沸石除氨氮的影响
- 格式:doc
- 大小:176.00 KB
- 文档页数:7
深入探讨氨氮废水处理中沸石的运用深入探讨氨氮废水处理中沸石的运用摘要:沸石作为一种新型生物载体用于水处理领域,具有很好的缓冲氨氮进水冲击负荷的能力,能有效地去除水中各种形态的氮,可以深度处理二级出水,使其达到回用的标准。
本文主要就氨氮废水处理中沸石的运用进行了较为深入的探析。
关键词:氨氮废水处理沸石去除机理废水处理方面应用一、引言沸石是一族架状结构的多孔性含水铝硅酸盐矿物,硅氧四面体是其基本单位,其中部分 Si4+ 被Al3+所取代,为了中和负一价的氧离子,就会有相应的金属阳离子加入其中,这些与晶格联系较弱的碱金属(碱土金属)和水分子极易与周围水溶液中阳离子发生交换作用,因而沸石具有良好的离子交换选择性能[1,2]。
又因沸石具有不同连接方式的的硅(铝)氧四面体结构,沸石中便形成了大量的孔穴和孔道,因其表面积很大,大量分子进入其中,因而具有很好的吸附性能[3],故在污水处理中得到了广泛的应用。
二、沸石对废水中氨氮的去除机理通过利用沸石离子交换的吸附能力除去废水之中氨氮,其过程包括:吸附阶段以及沸石的再生阶段,式(1)为沸石的吸附氨氮阶段:式中:Zn-、Mn+、n分别为:沸石、沸石中的阳离子、电荷数。
沸石的再生阶段,可划分为:生物再生法以及化学再生法。
化学再生法:通过盐或碱溶液来对吸附处于饱和的沸石进行处理,并以溶液之中的Ca2+或 Na+交换沸石上的NH4+,从而使得沸石恢复到对氨的交换容量。
此处若以使用NaCl溶液来再生沸石,其过程如式(2)所示:三、沸石在氨氮废水处理方面的应用(一)在好氧处理系统中的应用1.沸石在常规活性污泥法中的应用通常而言,污水处理厂所采取的生物处理方法在脱氮中经常可能遇到重金属、有机负荷突然提升和有毒化合物的冲击,而对于怎么样去减少抑制的因素对硝化作用影响,现已有很多的研究,而其中的沸石被认为是较为有效的可减轻因冲击负荷而对硝化细菌所产生的毒性。
Se-Jin Park 等[4]在常规的活性污泥法中对活性污泥添加活性炭(AS+PAC)以及沸石粉(AS+Z)系统,在不同抑制条件之下来对氨氮废水进行处理的效果作考察。
4A沸石分子筛是一种常用的吸附剂,对氨氮有一定的吸附作用。
下面是对这一话题的详细解释。
4A沸石分子筛是一种人造的微孔硅铝酸盐晶体,具有三维晶体结构。
它的主要成分是硅铝酸盐,其中A族阳离子(如Na+、Ca2+等)位于三维网络结构的孔道中,而沸石分子筛的孔径大小可以通过选择不同的合成条件来控制。
由于其具有较大的比表面积和均匀的孔径分布,4A沸石分子筛被广泛应用于气体和液体的吸附和分离。
氨氮是指溶液中以游离态(NH3)或铵离子(NH4+)形式存在的氮。
在污水处理和环境保护领域,氨氮的去除是一个重要的问题。
4A 沸石分子筛可以有效地吸附溶液中的氨氮。
在氨氮吸附过程中,4A沸石分子筛的作用机制主要是物理吸附。
由于4A沸石分子筛具有较大的比表面积和均匀的孔径分布,它可以与氨氮分子或离子产生较强的范德华力,从而实现氨氮的吸附。
此外,4A沸石分子筛还具有阳离子交换性能,可以通过与溶液中的阳离子(如Na+、Ca2+等)交换而吸附氨氮。
需要注意的是,4A沸石分子筛对氨氮的吸附量与溶液的pH值、温度、离子强度等因素有关。
在应用中,需要根据实际情况选择合适的操作条件以保证最佳的吸附效果。
此外,为了恢复4A沸石分子筛
的吸附能力,需要进行适当的再生处理。
总的来说,4A沸石分子筛是一种有效的氨氮吸附剂。
在污水处理和环境保护领域,它可以作为一种重要的吸附剂用于去除溶液中的氨氮。
4a沸石分子筛对氨氮的吸附
摘要:
一、沸石分子筛概述
二、氨氮污染及其处理方法
三、沸石分子筛对氨氮的吸附性能
四、沸石分子筛在氨氮废水处理中的应用
五、结论
正文:
一、沸石分子筛概述
沸石分子筛是一种具有多孔性、高表面积和规则孔道结构的晶态材料,其主要成分为硅酸盐。
由于其独特的结构特性,沸石分子筛在吸附、分离、催化等领域具有广泛的应用。
二、氨氮污染及其处理方法
氨氮是指废水中以氨和氮化合物形式存在的氮,其主要来源于农业施肥、工业废水和生活污水等。
高浓度的氨氮废水对水环境具有极大的危害,因此必须进行处理。
目前,氨氮废水处理方法主要有生物脱氮法、化学脱氮法和物理吸附法等。
三、沸石分子筛对氨氮的吸附性能
沸石分子筛具有较高的孔容、孔径均匀和良好的吸附性能,因此被广泛应用于氨氮废水处理中。
研究发现,沸石分子筛对氨氮的吸附能力与其孔径、孔容、表面电荷等有关,且在特定条件下,沸石分子筛对氨氮的吸附效果优于其
他吸附材料。
四、沸石分子筛在氨氮废水处理中的应用
在氨氮废水处理过程中,沸石分子筛可以作为吸附剂,有效去除废水中的氨氮。
同时,沸石分子筛具有再生能力强、循环利用率高等优点,有利于降低处理成本。
此外,沸石分子筛与生物脱氮法、化学脱氮法等方法相结合,可实现氨氮废水的深度处理,提高处理效果。
五、结论
沸石分子筛作为一种高效吸附剂,在氨氮废水处理领域具有广泛的应用前景。
沸石去除水中氨氮的作用机理沸石是由碱金属或碱土金属组成的含水网状铝硅酸盐物质,具有架状结构在其晶体内部分子像搭架子似地连在一起,中间形成很多空腔,通常情况下该空腔为水分子及金属阳离子所占据其化学通式为:MxDy[AL(X+2y)si(x+2y)O2]·mH2O,分子中的阳离子(SI,AL)和O一起构成四面体格架,称为结构阴离子。
在这种结构阴离子中,中心是Si(或AL)原子,每个Si(或AL)原子的周围有4个O原子,各个sI/O四面体通过处于四面体顶点的O原子互相连接起来,形成许多宽阔的孔穴和空道,使得沸石具有很大的比表面(通常为400-800㎡/g)。
通常情况下沸石空腔中的水分子、金属阳离子与沸石骨架离子的联系是松弛而微弱的。
这些水分子及阳离子可以自由地移动和出入孔道而不影响其骨架构造沸石这种格架结构决定了它具有较高的交换吸附性能。
沸石具有较大的比表面积孔穴和孔道结构的存在使得沸石可以吸附大量的分子或离子。
2沸石对氨氮去除机理沸石对氨氮的去除以物理吸附作用与离子交换作用为主,其,吸附作用具有“快速吸附缓慢平衡”的特点。
2.1吸附作用在沸石的组成结构中,sio4和alo4以共角顶的形式联成硅铝氧格架四在格架中形成了许多宽阔的孔穴和孔道(占晶体总体积的50%以上),使得天然沸石具有比表面积大(通常在440-1030㎡/g),天然沸石往往孔径均匀因而可以产生“超孔效应”,在沸石表面所具有的强大色散力作用下,沸石孔穴中分布的阳离子和部分架氧所具有的负电荷相互平衡,使得沸石又具有较强的色散力和静电力作用加之沸石所特有的分子结构而形成的较大静电引力使沸石具有相当大的引力场,由以上四种因素的综合作用使得沸石具有很强的吸附性与其他吸附剂相比,沸石具有吸附量大、高选择性和高效吸附等特点。
2.2离子交换作用离子交换是指沸石晶体内部阳离子与废水中NH4+进行交换的化学过程:在硅铝氧四面体基本单元中部分氧原子的价键未得到中和,使整个四面体基本单元带有部分的负电荷,为达到电性中和,该四面体基本单元中缺少的正电荷会由附近带正电的碱土金属离子阳离子(如K+、Na+、Ca2+、Mg2+)来补偿;废水中的Nh4+直径小于沸石的孔穴通道直径,通过沸石的吸附作用容易进入孔穴到达沸石表面,并与沸石晶格中碱土金属离子阳离子发生交换并将其置换下来,而且离子交换后的沸石并不发生结构变化,这使沸石具有离子交换特性。
沸石处理氨氮废水沸石是一种广泛分布、开采量高且价格便宜的离子交换物质,被广泛用于处理废水中的氨氮。
吸附法是一种常用的脱氮处理方法,国内外已经提出了多种可行的工艺。
吸附剂的性质、再生方法和作用时间等因素都会影响氨氮的去除效果。
沸石、粉煤灰和膨润土等吸附剂都被广泛研究。
氨氮的去除原理主要包括非离子氨的吸附和离子氨的离子交换作用。
在废水处理实践中,有些废水经过二级处理后仍无法达到排放标准,需要进行深度脱氮处理。
吸附法也被用于这种情况。
沸石吸附法已经在美国和日本实现了工业化应用。
其主要使用固定床吸附柱,以斜发沸石为吸附剂,粒径为0.8-1.7mm,空速为5-10h-1,进水氨氮浓度为20mg/L,出水氨氮浓度小于1mg/L。
沸石是一种含水架状结构的多孔硅铝酸盐矿物质,具有空旷的骨架结构和大的比表面积。
其晶穴体积约为总体积的40%-50%,孔径大多在1nm以下。
沸石对极性、不饱和及易极化分子具有优先的选择吸附作用,并且具有耐酸、耐碱、热稳定等性能。
斜发沸石在离子交换和定量处理方面,对NH4+-N具有较好的选择性,因此可以用于污水脱除氨氮处理工艺,脱氮率可达90%-97%。
工业上沸石除氨装置较为简单,一般为一圆柱形滤器。
沸石的交换容量受到杂质的影响,纯度较高的沸石交换容量不大于200meq100g,一般为100-150meq100g。
斜发沸石在反复再生后对NH4+的吸附交换能力影响不大,但在污水中共存阳离子如Ca2+时,沸石的交换能力会呈不可逆性降低。
沸石的再生处理方法有利用NaOH或NaCl溶液的化学溶液再生和500℃-600℃的高温条件下将沸石中的NH4+转变为NH3气体的燃烧法再生。
浅谈沸石对水中氨氮的吸附摘要:本文从实验的材料和方法、实验结果与分析、然后对其分析讨论来研究沸石对水中氨氮的吸附,摸索出沸石吸附氨氮的最佳条件。
关键词:沸石;氨氮;吸附引言氨氮以游离氨或氨盐的形式存在于水中,二者的比例取决于水的pH 值。
游离氨对鱼类的毒害作用很大,目前对温水性鱼类的允许的高限值为0.06~ 0.12mg/mL,而对冷水性鱼类的安全浓度则更低。
离子氨相对是无毒的,但作为植物的营养盐,同样会引起水体的富营养化,造成水质的恶化。
沸石对水中的氨氮有较好的净化作用。
我国的天然沸石矿产丰富、价格低廉,溶出物和有毒元素含量均很低。
本文通过实验室内一些条件的模拟,研究各种操作条件对钠型沸石去除氨氮效果的影响。
摸索出钠型沸石对水中氨氮的较好的吸附条件,并初步探讨了其吸附机理,为沸石去除氨氮的可行性和实用性提供依据。
一、材料和方法1.1 仪器设备上海谱元紫外分光光度计;RephiLe超纯水器;恒温培养振荡器;测定仪;干燥器;移液枪。
1.2 实验材料选用河北的天然沸石为实验材料,密度2.05g•cm-3,硬度3~4,硅铝比4.15~5.15,孔隙率为30%~40%。
试验前将沸石洗净、干燥,氨氮溶液用NH4Cl 和超纯水配制,试验药品均为分析纯。
1.3 天然沸石的筛选选用孔隙不同的筛网,将选用的浙江缙云天然沸石放入筛网中,振荡筛选出0.5~1、1~2、2~3、3~5 mm和5~8 mm 的沸石,用超纯水将筛选出的沸石洗净,105 ℃烘干,然后放入干燥器中保存。
1.4钠化沸石的制备将沸石和饱和氯化钠溶液置于锥形瓶中,振荡12 h 后倒出上清液,并用去离子水洗涤,然后再加入饱和氯化钠溶液。
重复上述步骤,最后将沸石在105 ℃下烘干制得钠型沸石。
1.5吸附平衡实验溶液pH 值约为7.5 时,氨氮去除率高。
因此,调节氨氮水溶液pH 值,使其显中性。
向溶液中放入适量纳化沸石粉末,搅拌一段时间后静置片刻,用0.45 μm 微孔滤膜过滤,最后用纳氏试剂比色法测定滤液中氨氮含量。
改性沸石处理含氨氮废水NH3-N是高耗氧性物质,每毫克NH3-N氧化成硝酸盐要消耗4157mg的溶解氧,较高的氨氮浓度会直接导致水质的黑臭。
作为一种无机营养物质,NH3-N还是引起海洋、湖泊、河流及其它水体富营养化的重要原因,对鱼类及某些水生生物有毒害。
桂林某旅游景区的污水处理系统原设计水量为180m3/d,投入使用后,由于实际服务人口增加,导致水量增加。
该污水处理工艺未设污泥处理系统,长期以来,沉淀池的污泥通过排入化粪池达到减量目的。
以上原因导致该工艺在运行三年后出水氨氮严重超标,污染周围水体,急需脱除水中的氨氮。
对于氨氮废水的处理,用常规的生物化学方法去除氨氮效率低、周期长、成本高;用活性炭吸附、磷酸铵镁沉淀等物理化学方法也因其工艺本身的缺陷、成本高等原因而无法广泛应用。
因此,寻求高效、切实可行的去除氨氮的方法十分必要。
近年来,国内外开展了用沸石去除水中氨氮的研究。
沸石是一种廉价的无机非金属矿物,利用它去除水中的氨氮具有效率高、工艺简单、易再生、处理成本低等特点。
沸石在水处理中的应用已得到广泛关注。
一、实验部分1、材料沸石:采用α改性沸石,其红外光谱见图1。
根据其粒径大小分为粗(016~110mm)、中(0125~016mm)、细(0118~0125mm)3种。
其化学成分及其含量(wB)为SiO267199%,TiO20123%,Al2O313125%,Fe2O30167%,MnO0116%,CaO2192%,MgO0189%,K2O1127%,Na2O2165%,P2O501013%。
含氨氮废水:取自某旅游景区的高浓度氨氮废水,其水质为ρ(CODCr)=200~250mg/L,ρ(NH32N)=140~150mg/L,pH=615~715。
2、试剂与仪器主要试剂:碘化钾、氯化汞、四水合酒石酸钾钠、氯化钠、氯化铵、氢氧化钾、氢氧化钠、硫酸等,均为市售分析纯级化学品。
3、实验方法氨氮的分析方法采用纳氏试剂比色法(GB7479-87)测定。
沸石处理模拟生活污水中氨氮效果影响因素分析郑函【摘要】为考察投加量、吸附时间、氨氮初始浓度和pH值等因素对污水中氨氮的处理效果影响, 采用天然沸石对模拟生活污水中氨氮去除效果进行分析.实验结果表明:模拟生活污水的氨氮浓度条件下, 适宜的沸石投加量为4 g/200mL, 吸附时间选择3 h较适宜, 不同氨氮初始浓度 (30~200 mg/L) 下, 去除率达到了56%~95. 2%.2 h后速率逐渐降低并达到吸附平衡, 氨氮的去除率趋于稳定.吸附达到平衡后, 随着氨氮初始浓度增加至, 去除率呈下降趋势.p H值范围在5~8时, 沸石吸附氨氮效果较好.%In order to investigate the effects of dosage, adsorption time, initial concentration of ammonia nitrogen and pH on the treatment of ammonia nitrogen in wastewater. The natural zeolite was used to analyze the effect of ammonia nitrogen removal in simulated domestic sewage. The experimental results showed that under the condition of ammonia nitrogen concentration of simulated domestic sewage, the suitable dosage of zeolite is 4 g/200 mL and the adsorption time is suitable for 3 h. Under the initial concentration of different ammonia nitrogen (30 ~ 200 mg/L), the removal rate reached 56%~ 95. 2%. After 2 hours, the rate gradually decreased and reached the adsorption equilibrium, and the removal rate of ammonia nitrogen became stable. After the adsorption reached equilibrium, the removal rate decreased as the initial concentration of ammonia nitrogen increased.When the pH range is from 5 to 8, the zeolite adsorbs ammonia nitrogen effect is better.【期刊名称】《应用能源技术》【年(卷),期】2019(000)004【总页数】3页(P15-17)【关键词】沸石;模拟生活污水;氨氮;去除效率【作者】郑函【作者单位】哈尔滨商业大学食品工程学院环境工程系,哈尔滨 150076【正文语种】中文【中图分类】X703.10 引言沸石(Zeolite),是沸石族矿物的总称,是一种含水的碱金属或碱土金属的铝硅酸矿物[1-2],化学组成可以在相当大的范围内变化,因而很多沸石只能给出近似的化学式,理想的沸石化学式为[3]:Mx/n[AlxSiyO2(x+y)]·pH2O,式中M为碱金属(如Na、K、Li)和/或碱土金属(如Ca、Mg、Ba、Sr),n是阳离子电荷数。
沸石去除氨氮影响因素的研究摘要:沸石具有一定去除氨氮的能力,通过控制条件,如温度吸收时间粒径及共存离子的其中之一影响因素,在静态条件下确定沸石去除氨氮的最佳浓度,接触时间,以及最佳粒径的选择。
本文主要研究不同粒径的去除效果及存在共存离子对氨氮的影响。
Element Study on Removing off Ammonia Nitrogen in W ater byZeoliteAbstract: Zeolite can remove off ammonia nitrogen. In the static condition, it can ascertain the optimal density, touching time and the most appropriate granule size of zeolite removing ammonia nitrogen, through controlling one of the factors, such as temperature, absorbing time, size and coexisting granule. The paper mainly the removing effect of different granule sizes as well as the influence of coexisting granule on ammonia nitrogen.Key words: Ammonia Nitrogen Size Zeolite Removing前言:近年来,随着社会的发展,水中各种污染越来越严重,有机物,重金属,氨氮等。
都严重威胁着人类的生存发展。
所以对各种污染物的去除方法的研究在国内外发展迅速,而利用沸石去除水中氨氮的研究也各有侧重的进行着。
本着对沸石去除效果以及各种因素对去除率的影响的研究,根据文献资料的查阅设计实验方案,限定某一实验条件,改变另一条件,进而确定最佳接触时间,控制水中氨氮浓度以增大沸石利用率,选取最高利用去除率的粒径用于实际工业过程中,测定其他负影响因素,在去除过程中尽量降低这种干扰。
实验部分1药品与仪器1000mg/l氯化铵贮备液酒石酸钾钠钠氏试剂蒸馏水白银沸石磨口锥形瓶,50ml比色管,移液管,20mm比色皿,FA2004N型电子天平,LG10-2.4A型离心机,THZ-82A型气浴恒温振荡器,VIS-723G分光光度计2标准曲线绘制吸取0,0.50,1.00,2.00,4.00,6.00,8.00,10.00ml铵标准工作液分别于50ml比色管中,加水至接近刻线,加入1ml酒石酸钾钠溶液混匀,加入1ml钠氏试剂定容后混匀。
静置十分钟左右,在波长420nm处,用光程20mm 比色皿,以水为参考,在VIS-723G分光光度计下测定吸光度3药品配制酒石酸钾钠:称取50g酒石酸钾钠溶于100ml水中,加热煮沸以去除氨氮后,放置至冷却,定容至100ml钠氏试剂:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温,另取7g 碘化钾和10g碘化汞溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中用水稀释至100ml贮于聚乙烯瓶中,密封保存,有效期一年4实验方法(1)氨氮的分析方法——钠氏试剂比色法(2)吸附试验静态:称取一定量某沸石样品于烧杯中,加入一定体积的试验用水,固定转速,35摄氏度下搅拌一定时间,分析溶液中剩余氨氮的浓度5实验步骤(1)准确称取0.5000g沸石于锥形瓶中(2)加入一定量铵标准工作液和蒸馏水,使其呈不同浓度(3)调节恒温振荡器温度(35)转速(200r/min)选定振荡时间进行振荡(4)振荡完成后将液体加入离心管中,调节转速(3000r/min)离心20min (5)取上清液2ml于比色管中,加蒸馏水至刻线,摇匀(6)加入1ml酒石酸钾钠溶液,摇匀,再加入1ml钠氏试剂,定容后再摇匀(7)静置10min后于420nm 波长下在VIS-723G分光光度计下测量6实验内容(1)粒径影响实验将已研磨好的沸石分为不同粒径,选取目数为20-30,30-40,40-50,60-70,80-90,100-120目的沸石,振荡时间设为30min,浓度选定为40mg/l,80mg/l,120mg/l进行以上步骤的实验。
数据如下:温度℃Na+浓度mol/LpH值粒径Mesh时间Min初始浓度mg/L吸光度A平衡浓度mg/L去除率%吸附量mg/g35 0 6.8 20-30 30 45.97880.55838.07417.191.58135 0 6.8 30-40 30 45.97880.32722.195551.734.756735 0 6.8 40-50 30 45.97880.27818.827359.055.430335 0 6.8 60-70 30 45.97880.27618.689959.355.457835 0 6.8 80-90 30 45.97880.27118.346260.105.526535 0 6.8 100-1203045.97880.28018.964858.755.402835 0 6.8 20-30 30 91.95761.10075.329918.083.325535 0 6.8 30-40 30 91.95760.86659.245335.576.542535 0 6.8 40-50 30 91.95760.80855.258539.917.339835 0 6.8 60-70 30 91.95760.78353.54041.787.683535 0 6.8 80-90 30 91.9570.787 53.81541.48 7.6286 0 535 0 6.8 100-1203091.95760.79254.158641.107.559835 0 6.8 20-30 30 137.93641.629111.692319.035.248835 0 6.8 30-40 30 137.93641.44098.700928.447.847135 0 6.8 40-50 30 137.93641.38394.782831.298.630735 0 6.8 60-70 30 137.93641.33091.139733.939.359335 0 6.8 80-90 30 137.93641.33691.552133.639.276935 0 6.8 100-12030137.93641.33291.277233.839.3318(2)共存离子影响实验选取粒径为60-70目,分别测定在振荡时间为15min,30min,45min时随氯化钠浓度变化对氨氮去除率的影响。
氯化钠浓度为0.05mol/l,0.1mol/l,0.15mol/l,0.20mol/l,0.25mol/l,0.3mol/l,加入氯化铵浓度为40mg/l.温度℃Na+浓度mol/LpH值粒径Mesh时间Min初始浓度mg/L吸光度A平衡浓度mg/L去除率%吸附量mg/g35 0.05 6.8 60-70 15 45.97880.53536.49320.631.897235 0.1 6.8 60-70 15 45.97880.58539.929913.161.209835 0.15 6.8 60-70 15 45.97880.61341.85468.970.824935 0.2 6.8 60-70 15 45.97880.63143.09186.280.577435 0.25 6.8 60-70 15 45.97880.63343.22935.980.549935 0.3 6.8 60-70 15 45.97880.63143.09186.280.577435 0 6.8 60-70 30 45.97880.27618.689959.355.457835 0.05 6.8 60-70 30 45.97880.52936.080621.531.979735 0.1 6.8 60-70 30 45.97880.58539.929913.161.209835 0.15 6.8 60-70 30 45.97880.60040.96110.911.003635 0.2 6.8 60-70 30 45.97880.62942.95446.580.604935 0.25 6.8 60-70 30 45.97880.64143.77924.780.439935 0.3 6.8 60-70 30 45.97880.64844.26043.740.343735 0.05 6.8 60-70 45 45.97880.53536.49320.631.897235 0.1 6.8 60-70 45 45.97880.60341.167210.460.962335 0.15 6.8 60-70 45 45.97880.62142.40457.770.714935 0.2 6.8 60-70 45 45.97880.61441.92338.820.811135 0.25 6.8 60-70 45 45.97880.62142.40457.770.714935 0.3 6.8 60-70 45 45.97880.63343.22935.980.54997数据分析从以上数据及图示可以看出随着粒径的变化去除率也发生变化,20-40目之间吸附效果明显增加,去除效率变化较快,60目以上去除率去除率基本保持不变,故在实际应用中应选择50-60目的沸石,既可以降低处理沸石的费用,又可以使氨氮得到较好的去除效果。
生活水往往含有较多的杂质,尤其是工业废水,生活污水,含有较多重金属,有机物等。
会对沸石去除效率产生一定的影响,通过加入不同浓度的氯化钠溶液,进而熟悉沸石吸附的一般规律,掌握氯化钠对沸石吸附的氨氮的解析原理。
从以上图示可以看出随着氯化钠浓度的提高,沸石对氨氮的去除率明显降低,尤其是振荡时间为三十分钟,浓度达到0.3mol/l 时,去除率几乎为零。
所以实际应用中应予以充分考虑。
结论:水污染已经成为威胁人类未来生存发展的最重要因素,所以对污水的处理,去除各种污染物则不仅关系到我们今天的健康生活,还关系到未来人类的发展之路,生存之道。
本文通过利用不同粒径天然沸石对不同浓度的铵溶液的去除率的测定,确定了除氨氮的最佳粒径,同时研究了共存离子对去除率的影响,钠离子通过静电吸附及其他作用的确降低了沸石的去除效果,可作为解析之用。
参考文献:。