有限元基本原理与概念资料
- 格式:ppt
- 大小:1.02 MB
- 文档页数:94
§1有限元的基础理论§1-1 概述有限元法是一种数值计算的近似方法。
早在40年代初期就已有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限元法得以迅速发展。
有限元法在西方起源于飞机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德的J.H.Argyris教授,于1954–1955年间,他在《Aircraft engineering》上发表了许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书成为有限元法的理论基础。
美国的M.T.Turner,R.W.Clough,H.C.Martin和L.J.Topp等人于1956年发表了一篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,说明了如何利用计算机进行分析。
美国教授R.W.Clough于1960年在一篇介绍平面应力分析的论文中,首次提出了有限元法的名字。
1965年英国的O.C.Zienliewice教授及其合作者解决了将有限元应用于所有场的问题,使有限元法的应用范围更加广泛。
有限元法的优点很多,其中最突出的优点是应用范围广。
发展至今,不仅能解决静态的、平面的、最简单的杆系结构,而且还可以解决空间问题、板壳问题、结构的稳定性问题、动力学问题、弹塑性问题和粘弹性问题、疲劳和脆性断裂问题以及结构的优化设计问题。
而且不论物体的结构形式和边界条件如何复杂,也不论材料的性质和外载荷的情况如何,原则上都能应用。
§1-2 有限元的基础理论有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点处连接而组成整体。
把连续体分成有限个单元和节点,称为离散化。
先对单元进行特性分析,然后根据各节点处的平衡和协调条件建立方程,综合后作整体分析。
这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化为简单单元的分析与综合的问题。
有限元分析原理有限元分析是一种工程数值分析方法,用于求解结构、流体、热传导等领域的复杂问题。
它通过将整个问题分解为有限数量的小元素,利用数学方法对这些元素进行计算,最终得出整个系统的行为。
有限元分析原理是有限元方法的基础,下面将对其进行详细介绍。
有限元分析的基本原理是将连续的问题离散化为有限数量的小元素,然后利用数学方法对这些小元素进行计算。
这些小元素通常是由节点和单元组成,节点是问题的离散点,而单元则是连接这些节点的小区域。
通过对每个单元的行为进行分析,可以得出整个系统的行为。
在有限元分析中,通常会使用一些数学模型来描述问题的行为。
这些数学模型可以是线性的,也可以是非线性的,可以描述结构的刚度、流体的流动、热传导等各种物理现象。
通过将这些数学模型与有限元离散化方法相结合,可以得出问题的数值解。
有限元分析的核心思想是将复杂的问题简化为小的、简单的元素,然后通过对这些元素进行计算,得出整个系统的行为。
这种离散化的方法使得原本复杂的问题变得更容易处理,同时也为分析提供了更多的灵活性和精度。
在实际工程中,有限元分析被广泛应用于结构分析、流体力学、热传导等领域。
它可以帮助工程师们更好地理解和预测系统的行为,从而指导工程设计和优化。
同时,有限元分析也为新材料、新结构的设计提供了重要的工具和方法。
总的来说,有限元分析是一种强大的工程数值分析方法,它通过离散化和数学建模的方法,帮助工程师们更好地理解和预测系统的行为。
有限元分析原理是有限元方法的基础,对其进行深入的理解和掌握,对于工程技术人员来说至关重要。
通过不断地学习和实践,我们可以更好地运用有限元分析方法,为工程实践提供更多的帮助和支持。
有限元基础知识归纳(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有限元知识点归纳1.、有限元解的特点、原因答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
1、有限元的概念有限单元法最初作为结构力学位移法的拓展,它的基本思路就是将复杂的结构看成由有限个单元仅在节点处连接的整体,首先对每一个单元分析其特性,建立县官的物理量之间的相关联系。
然后,依据单元之间的联系,再将各单元组装成整体,从而获得整体性方程,再应用方程相应的解法,即可完成整个问题的分析。
这种先“化整为零”,然后再“集零为整”和“化未知为已知”的研究方法,是有普遍意义的。
有限单元法作为一种近似的(除杆件体系结构静力分析外)数值分析方法,它借助于矩阵等数学工具,尽管计算工作量很大,但是整体分析是一致的,有限强的规律性和统一模式,因此特别适合于编制计算机程序来处理。
一般来说,一定前提条件下的分析近似值,随着离散化网络的不断细化,计算精度也随之得到改善。
所以,随着计算机硬件、软件技术的飞速发展,有限单元分析技术得到了越来越多的应用,40多年来的发展几乎涉及了各类科学、工程领域中的问题。
从应用的深度和广度来看,有限单元法的研究和应用正继续不断地向前探索和推进。
有限元法是随电子计算机应用的日益普及和数值分析技术日益发展而迅速发展的一种新颖有效的数值方法。
它在50年代起源于飞机结构的矩阵分析,60年代开始被推广用来分析弹性力学平面问题。
由于它所依据的理论的普遍性,很快就广泛应用与求解热传导、电磁场、流体力学等连续问题。
目前已再各个工程技术领域中得到了十分广泛的应用。
2、有限元的发展概况从经典结构力学派生的结构矩阵分析方法,早就用于建筑工程的复杂钢架等的分析。
但这些结构本身都是明显地由杆件所组成,杆件的特性可通过经典的位移分析来建立。
虽然矩阵位移法整个分析方法和步骤都与有限单元法相似,也是用矩阵来表达、用计算机来求解,但它与目前广泛应用的有单元法是有本质区别的。
前者只能用以分析具有已知单元结点力-单元结点位移关系的杆件体系结构,而不能分析非杆件体系的连续体结构。
因为对离散所得的非杆件连续体单元,无法像矩阵位移法那样用传统方法建立起单元结点力和单元结点位移之间的关系。
2.2. 有限元法基本原理2011-10-1302.有限元法基本原理一、什么是有限元法有限元法是结构分析的一种数值计算方法。
它在20世纪50年代初期随着计算机的发展应运而生。
理论基础牢靠,物理概念清晰,解题效理论基础牢靠物理概念清晰解题效率高,适应性强,目前已成为机械产品动、静、热特性分析的重要手段,它的程序包是机械产品计算机辅助设计方法库中不可缺少的内容之一。
有限元法F inite E lements M ethod2.有限元法基本原理有限元法的雏形阿基米德问题约250 B.C.): 用内接正多边形的周长()去逼近圆周长以求得π 值z 将连续体进行离散化有限元法基本思想的雏形S pace S tructure R esearch C enter , HIT, CHINA 2z 计算各正多边形边长的值z 用各边的边长总和近似代替园周长2.有限元法基本原理二、有限元法的发展历史z1943年R. Courant用三角形区域上的多项式函数(形函数)解决扭转问题。
1946电子计算机问世使结构分析发生重大变革z年电子计算机问世,使结构分析发生重大变革;z50年代由德国工程师提出用能量原理和矩阵方法来计算航空器的结构强度,逐渐波及土木工程;z1960年由R. H. Clough命名“有限单元法(FEM)以来,有限元法蓬勃发展。
法”(以来有限元法蓬勃发展z在60年代初开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而紧接的30年则是CAE软件商品化的发展阶段。
S pace S tructure R esearch C enter, HIT, CHINA32.有限元法基本原理三、有限元常用术语单元:有限元模型中每一个小的块体;z线、三角形、四边形、四面体、六面体。
节点确定单元形状表述单元特征连接相邻单 节点:确定单元形状、表述单元特征、连接相邻单元的点;载荷:外在施加的力或力矩;不同的学科有所区别;z集中力、分布力、力矩、温度、磁场。
有限元方法基本原理有限元方法(Finite Element Method, FEM)是一种数值计算方法,主要用于求解偏微分方程的数值解。
它最早由Courant、Bubnov和Galerkin等人在20世纪50年代提出,并在以后的几十年中得到了广泛的发展和应用。
有限元方法的基本原理是将要求解的区域分割成若干个小的子区域,通常称为有限元,每个有限元内部的物理量可以用一个简单的数学表达式来表示。
然后,通过在有限元之间建立连续性条件,将整个问题转化为一组代数方程,进而得到数值解。
有限元方法的基本步骤包括:建立有限元模型、离散化、建立代数方程、求解代数方程和后处理。
下面将详细介绍每个步骤的具体内容。
第一步,建立有限元模型。
该步骤主要是对要求解的问题进行数学建模,包括选择适当的坐标系、定义物理量和约束条件等。
通常,物理问题可以通过连续介质假设,将其离散化为一组小的有限元。
第二步,离散化。
将要求解的区域划分为有限个小的子区域,通常称为有限元。
常见的有限元形状包括三角形、四边形和六面体等。
有限元的选择通常是根据问题的几何形状和物理条件来确定的。
第三步,建立代数方程。
有限元方法的核心是建立代数方程,用于描述物理问题在离散点上的数值解。
代数方程通常是通过施加适当的数学形式和边界条件来建立的。
建立代数方程的基本思想是使用一组试验函数来近似描述有限元内部的解。
通常采用Galerkin方法,即在离散点上进行加权残差积分,使得残差的加权平均为零。
第四步,求解代数方程。
一旦代数方程建立完成,就可以使用数值方法求解这组代数方程。
常见的求解方法包括直接法和迭代法等。
直接法适用于方程较小的情况,而迭代法适用于方程较大的情况。
常见的迭代法有Jacobi迭代法、Gauss-Seidel迭代法和共轭梯度法等。
第五步,后处理。
求解代数方程后,需要对结果进行后处理和分析。
后处理包括计算和显示物理量、绘制图形以及进行误差估计等。
通过后处理,可以对模型进行验证,并对结果进行解释和解释。
有限元基本原理与概念有限元分析是一种数值计算方法,用于求解连续体力学中的边界值问题。
它是通过将连续体划分为有限数量的离散单元,然后在每个单元内进行力学行为的近似计算来实现的。
有限元基本原理和概念是进行有限元分析的关键。
有限元方法的基本原理包括以下几个方面:1.连续体离散化:连续体被分割为许多有限数量的小单元,例如三角形或四边形,这些小单元被称为有限元。
离散化的目的是将大问题转化为小问题,简化求解过程。
2.描述形函数:在每个有限元内,通过选择适当的形函数来描述位移、应力和应变之间的关系。
它们通常是基于其中一种插值函数,用于近似描述连续体内的位移场。
3.线性方程系统:通过应力和位移之间的平衡关系,可以得到与每个有限元相关的线性方程系统。
该方程系统可以通过组装所有单元的贡献来得到,其中每个单元内的节点位移被认为是未知数。
4.边界条件:为了解决线性方程系统,必须定义适当的边界条件。
这些条件通常包括位移或力的给定值,并且用于将无法由方程系统唯一解决的自由度限制为已知值。
5.求解方程系统:通过解决线性方程系统,可以得到每个节点的位移。
这可以使用各种求解线性方程系统的方法,如直接法(例如高斯消元法)或迭代法(例如共轭梯度法)来实现。
有限元方法的基本概念包括以下几个方面:1.单元:连续体被划分为有限数量的单元,在每个单元内进行近似计算。
常见的单元类型包括一维线元、二维三角形和四边形元,以及三维四面体和六面体元。
2.节点:单元的连接点被称为节点,每个节点在有限元分析中是一个自由度。
节点的数量与单元的选择密切相关,节点的位置和数量会影响结果的精确度。
3.局部坐标系:为了描述单元内的位移和应力,通常引入局部坐标系。
在局部坐标系中,单元的尺寸和形状可以更容易地进行描述和计算。
4.材料特性:有限元分析中需要定义材料的特性参数,例如弹性模量、泊松比、屈服强度等。
这些参数用于描述材料的力学行为和应力-应变关系。
5.后处理:通过有限元分析所得到的结果通常以节点或单元的形式给出,这些结果还需要进行后处理以得到更有意义的结果,如应变、应力分布或变形情况。
2 有限元法的基本原理2.1有限元简介有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件有限元模型:它是真实系统理想化的数学抽象。
由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。
有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。
在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。
如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。
线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。
非线性问题与线弹性问题的区别:1)非线性问题的方程是非线性的,一般需要迭代求解;2)非线性问题不能采用叠加原理;3)非线性问题不总有一致解,有时甚至没有解。
有限元求解非线性问题可分为以下三类:1)材料非线性问题材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。
由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。
在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。
2)几何非线性问题几何非线性问题是由于位移之间存在非线性关系引起的。
当物体的位移较大时,应变与位移的关系是非线性关系。
研究这类问题一般都是假定材料的应力和应变呈线性关系。
一、有限单元法的基本思想(1)将一个连续域化为有限个单元并通过有限个结点相连接的等效集合体。
由于单元能按照不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。
(2)有限元法利用在每一个单元内假设的近似函数来分片地表示全求解域上待求的未知场数。
单元内的近似函数由未知场函数在单元的各个结点的数值和其插值函数来表达。
(3)一个问题的有限元分析中,未知场函数在各个结点上的数值就成为新的未知量,从而使一个连续的无限自由度问题变成离散的有限自由度问题。
(4)一经求解出这些未知量,就可以通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。
显然,随着单元数目的增加,也即单元尺寸的缩小,或者随着单元自由度的增加以及插值函数精度的提高,解的近似程度将不断改进,如果单元是满足收敛要求的,近似解最后将收敛于精确解。
图1 有限元分析流程图二、有限元分析过程概述1 结构的离散化结构的离散化是有限单元法分析的第一步,它是有限单元法的基本概念。
所谓离散化简单地说,就是将要分析的结构物分割成有限个单元体,并在单元体的指定点设置结点,使相邻单元的有关参数具有一定的连续性,并构成一个单元的集合体,以它代替原来的结构。
如果分析的对象是桁架,那么这种划分十分明显,可以取每根杆件作为一个单元,因为桁架本来是由杆件组成的。
但是如果分析的对象是连续体,那么为了有效地逼近实际的连续体,就需要考虑选择单元的形状和分割方案以及确定单元和结点的数目等问题。
2 选择位移模式在完成结构的离散之后,就可以对典型单元进行特性分析。
此时,为了能用结点位移表示单元体的位移、应变和应力,在分析连续体问题时,必须对单元中位移的分布作出一定的假设,也就是假定位移是坐标的某种简单的函数,这种函数称为位移模式或插值函数。
选择适当的位移函数是有限单元法分析中的关键。
通常选择多项式作为位移模式。
其原因是因为多项式的数学运算(微分和积分)比较方便,并且由于所有光滑函数的局部,都可以用多项式逼近。