满足力学方程的解决方法如何以有限元的形式出现。
通常情况下,我们会把构件的耦合变形分成很多小的计算元(这些计算元之间有连接约束),减少变形的不确定性,从而提高分析的准确性。
其次,有限元分析的基础原理是力学方程。
满足力学方程条件的解决方案就是有限元分析,也就是把问题分解成很多小的子问题来求解。
力学方程最常见的形式是基于有限元技术的动态和静态结构分析。
动态结构分析是指结构在某个加载下的振动反应,涉及到施加外力、弹性和惯性效应。
静态结构分析则指结构在不同类型外力作用下的变形。
最后,有限元分析的基础原理是材料本构方程。
材料本构方程是指材料受拉力作用而形成变形和应力的关系,它可以用来描述材料在承受外力时的作用。
本构方程有很多不同的形式,最常用的形式是弹性体的本构方程,它说明了当受到外力作用时,材料的拉伸和压缩的反应,从而将其应用于有限元分析技术。
以上就是有限元分析的基本原理,它是构成有限元分析的基础,而且这些基本原理也被广泛应用于工程中对结构性能进行模拟和分析。
有限元分析可以帮助工程师准确地估算出结构在特定加载条件下的变形和应力,也可以帮助他们判断结构在疲劳荷载作用下是否会发生破坏。
有限元分析也可以帮助设计者更好地分析结构在复杂(多变)条件下的性能,以确定结构的最优设计。
所以,有限元分析的基本原理是工程分析的基础,合理的运用可以节约大量的时间和精力,从而达到性能最优的结构设计。
有限元法基本原理及应用教学设计一、引言有限元法作为结构力学、流体力学、热力学等学科中最常用的数值分析方法之一,已经广泛地用于工程领域。
本文将介绍有限元法的基本原理,并结合教学实践,提出一些应用场景下的教学方法。
二、有限元法基本原理有限元法是一种通过将连续体分割成一系列互相联系的单元,再在每个单元内进行局部近似的方法。
其基本步骤如下:1.确定问题的几何形状,将其离散化为有限数量的单元。
2.寻找适当的函数形式,用于单元内的场函数近似。
3.根据边界条件、本构关系等确定模型中所需的参数。
4.利用有限元法求解离散模型中的场函数,获得结果。
其中,第一步和第二步是离散化的过程,第三步是确定问题的物理参数,第四步是利用有限元方法来求解局部近似的结果。
三、教学设计3.1 教学目标通过本教学,学生应该能够:1.理解有限元法的基本原理。
2.能够根据问题特点选择有限元法模型,熟练掌握其求解方法。
3.能够独立地完成一定的有限元法计算,掌握基本的讨论和分析技巧。
3.2 教学内容教学内容的设计应该以让学生掌握有限元法的基本原理和中小型有限元法计算实验为主。
具体包括:1.有限元法基本概念和基本原理。
2.有限元法求解流程。
3.有限元法中力学问题的处理方法。
4.有限元法计算程序的操作实践及其调试过程。
3.3 教学方法教学方法应该根据教学目标和教学内容来选择。
具体而言,可以采用以下教学方法:1.讲授法:介绍有限元法的基本理论、公式、步骤等。
2.组织实践:每个学生都可以应用所学的有限元法计算流程,通过校内实践检验所得结果,加深学习效果。
3.讨论演示法:引导学生根据教材内容和实践结果展开讨论,举一反三,形成总结性的详细讨论分享现象,并进行比较,以及某些特殊情况的讨论。
4.自学法:学生在自习时间用充足的学习资料在当地的工程和计算机实验室研读,掌握有限元法的道理和方法。
3.4 教学评估教学评估应包括考试成绩和实际计算结果。
在学年末进行考试,考试的内容应该包括基本理论和实践的实际应用以及进行有限元法计算产生结果的分析。
有限元法基本原理
有限元法是一种在工程和物理学中用于模拟复杂几何体的数值计算方法。
它的基本原理是将一个复杂几何体分解成一些小的几何体,然后用有限元方法来解决问题,这种方法可以提供一个更精确的解决方案。
有限元法的基本原理是将复杂的几何体拆分成一些小的几何体,每个小的几何体称为有限元。
有限元可以是点、线、多边形、三角形或其他形状,每个有限元都可以用一个或多个称为单元函数的数学表达式来描述。
使用这些单元函数,可以计算出该有限元的位置、速度和加速度等物理量。
有限元法的基本原理是,假定每个有限元的物理量的变化情况,即每个有限元上的力,受其他有限元的影响。
通过求解这些有限元之间的力学关系,可以计算出所有有限元上物理量的变化情况,从而求出整体几何体的物理变化。
有限元法可以用来解决复杂的力学问题,如固体力学、流体力学、热力学和电磁学等。
由于不同的有限元可以通过表达式来描述,因此有限元法可以用来模拟任意复杂的几何体。
有限元法是一种有效的建模方法,它可以帮助人们更好地理解几何体的力学变化,并可以用来解决复杂的物理问题。
因此,有限元法
是一种有效、可靠的模拟方法,它已经成为工程和物理学中不可缺少的分析工具。
有限元法在工程问题中的应用有限元法是一种数学模型,它能够在任意细分的大型结构中进行数值计算,根据输入的控制数据,通过分析方程组的解来估算结构的应力、位移和变形情况。
自20世纪中期以来,有限元法已成为广泛应用于工程学和科学中的一种基本分析工具,本文就有限元法在工程问题中的应用进行了详细探讨。
一、有限元法的基本原理有限元法基于工程和数学的原理,它将结构划分为小的有限元部分,通过将结构的连续域离散成离散节点和有限元,将原问题转换为求解节点变量和有限元上产生的“单元”变量的方程组,其中“单元”是指每个单元贡献的力和位移。
这里的方程可以求解相应的应变、应力和动态特性以及温度变化等问题,而有限元法会处理系统性质和外部力。
然后,在满足所有预期行为的条件下找到一组满足约束条件的系数和变量。
有限元方法的算法涉及基本的数学和物理概念和操作。
它涉及特定材料的材料特性,例如弹性模量,泊松比,密度和摩擦系数等;结构的变形;应力分布和荷载方程;和运动方程和动力特性的制定。
通常,要获得准确的数值分析结果,需要做一定的假设和约束条件,例如,每个元素中的变形是线性的、惯性力小于惯性力、等等。
二、有限元法在结构工程中的应用1、金属材料和复合材料的分析在工业制造中,金属材料和复合材料具有广泛应用。
有限元法已成为一种预测任意材料失效、表征复杂耦合场和计算导电性等物理过程的强大工具。
有限元分析可以通过根据特定的驱动因素(例如机械应力、热应力或火焰,或抗冲击性或耐腐蚀性),模拟金属材料和复合材料的行为。
2、建筑物和桥梁的分析有限元法还常用于建筑物和桥梁这些工程结构的分析。
它可以模拟不同的“端口”来描述拱、墙壁、屋顶、梁和板的所有物理属性。
有限元分析可以更好地理解材料的行为和材料间的作用,并预测某个部件是否会破坏或失效。
3、车辆的动力学表现有限元法的另一个应用是在汽车、飞机、火车等各种机动车辆的动力学表现方面。
它跟踪引擎和驱动部件之间的相互作用,并模拟发动机和传动系统的行为。
有限元的原理有限元分析是一种工程数值分析方法,它利用数学原理和计算机技术,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是将复杂的结构分割成许多小的单元,通过对每个单元的力学行为进行精确描述,最终得到整个结构的力学响应。
本文将从有限元分析的基本原理、步骤和应用进行介绍。
有限元分析的基本原理是离散化方法,它将一个连续的结构分解成有限个单元,每个单元都是一个简单的几何形状,如三角形、四边形等。
然后对每个单元进行力学建模,建立单元的位移场和应力场的数学模型。
通过组合所有单元的数学模型,得到整个结构的位移场和应力场的近似解。
有限元分析的基本原理是基于弹性力学理论,它假设结构在受力作用下是弹性变形,即满足胡克定律。
有限元分析的数学模型通常是一个大型的代数方程组,通过求解这个方程组,得到结构的位移场和应力场。
有限元分析的步骤包括建立有限元模型、施加边界条件、求解代数方程组和后处理结果。
首先,需要对结构进行几何建模,将结构分解成有限个单元,并确定每个单元的材料性质和几何尺寸。
然后,需要施加边界条件,即给定结构的约束条件和外载荷。
接下来,需要将结构的力学行为建立成代数方程组,通常采用有限元法中的单元法则和变分原理。
最后,通过求解代数方程组,得到结构的位移场和应力场,并进行后处理,如应力分布、位移云图等。
有限元分析在工程领域有着广泛的应用,如结构分析、热传导分析、流体力学分析等。
在结构分析中,有限元分析可以用于预测结构的强度、刚度和稳定性,为结构设计提供理论依据。
在热传导分析中,有限元分析可以用于预测结构的温度分布和热传导性能,为热工设计提供支持。
在流体力学分析中,有限元分析可以用于模拟流体在结构内部的流动行为,为流体工程设计提供参考。
总之,有限元分析是一种强大的工程数值分析方法,它通过离散化方法和数学建模,对工程结构的力学行为进行模拟和分析。
有限元分析的原理是基于弹性力学理论,通过求解代数方程组,得到结构的位移场和应力场。
有限元分析的基本原理有限元分析是一种工程结构分析方法,它通过将结构分割成有限数量的小单元,然后利用数学方法对每个小单元进行分析,最终得出整个结构的性能和行为。
有限元分析的基本原理包括以下几个方面:1. 离散化处理。
有限元分析的第一步是将连续的结构离散化成有限数量的小单元,这些小单元可以是一维的杆件、二维的板或壳、也可以是三维的实体单元。
离散化处理的目的是将复杂的结构问题简化成一些简单的小单元问题,从而方便进行数学分析。
2. 建立单元模型。
每个小单元都需要建立相应的数学模型,这个模型通常是基于物理原理和数学方程建立的。
例如,对于弹性结构,可以采用弹性力学理论建立单元模型;对于热传导问题,可以采用热传导方程建立单元模型。
建立单元模型的目的是描述小单元的性能和行为,以便进行数学分析。
3. 建立整体模型。
将所有小单元组合起来,就得到了整个结构的有限元模型。
整体模型需要考虑小单元之间的连接关系和边界条件,以确保模型的完整性和准确性。
整体模型是对结构进行数学描述的基础,也是进行数值计算的对象。
4. 求解方程。
建立好整体模型后,需要对模型进行数学求解,得出结构的性能和行为。
这通常涉及到大量的数学运算和计算机程序,因此需要借助计算机进行求解。
求解方程的目的是得出结构的应力、应变、位移等物理量,以评估结构的性能和稳定性。
5. 结果分析。
最后,需要对求解得到的结果进行分析和评估。
这包括对结构的强度、刚度、稳定性等方面进行评估,以确定结构是否满足设计要求。
结果分析是有限元分析的最终目的,也是工程实践中最为关键的一步。
总之,有限元分析是一种基于数学和物理原理的工程结构分析方法,它通过离散化处理、建立单元模型、建立整体模型、求解方程和结果分析等步骤,对结构的性能和行为进行评估和预测。
有限元分析的基本原理对于工程设计和分析具有重要的意义,也是工程结构分析领域的重要方法之一。
有限元法基本原理
有限元法是最先应用于航空工程结构的矩阵分析方法,主要用来解决复杂结构中力与位移的关系。
有限元法的基本思想:将具有无限个自由度的连续的求解区域离散为具有有限个自由度、且按一定方式(节点)相互连接在一起的离散体(单元),即将连续体假想划分为数目有限的离散单元,而单元之间只在数目有限的指定点处相互联结,用离散单元的集合体代替原来的连续体。
一般情况下,有限元方程是一组以节点位移为未知量的线性方程组,解次方程组可得到连续体上有限个节点上的位移,进而可求得各单元上的应力分布规律。
有限元方法求解问题主要分为以下几步:(1)结构的离散化
将已连续体线性沦为单元组合体;(2)挑选加速度模式
即假定单元中位移分布是坐标的某种函数,位移模式一般选为多项式的函数;
(3)单元力学特性分析
利用弹性力学的平衡方程、几何方程、物理方程和虚功原理得到单元节点力和节点位移之间的力学关系,即建立单元刚度矩阵;
(4)排序耦合节点力根据机械功成正比原则,用耦合节点Courtomer替代所有促进作用于单元边界或单元内部的载荷;
(5)建立整个结构的所有节点载荷与节点位移之间的关系(整体结构平衡方程),即建立结构的的总体刚度矩阵;
(6)边界条件
排除结构发生整体刚性位移的可能性。
(7)求解线性方程组
方程组存有唯一求解,即为获得结构中各节点的加速度,单元内部加速度通过插值获得。
(8)后处理与计算结果评价。
有限元分析的基本原理有限元分析(Finite Element Analysis,FEA)是一种工程分析方法,它通过将复杂的结构分割成有限数量的简单单元,然后利用数学方法对每个单元进行分析,最终得出整个结构的行为。
有限元分析方法在工程领域得到了广泛的应用,可以用于求解结构的应力、挠度、热传导、流体流动等问题,是一种非常有效的分析工具。
有限元分析的基本原理可以归纳为以下几点:1. 离散化,有限元分析将连续的结构离散化为有限数量的单元,这些单元可以是三角形、四边形、四面体、六面体等形状。
每个单元都有自己的节点和自由度,通过对单元的组合,可以得到整个结构的离散模型。
2. 建立方程,对于每个单元,可以建立其位移与受力之间的关系,这通常可以通过弹性力学理论得到。
然后将所有单元的位移-受力关系组合成整个结构的方程,这个方程描述了整个结构的行为。
3. 求解方程,得到整个结构的方程之后,可以通过数值方法对其进行求解,得到结构在给定载荷下的响应,包括位移、应力、应变等信息。
4. 后处理,最后,对求解得到的结果进行后处理,可以得到结构的各种性能指标,比如最大应力、挠度、疲劳寿命等。
这些指标可以帮助工程师评估结构的安全性和可靠性。
有限元分析的基本原理非常简单,但在实际应用中却有着复杂的数学和计算机实现。
通过有限元分析,工程师可以更好地理解结构的行为,设计更安全、更经济的产品。
有限元分析方法的发展也为工程领域的发展提供了强大的支持,可以预测结构在各种复杂载荷下的响应,为工程设计提供了重要的参考依据。
总的来说,有限元分析是一种非常重要的工程分析方法,它的基本原理是将复杂的结构离散化,建立数学模型,通过数值方法求解得到结构的响应。
有限元分析方法的发展为工程领域的发展做出了重要贡献,相信在未来的发展中,它将发挥更加重要的作用。
有限元的基本原理
有限元法的基本原理是建立在表示实际连续体的离散模型的基础上。
该方法的基本思想是将实际连续体分割为有限个较小的、称为有
限元的部分,每个有限元都被认为是相互独立的,而受到软件模型所
描述的一组约束。
有限元法模型求解是通过将所有有限元在一定环境
下的相互作用来描述整个物体。
这些有限元之间相对于解析方法更接
近实际情况,所以解法能够更加精确地检验计算结果。
有限元法的步骤如下:
1. 选定有限元的类型和形状,不同的有限元类型适用于不同的计
算问题。
2. 将整个实际物体离散成为多个有限元,每个元内部的参数、如
位移分布、应变场等等,是用一定的方程求解的。
3. 去掉有限元间间隔,并构造出一个总体联立方程。
4. 利用边界条件得出相应“挤压”量,完成总体应力分布的过程。
5. 通过这些有限元联立方程组,算出整个物体所有部位的应力、
位移和应变,从而得到整个物体的状态分布。
有限元法能以极大程度上模拟多结构系统间的相互作用和这些作
用对物体性质的影响,如形变,热度和应力。
这个方法可被应用广泛,包括航空航天、汽车制造、能源以及生命科学等等。
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
有限元法的基本原理和应用前言有限元法(Finite Element Method,简称FEM)是一种常用的数值分析方法,用于求解工程和物理问题。
它能够将一个复杂的问题分解为许多小的、简单的部分,通过数学方法将这些部分逼近为连续函数,并进行求解。
本文将介绍有限元法的基本原理和应用。
基本原理1.离散化:有限元法将连续域分解为多个离散的小单元,这些小单元称为有限元。
离散化可以将复杂问题简化为易于处理的小部分。
每个有限元由节点和单元组成,节点是问题解的近似点,单元是在节点周围定义的几何形状。
2.变量表示:在有限元法中,通过数学函数对变量进行近似表示。
常用的近似函数有线性、二次、三次等。
通过选择合适的形状函数,可以有效地近似解决问题。
3.形成方程:根据物理方程,将离散域中每个有限元的贡献进行求和,形成一个整体方程。
这个整体方程可以是线性方程、非线性方程、常微分方程等。
通过求解这个整体方程,可以得到问题的解。
应用领域有限元法广泛应用于各个领域,包括但不限于: - 结构分析:有限元法可以用来模拟和分析工程结构的强度、刚度和振动等特性。
通过对结构进行有限元分析,可以预测和优化结构的性能。
- 热传导:有限元法可以用来模拟物体内部的温度分布和热传导过程。
通过对热传导问题进行有限元分析,可以优化物体的热设计和散热能力。
- 流体力学:有限元法可以用来模拟和分析流体的流动和压力分布。
通过对流体力学问题进行有限元分析,可以优化管道、风扇等设备的设计。
- 电磁场:有限元法可以用来模拟和分析电磁场的分布和电磁设备的性能。
通过对电磁场问题进行有限元分析,可以优化电磁设备的设计和电磁干扰问题。
有限元法的优点和局限性•优点:有限元法适用于复杂的几何形状和边界条件,并可以考虑多物理场耦合。
它具有较高的灵活性,可以适应各种问题的求解。
•局限性:有限元法的计算精度和效率受到离散化精度和网格剖分的影响。
对于高度非线性和大变形问题,有限元法可能需要更多的时间和计算资源。
第二章有限元法的基本原理有限元法吸取了有限差分法中的离散处理内核,又继承了变分计算中选择试探函数并对区域积分的合理方法。
有限元法的理论基础是加权余量法和变分原理,因此这里首先介绍加权余量法和变分原理。
2.1等效积分形式与加权余量法加权余量法的原理是基于微分方程等效积分的提法,同时它也是求解线性和非线性微分方程近似解的一种有效方法。
在有限元分析中,加权余量法可以被用于建立有限元方程,但加权余量法本身又是一种独立的数值求解方法。
2.1.1微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件的形式提出来的,可以一般地表示为未知函数u 应满足微分方程组⎛A 1(u )⎫ ⎪A (u )= A 2(u )⎪=0(在Ω内)(2-1) M ⎪⎝⎭域Ω可以是体积域、面积域等,如图2-1所示。
同时未知函数u 还应满足边界条件⎛B 1(u )⎫ ⎪B (u )= B 2(u )⎪=0(在Γ内)(2-2)M ⎪⎝⎭要求解的未知函数u 可以是标量场(例如压力或温度),也可以是几个变量组成的向量场(例如位移、应变、应力等)。
A ,B 是表示对于独立变量(例如空间坐标、时间坐标等)的微分算子。
微分方程数目应和未知场函数的数目相对应,因此,上述微分方程可以是单个的方程,也可以是一组方程。
所以在以上两式中采用了矩阵形式。
以二维稳态的热传导方程为例,其控制方程和定解条件如下:A (φ)=∂∂φ∂∂φ(k )+(k )+q =0(在Ω内)(2-3)∂x ∂x ∂y ∂y⎧φ-φ=0⎪B(φ)=⎨∂φ-q=0⎪k⎩∂n (在Γφ上)(在Γq上)(2-4)这里φ表示温度(在渗流问题中对应压力);k是流度或热传导系数(在渗流问题中对应流度K/μ);φ和q是边界上温度和热流的给定值(在渗流问题中分别对应边界上的压力和边界上的流速);n是有关边界Γ的外法线方向;q是源密度(在渗流问题中对应井的产量)。