有限单元法基本思想,原理,数值计算过程
- 格式:doc
- 大小:201.00 KB
- 文档页数:4
《弹性力学问题的有限单元法》弹性力学问题的有限单元法(FiniteElementMethod,简称FEM)是一种经典的多学科跨领域的计算方法,它用于估算连续体结构中非线性材料力学性能,如强度、刚度和破坏。
有限单元法已成为工程和材料科学中最重要的数值计算方法,可用于解决各种复杂多学科优化和设计问题。
有限单元法的基本思想是把复杂的连续体结构划分成许多小的、较容易处理的有限元素,而不是像一般的解析方法那样求取整体的解析解。
基于有限元素重要的性质,即小元素经过一系列的连接后就可以构成整个结构的模型,有限单元法的本质是数值分析,也就是根据模型的物理知识,选择有效的数值化方法,用数值计算的方法求解所要求的结果,从而使这些数值计算结果符合实际结构物理知识。
有限单元法是一种有效计算弹性力学问题的方法,它可以用来求解任意形状的结构问题,无论是有边界条件还是无边界条件,无论是线性或者非线性的形状变化,有限单元法都能够有效地应用。
其优势在于以节省计算时间和消耗的成本,在特殊的材料条件下,它可以比较快速地获得弹性力学问题的有效精确解。
其精度依赖于计算模型元素的类型、形状和几何尺寸等,因此通常需要调节元素的类型、形状和尺寸,以满足计算需要。
在计算机技术的发展下,有限单元法的计算能力越来越强大,可以对更多的复杂问题进行分析,可以更有效地解决工程设计中的实际问题。
由于计算机可以模拟各种变形和应力的变化,因此有限单元法可以为工程设计和材料研究提供更可靠的结果。
有限单元法在工程应用中的实际作用是显而易见的。
它不仅可以用来计算弹性结构中的材料力学特性,还可以分析复杂结构的动态响应。
此外,有限单元法还可以用来计算弹性结构中的表面张力、刚度,以及各种材料的裂缝扩展。
通过有限单元法的应用,可以获得有效的数值结果,从而提高设计效果和工程安全性。
因此,有限单元法对于材料科学和工程设计都具有重要价值,今后还将发挥更多的功能。
有限单元法是多学科跨学科的计算方法,它可以用来有效地分析复杂形状结构的力学特性,计算出精确的结果,从而提高工程设计的效果和安全性。
有限单元法基本原理和数值方法1. 引言有限单元法(Finite Element Method,FEM)是一种数值计算方法,广泛应用于结构力学、流体力学、电磁场及热传导等领域中。
本文将介绍有限单元法的基本原理和数值方法,并阐述其在工程实践中的应用。
2. 基本原理有限单元法的基本原理是将复杂的连续体问题离散化为若干简单的子域,即有限单元。
每个有限单元由一个或多个节点组成,通过将子域内的导数方程或平衡方程转化为代数方程,再通过求解这些代数方程得到全局解。
有限单元法的基本步骤如下: - 确定问题的几何形状和边界条件; - 将几何形状分割为有限个单元,并为每个单元定义适当的数学模型; - 根据单元的数学模型建立刚度矩阵、质量矩阵等,并通过组装成全局矩阵; - 应用合适的边界条件,并求解线性或非线性代数方程组; - 根据代数方程组的解,计算各个单元内部的物理量。
3. 数值方法有限单元法中常用的数值方法包括: - 剖分方法:将连续域剖分为若干简单的有限单元,常用的有三角形剖分和四边形剖分。
- 元素类型:根据问题的特性选择合适的单元类型,如线性元、三角元、四边形元等。
- 积分方法:采用高斯积分等方法对每个单元内的积分方程进行数值求解。
- 方程求解:对线性方程组采用直接法(如高斯消元法)或迭代法(如共轭梯度法)进行求解。
- 后处理:根据问题的要求,进行应力、位移、应变等物理量的计算和显示。
4. 应用实例有限单元法广泛用于工程实践中,以下为其常见应用实例:- 结构力学:用于模拟建筑物、桥梁、飞机等结构的应力和变形。
- 流体力学:用于模拟流体在管道、水槽、风洞等中的流动。
- 电磁场:用于模拟电磁场在电路、电机、天线等中的分布。
- 热传导:用于模拟热传导在导热管、散热器、热交换器等中的传热情况。
5. 结论有限单元法作为一种数值计算方法,在工程实践中得到了广泛应用。
通过将连续问题离散化为有限单元,再通过数值方法求解代数方程组,可以获得连续问题的近似解。
有限单元法原理及应用有限单元法(Finite Element Method,FEM)是一种数值分析方法,广泛应用于工程领域中结构力学、流体力学、热传导等问题的数值求解。
它的基本思想是将一个复杂的结构或物理现象分割成有限数量的简单单元,通过对单元的力学行为进行建模,最终得到整个系统的数值解。
本文将围绕有限单元法的原理及其在工程领域中的应用进行详细介绍。
有限单元法的原理。
有限单元法的原理基于力学原理和数学方法,其基本步骤包括,建立数学模型、离散化、单元划分、建立单元刚度矩阵和载荷向量、组装和求解方程、计算结果后处理等。
在建立数学模型时,需要根据实际问题选择合适的数学方程和边界条件,将问题转化为求解一组代数方程。
离散化是指将连续的物理问题划分成若干个小单元,每个单元内的物理行为可以用简单的数学方程描述。
单元划分是将整个结构或领域划分成若干个有限单元,通常采用三角形、四边形、四面体、六面体等几何形状。
建立单元刚度矩阵和载荷向量是对每个单元进行力学行为的建模,根据材料性质和几何形状计算单元的刚度矩阵和载荷向量。
组装和求解方程是将所有单元的刚度矩阵和载荷向量组装成整个系统的刚度矩阵和载荷向量,然后通过数值方法求解代数方程组。
最后,计算结果后处理是对数值解进行分析和可视化,评估结构的性能和稳定性。
有限单元法的应用。
有限单元法在工程领域中有着广泛的应用,包括结构力学、流体力学、热传导等方面。
在结构力学中,有限单元法可以用于分析和设计各种结构,如桥梁、建筑、机械零件等。
通过对结构的受力分析,可以评估结构的安全性和稳定性,指导工程设计和施工。
在流体力学中,有限单元法可以用于模拟流体的流动行为,如水力学、空气动力学等问题的数值模拟。
在热传导中,有限单元法可以用于分析材料的热传导性能,评估材料的热稳定性和散热效果。
总结。
有限单元法作为一种数值分析方法,在工程领域中有着重要的应用价值。
通过对结构、流体、热传导等问题的数值模拟,可以为工程设计和科学研究提供重要的参考和支持。
有限单元法的基本原理有限单元法(Finite Element Method,FEM)是一种常用于工程和科学领域中求解复杂问题的数值方法。
它的基本原理可以概括为将复杂的连续问题离散化为简单的有限个单元,然后利用数值方法对各个单元进行分析,最终得到整个问题的近似解。
以下将详细介绍有限单元法的基本原理。
1.连续问题的离散化:2.单元的建立:利用有限单元法,每个单元内部的位移和应力分布可以通过简单的变换关系来表示。
通常,在每个单元内部选择一种合适的形状函数来表示位移和应力的连续变化。
在线性有限元分析中,常用的形状函数为线性函数,而在非线性有限元分析中,常用的形状函数可以是二次或更高次函数。
3.边界条件的施加:在有限单元法中,为了求解问题的唯一解,必须施加适当的边界条件。
边界条件可以是约束位移、施加力或给定的位移等。
通过施加适当的边界条件,可以将问题转化为一个封闭的系统,方便求解。
4.系统的建立:利用有限单元法,可以将整个问题表示为一个线性或非线性的代数方程组。
构建这个方程组需要考虑到每个单元的位移和应力之间的关系。
通过组装每个单元的刚度矩阵和力向量,最终可以得到整个问题的刚度矩阵和力向量。
5.方程组的求解:得到整个问题的刚度矩阵和力向量后,可以使用各种数值方法求解代数方程组。
常用的方法有直接法(如高斯消元法)和迭代法(如共轭梯度法)。
求解得到的位移和应力即为整个问题的近似解。
6.解的后处理:在有限单元法中,为了解决工程问题,通常需要进一步对位移和应力进行后处理。
后处理可以包括计算其他感兴趣的物理量、绘制应力和位移图等。
通过后处理,可以更好地理解问题的本质和它们的工程意义。
总结起来,有限单元法通过将连续问题离散化为有限个单元,然后使用适当的形状函数表示位移和应力的连续变化,通过施加边界条件和构建代数方程组,最终得到问题的近似解。
有限单元法在工程和科学领域中被广泛应用,可以有效地解决各种复杂问题。
有限单元法学习报告在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。
有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。
通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。
基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。
我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。
一、离散化解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。
选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。
因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。
在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。
三角形单元以内角接近60°为最好。
充分利用对称性与反对称性。
二、单元分析将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。
1、位移函数选取:根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。
单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移8 i= (U i V i)T为基本未知量,以离散位移场代替连续位移场。
有限单元法学习报告在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。
有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。
通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。
基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。
我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。
一、离散化解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。
选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。
因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。
在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。
三角形单元以内角接近60°为最好。
充分利用对称性与反对称性。
二、单元分析将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。
1、位移函数选取:根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。
单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移8 i= (U i V i)T为基本未知量,以离散位移场代替连续位移场。
有限单元法基础
有限单元法(Finite Element Method,FEM)是一种数值计算
方法,常用于求解连续介质力学问题。
它将连续的物理域划分为有限数量的离散单元(finite elements),通过在每个单元内构建近似函数来描述物理场,再根据物理方程建立离散方程组,通过求解离散方程组来得到物理场的近似解。
有限单元法的基本思路是将连续域离散化为有限数量的小单元,每个小单元内使用适当的数学函数进行插值,将大问题分解为很多个小问题,并利用变量之间的连续性建立全局的离散方程组。
然后通过求解离散方程组得到近似解。
有限单元法的基本步骤包括:
1. 网格划分:将要求解的区域划分为多个离散单元,并在每个单元内选择适当的形状函数。
2. 形函数构造:在每个单元内选择适当的形状函数,用于描述物理场的分布。
3. 整体方程组:根据物理方程在每个单元上的积分,建立整个问题的离散方程组。
4. 边界条件:根据边界条件,将边界上的节点处的值固定为已知值。
5. 求解方程组:利用数值方法求解离散方程组,得到物理场的
近似解。
6. 后处理:根据求解结果,计算所需的物理量并进行分析和验证。
有限单元法具有广泛的应用,适用于各种连续介质力学问题的数值求解,如结构力学、固体力学、流体力学、热传导等。
它可以处理复杂的几何形状和边界条件,且精度和收敛性能较高。
有限单元法及程序设计有限单元法(Finite Element Method,FEM)是一种用于数值分析和计算的方法,广泛应用于工程和科学领域。
它通过将连续问题离散化成有限个小单元,并在每个小单元上建立数学模型来近似求解问题。
本文将介绍有限单元法的基本原理、步骤以及程序设计方面的注意事项。
一、有限单元法基本原理有限单元法的基本原理是将连续的物理区域划分为有限个离散的小单元,每个小单元内的场量近似表示为一些插值函数的线性组合。
通过对这些小单元进行逐个求解,最终得到整个问题的近似解。
有限单元法的核心思想是利用局部性原则,将整个问题分解成多个小问题。
每个小问题只涉及到相邻的单元,在确定了边界条件和材料特性后,可以进行独立的求解。
最后通过组合各个小问题的解,得到整个问题的解。
二、有限单元法步骤有限单元法的求解过程主要包括几个基本步骤,具体如下:1. 离散化:将连续的物理区域划分为有限的小单元。
常用的小单元形状包括三角形、四边形、六边形等。
2. 建立数学模型:在每个小单元上建立数学模型,通常使用插值函数来近似表示物理量。
插值函数的选择对求解结果的准确性和效率有重要影响。
3. 形成总体方程:根据物理规律和边界条件,利用适当的数学方法推导出总体方程。
常见的总体方程包括稳定性方程、运动方程等。
4. 矩阵装配:将每个小单元的局部方程装配成整个系统的总体方程。
这一步骤常常需要对单元进行编号和排序,以便正确地装配矩阵。
5. 边界条件处理:根据实际问题的边界条件,对总体方程进行修正。
边界条件的处理通常包括施加约束和设定边界值。
6. 求解方程:通过数值方法,如有限差分法或有限元法,求解总体方程。
常用的求解方法包括直接法和迭代法。
7. 后处理:对求解结果进行计算和分析,以获得实际问题的有用信息。
后处理包括输出位移、应力、应变等字段,以及进行可视化展示。
三、程序设计注意事项在进行有限单元法的程序设计时,需要充分考虑以下几个方面的注意事项:1. 算法选择:根据问题的特点和求解需求,选择合适的有限单元类型、插值函数和数值解法。
有限单元法有限单元法,是一种有效解决数学问题的解题方法。
其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数 ;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
有限单元法基本原理和数值方法有限单元法基本原理和数值方法是一种常用的数值分析方法,用于求解各类物理问题的数值解。
它将连续的物理问题离散化为有限个大小不等的子区域,称为有限单元。
每个有限单元都有一组自由度,可以通过定义适当的变量来描述该单元内的物理属性。
基本原理是将整个物理问题分解为多个有限单元,通过在每个单元上建立受力平衡方程和适当的边界条件来求解问题。
这些方程可以是线性或非线性的,取决于物理问题的性质。
通过组装相邻单元的方程,可以得到整个问题的整体方程组,然后通过求解线性代数方程组来确定每个单元的未知变量。
数值方法是用于解决离散化方程组的方法。
常见的数值方法有有限差分法、有限体积法和有限元法等。
其中,有限单元法是一种重要的数值方法,它通过在单元内近似解的形式和权函数的组合来建立近似解的表达式。
通过对近似解进行适当的选择,使得在整个问题域内满足弱形式或变分形式的基本方程,从而将求解问题转化为求解一个离散化的代数方程组。
在数值求解过程中,需要对物理问题进行网格划分,并在每个单元上选择适当的插值函数和权函数。
根据选取的插值函数和权函数的类型,可以得到不同的有限单元法。
常见的有限单元法有线性有限元、二次有限元和高阶有限元等。
为了提高数值解的精度和收敛性,还可以采用自适应网格划分和后验误差估计等技术。
有限单元法基本原理和数值方法是求解物理问题的一种重要工具,它在结构力学、流体力学、电磁场分析等领域得到了广泛应用。
通过选择适当的插值函数、权函数和网格划分方法,可以得到高精度和高效率的数值解。
但需要注意的是,在实际应用中,还需要考虑数值误差和计算代价等因素,以及问题的特殊性和实际约束条件,来选择合适的数值方法和参数设置。
有限单元法基本原理和数值方法1. 引言有限单元法(Finite Element Method,简称FEM)是一种用于求解工程问题的数值计算方法。
它的基本原理是将连续体分割为离散的有限单元,通过建立有限单元间的关系,近似求解连续体的行为。
本文将介绍有限单元法的基本原理和数值方法。
2. 有限单元法基本原理有限单元法基于两个基本假设:一是一个连续物体可以用小的有限单元来近似表示;二是连续物体在每个有限单元内有近似均匀的力和位移。
有限单元法的基本原理可以概括为以下几个步骤:2.1 离散化将连续物体划分为有限个离散的单元,每个单元都有自己的性质和参数。
通常采用三角形、四边形、四面体等简单形状的单元。
2.2 建立单元间的关系通过节点和单元之间的连接关系来构建整个有限元模型。
每个单元都与相邻的单元共享一些节点,通过共享的节点建立单元间的关系。
2.3 定义单元的属性为每个单元定义材料性质、几何属性和荷载条件等参数,这些参数将用于描述单元的行为。
2.4 定义求解问题的边界条件为有限元模型定义相应的边界条件,如位移边界条件、力边界条件等。
2.5 利用单元间的关系建立方程通过应变能最小原理,利用单元间的关系建立求解整个结构的方程。
2.6 求解方程将建立的方程离散化,采用数值方法求解得到解。
3. 有限单元法数值方法有限单元法中常用的数值方法有直接法和迭代法。
3.1 直接法直接法是指直接求解线性方程组的方法,通常使用高斯消元法、LU分解法等。
直接法的优点是计算简单,稳定性好。
但是当方程组规模较大时,计算量会很大。
3.2 迭代法迭代法是指通过迭代逼近求解方程组的方法,常用的迭代法有Jacobi迭代法、Gauss-Seidel迭代法等。
迭代法的优点是计算量相对较小,适用于大规模方程组。
但是迭代法的收敛性需要保证,且需要选择合适的迭代停止准则。
4. 有限单元法应用有限单元法广泛应用于工程领域的结构分析、流体力学、电磁场分析等。
一、有限单元法的基本思想(1)将一个连续域化为有限个单元并通过有限个结点相连接的等效集合体。
由于单元能按照不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。
(2)有限元法利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场数。
单元内的近似函数由未知场函数在单元的各个结点的数值和其插值函数来表达。
(3)一个问题的有限元分析中,未知场函数在各个结点上的数值就成为新的未知量,从而使一个连续的无限自由度问题变成离散的有限自由度问题。
(4)一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。
显然,随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加以及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。
图1 有限元分析流程图二、有限元分析过程概述1 结构的离散化结构的离散化是有限单元法分析的第一步,它是有限单元法的基本概念。
所谓离散化简单地说,就是将要分析的结构物分割成有限个单元体,并在单元体的指定点设置结点,使相邻单元的有关参数具有一定的连续性,并构成一个单元的集合体,以它代替原来的结构。
如果分析的对象是桁架,那么这种划分十分明显,可以取每根杆件作为一个单元,因为桁架本来是由杆件组成的。
但是如果分析的对象是连续体,那么为了有效地逼近实际的连续体,就需要考虑选择单元的形状和分割方案以及确定单元和结点的数目等问题。
2 选择位移模式在完成结构的离散之后,就可以对典型单元进行特性分析。
此时,为了能用结点位移表示单元体的位移、应变和应力,在分析连续体问题时,必须对单元中位移的分布作出一定的假设,也就是假定位移是坐标的某种简单的函数,这种函数称为位移模式或插值函数。
选择适当的位移函数是有限单元法分析中的关键。
通常选择多项式作为位移模式。
其原因是因为多项式的数学运算(微分和积分)比较方便,并且由于所有光滑函数的局部,都可以用多项式逼近。
有限单元法学习报告在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。
有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。
通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。
基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。
我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。
一、离散化解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。
选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。
因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。
在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。
三角形单元以内角接近60°为最好。
充分利用对称性与反对称性。
二、单元分析将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。
1、位移函数选取:根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。
单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。
单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:①位移模式必须能反映单元的刚体位移。
②位移模式必须能反映单元的常量应变。
③位移模式应尽可能反应位移的连续性。
设三角形单元三个结点编号为i 、j 、m 。
平面三角形单元位移函数选取为u=α1+α2x+α3y v=α4+α5x+α6y可以写成00u u yv v yωω=-⎧⎨=+⎩的形式,00u v 、反映了单元的刚体平动,ω反映了单元的刚体转动,满足完备性和连续性的要求①。
采用插值法由单元结点位移列阵δe=()ii j j mm u v u v u v T 计算α1、α2、α3、α4、α5、α 6.,求出位移d=[u (x ,y), v (x ,y )]。
6个未知量,6个代数方程,得d e =N δed e =u v ⎛⎫ ⎪⎝⎭=0000i j m ijm N N N N N N ⎛⎫⎪⎝⎭()i i j j mm u v u v u v T式中N i =(a i +b i x+c i y)/2A ,a i =jjm mx y x y b i = -11i m y y c i =11j m x x (i 、j 、m 轮换)A 为三角形面积,为避免A<0,i 、j 、m 按逆时针排列。
N 为形函数矩阵,形函数Ni 的性质有: ①N i (x i ,y i )=1 N i (x j ,y j )=0 Ni (xm ,ym )=0②N i (x ,y )+N j (x ,y )+N m (x ,y )=1可推出三个形函数中,两个是独立的,反映了刚体平移。
令z=Ni ,在直接坐标系中画出Ni 、Nj 、Nm 的函数图形是以Ni (xi ,yi )=1为高的四面体,所以结点位移影响单元的位移场,单元的位移场是线性分布的,相邻单元在公共边上的位移是连续的,单元相邻边的位移只取决于单元相邻公共边上的结点而与其他结点无关,无论以哪个单元计算相邻边的位移,结果一定相同。
形函数N i e 决定了单元内的位移模式,反映了i 结点位移对单元内任意点位移的贡献率。
2、根据几何方程用单元结点位移表示单元应变:()0010002ijmi jmii j j mmi i j jm m u x B b b v c c c u v u v u vy A cb c bc b u v y x ε⎛⎫∂ ⎪∂ ⎪⎛⎫ ⎪∂ ⎪== ⎪ ⎪∂ ⎪ ⎪⎝⎭ ⎪∂∂+ ⎪∂∂⎝⎭Te e B εδ= B 为几何矩阵B 可写为分块矩阵B =(B i B j B m )T ,B i =00i i i i b c c b ⎛⎫⎪⎪ ⎪⎝⎭,B 内所有元素与x ,y 无关,所以该单元内应变是常量,反映单元的常量应变,满足完备性和连续性的要求 ,这是一种常应变单元。
3、根据物理方程用单元结点位移表示单元应力:e e D σε= 2101011002E D μμμμ⎛⎫ ⎪⎪= ⎪- ⎪- ⎪⎝⎭D 为弹性矩阵 e e e e D DB S σεδδ=== S 为应力矩阵S=DB 中,每一个元素都是常数,所以eσ的每一个分量与单元内x ,y 位置无关,这是一种常应力单元。
因为在三结点三角形单元中,位移函数中含有坐标的一次项,其误差为()2o x ∆,而应力、应变是常量,其误差为()o x ∆,比位移精度低。
4、根据虚功原理用单元结点位移表示单元结点力单元在结点处受力,单元会发生变形,因此单元在结点处所受到的力与单元结点位移肯定有关系。
单元间通过结点的相互作用成为整体,因此每一单元的受力——位移关系找出来,整体的受力——位移关系也就出来了。
记单元节点力为()ei jm F F F F =T ,单元结点虚位移为()*e ***ij m =Tδδδδ单元内应力为()exy xy σσστ=T , 单元内虚应变()****x y xy εεεγ=T 根据虚功原理,()()**TTe ee AF dxdy t δεσ=∙⎰⎰,可得e T e AF B DBdxdy t δ=⋅⋅⎰⎰因为B 、D 中元素都是常数,eTeeF B DBtA K δδ==,K=B T DB tA 为单元刚度矩阵。
K 为6行6列矩阵可写为()T i T j ijm T m B K tA B D B B B B ⎛⎫ ⎪== ⎪ ⎪⎝⎭ii ij im jij j jm mimjmm k k k k k k k k k ⎛⎫ ⎪ ⎪ ⎪⎝⎭,xxxy ij ij ij i j yxyy ijij k k k B DB At At k k ⎛⎫== ⎪ ⎪⎝⎭,xyij k 表示j 结点处发生y 方向的单位位移时所引起的i 结点处x 方向的结点力。
不同类型不同形式的单元,只有弹性矩阵D 和几何矩阵B 不同,计算子块矩阵的公式相同,平面问题中,影响刚度矩阵K 的只有几何矩阵B 。
K 的性质有:①K 中每个元素表示个单元结点沿坐标方向发生单位位移时所引起的结点力。
②K 为对称矩阵。
③单元做刚体位移时,单元内不产生应变应力,结点力为0,所以K 中每行每列元素之和为0,所以0K =,所以只根据eeF K δ=无法求得唯一解。
5、根据虚功等效原则计算等效结点力根据有限元的基本方法,单元内任意点的位移、应变、应力等最终都要用结点位移来表示,所以作用在物体上的外力也要用结点位移表示。
为了计算等效结点力,在任意的虚位移上,使原载荷与等效载荷虚功相等。
设外力为p f ,结点虚位移为*eδ,则任意点虚位移为**ee dN δ=,等效节点载荷为e L F ,有*eT *eT e p L d f t F δ= e T L p F N f t =(集中力)同理得eT L SF N f ds t =⋅⎰(面力),eL AF Nfdxdy t =⋅⎰⎰(体力)。
三、整体分析将结构的所有单元通过结点连接起来,形成一个整体的离散结构以代替实际的连续体,以形成以结点位移为未知量的整体结构的有限元代数方程组,最后求得结点位移。
对结点受力分析:结点受到与之相关的单元给它的反作用力和外载荷的等效结点力,这两组力坐标轴方向相反,所以应该相等,即i LieeF F=∑∑,设有n 个结点,每个结点建立两个方向的方程,不考虑外界约束时,共2n 个方程,2n 个未知量(,,...ix iy jx δδδ),为了建立这个代数方程组,建立整个弹性体的结点力和结点位移的关系式L K F δ=,K (2n ×2n )为整理刚度矩阵,δ为整体结点位移列阵,F L 整体结点载荷列阵。
为了求整体刚度矩阵,要找到它与已求得的单元刚度矩阵的关系,在整体中对结点编码,设整体刚度矩阵中某元素为Kij ,意为j 个结点在x 或y 方向发生位移引起i 个结点x 或y 方向的结点力,找到同时用到i 与j 结点的单元,并用与之对应的单元刚度矩阵中的元素ksm 相加得到Kij ,整体刚度矩阵也是奇异矩阵,必须考虑边界约束条件,消除K 的奇异性,才能求解结点位移。
再由单位结点等效载荷得到整体结点载荷列阵F L 。
这样K 、F L 已知,求解代数方程,解出整体结点位移列阵δ,得到相应的单元结点位移δe。
δe得到了,相应的d e 、σe 、εe等就得到了。