有限元基本原理与概念
- 格式:ppt
- 大小:1.02 MB
- 文档页数:94
有限元基本概念和原理有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。
有限元求解问题的基本步骤通常为:第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
《C++面向对象的有限元程序设计》一、引言在计算机科学和工程中,有限元方法是一种数值分析技术,广泛应用于工程设计和科学研究领域。
C++作为一种流行的编程语言,在有限元程序设计中也扮演了重要角色。
本文将从深度和广度两个方面对C++面向对象的有限元程序设计进行全面评估,并撰写一篇有价值的文章,以帮助读者更全面、深刻地理解这一主题。
二、C++面向对象的有限元程序设计的基本概念1. 有限元方法的基本原理有限元方法是一种数值计算方法,用于求解偏微分方程和积分方程。
通过将求解区域分割为有限个单元,建立单元之间的联系,将连续的问题转化为离散的代数问题,从而得到数值解。
在有限元程序设计中,需要考虑如何有效地表示和处理单元、节点、边界条件等信息。
2. 面向对象的程序设计思想面向对象的程序设计思想强调将现实世界中的问题抽象成对象,通过封装、继承和多态等机制构建模块化、可复用的代码结构。
在C++中,类和对象是面向对象程序设计的核心概念,有限元程序设计可以通过抽象出单元、节点、网格等对象来实现。
三、深入探讨C++面向对象的有限元程序设计1. C++语言特性在有限元程序设计中的应用在C++语言中,有丰富的特性可以用于实现面向对象的有限元程序设计。
类的封装可以用于表示单元和节点对象的属性和行为,继承可以用于构建具体单元类型的层次结构,多态可以实现对不同单元类型的统一处理。
2. 优化设计思路下的C++面向对象有限元程序设计针对大规模的有限元计算,优化的设计思路是必不可少的。
C++中提供了丰富的性能优化手段,如模板元编程、内联函数、移动语义等,可以在面向对象的有限元程序设计中发挥重要作用。
四、总结和回顾在本文中,我们对C++面向对象的有限元程序设计进行了全面评估,并撰写了一篇有价值的文章。
通过深入探讨原理、语言特性和优化设计思路,帮助读者更全面地理解了这一主题。
从我的个人观点看,C++面向对象的有限元程序设计是一个值得深入研究的领域,它不仅涉及到程序设计技术,还涉及到数值计算和工程应用等多个领域的知识。
有限元基础知识归纳有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。
在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。
2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处Ni=1,其它节点Ni=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。
可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。
4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。
即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。
称前者为母单元,后者为子单元。
还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。
如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。
5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。
每个部分称为一个单元,连接点称为结点。
对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。
这种单元称为常应变三角形单元。
常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。