氨氮去除办法
- 格式:doc
- 大小:32.00 KB
- 文档页数:5
第1篇一、引言随着工业生产和农业发展的不断推进,水体污染问题日益严重。
其中,氨氮污染是水体污染的重要来源之一。
氨氮是一种有机氮化合物,主要来源于生活污水、工业废水、养殖业废水等。
氨氮在水中容易转化成亚硝酸盐和硝酸盐,对水生生物产生毒害作用,影响水体的生态环境。
因此,研究氨氮去除技术具有重要的现实意义。
本文将针对氨氮去除问题,介绍几种常见的氨氮去除解决方案。
二、氨氮去除原理1. 物理法物理法是利用物理作用去除氨氮,主要包括沉淀法、吸附法、膜分离法等。
(1)沉淀法:利用氨氮与某些化学物质发生反应,生成难溶的沉淀物,从而实现氨氮的去除。
常见的沉淀剂有硫酸铝、硫酸铁、硫酸铜等。
(2)吸附法:利用吸附剂对氨氮进行吸附,达到去除氨氮的目的。
常见的吸附剂有活性炭、沸石、树脂等。
(3)膜分离法:利用膜的选择透过性,将氨氮从水中分离出来。
常见的膜分离技术有反渗透、纳滤、电渗析等。
2. 化学法化学法是利用化学反应去除氨氮,主要包括化学沉淀法、化学氧化法等。
(1)化学沉淀法:利用化学沉淀剂与氨氮反应,生成难溶的沉淀物,从而实现氨氮的去除。
常见的化学沉淀剂有硫酸铝、硫酸铁、硫酸铜等。
(2)化学氧化法:利用氧化剂将氨氮氧化成无害的氮气或亚硝酸盐,从而实现氨氮的去除。
常见的氧化剂有臭氧、氯气、高锰酸钾等。
3. 生物法生物法是利用微生物的代谢活动去除氨氮,主要包括硝化反硝化法、生物膜法等。
(1)硝化反硝化法:利用硝化菌将氨氮氧化成亚硝酸盐,再由反硝化菌将亚硝酸盐还原成氮气,从而实现氨氮的去除。
(2)生物膜法:利用生物膜上的微生物对氨氮进行转化,实现氨氮的去除。
三、氨氮去除解决方案1. 沉淀法(1)硫酸铝沉淀法:在废水处理过程中,加入适量的硫酸铝,使氨氮与硫酸铝发生反应,生成硫酸铝氨氮沉淀物,从而实现氨氮的去除。
(2)硫酸铁沉淀法:在废水处理过程中,加入适量的硫酸铁,使氨氮与硫酸铁发生反应,生成硫酸铁氨氮沉淀物,从而实现氨氮的去除。
氨氮化学去除方法氨氮在水里可有点讨厌呢,不过咱有办法用化学的法子把它去除掉。
一种常见的就是折点加氯法。
简单说呢,就是往有氨氮的水里加氯。
氯和氨氮会发生一系列反应,就像两个小伙伴在水里打打闹闹,最后把氨氮变成氮气跑掉啦。
这个方法效果还不错呢,能把氨氮的浓度降得比较低。
但是呢,加氯可得小心点哦,要是氯加多了,就像调料放多了一样,可能会有残留的氯在水里,这对水的后续使用可能会有点小麻烦。
还有吹脱法也挺有趣的。
这种方法就是利用氨氮在碱性环境下容易变成氨气的特性。
先把水的pH值调高,让氨氮变成氨气,然后像吹泡泡一样,把氨气吹出来。
就像把调皮的氨氮小朋友从水里赶出去。
不过呢,这个方法也有点小问题,吹出来的氨气要是不处理好,那可会有味道,还可能污染空气呢。
化学沉淀法也能去除氨氮哦。
向水里加入一些镁离子和磷酸根离子,它们就会和氨氮一起形成一种沉淀。
这就好比给氨氮找了个小房子,把它关在里面,然后沉淀到水底,这样水里面的氨氮就少啦。
但是呢,这种方法会产生沉淀,要处理这些沉淀也是个小工程呢。
离子交换法也可以来凑凑热闹。
有一种特殊的离子交换树脂,就像一个个小陷阱,氨氮离子会被树脂吸附住,这样就从水里分离出来了。
不过树脂用一段时间就会饱和,就像小陷阱满了一样,得再生或者更换,这也有点小麻烦。
虽然这些化学方法都能去除氨氮,但每种方法都有自己的优缺点。
在实际处理氨氮的时候,得根据具体的情况,像水质怎么样呀,要达到什么处理效果呀,还有成本的考虑之类的,来选择最合适的方法。
就像给不同的小问题找最适合的小妙招一样,这样才能把氨氮这个小麻烦处理得妥妥当当的。
氨氮去除方法氨氮是指水中存在的游离氨和氨离子的总和,它是水体中的一种重要污染物。
氨氮的存在会对水体生态系统造成严重的危害,因此需要采取有效的方法去除水中的氨氮。
下面将介绍几种常见的氨氮去除方法。
一、生物法去除氨氮。
生物法去除氨氮是利用微生物的代谢作用将水中的氨氮转化为无害的物质。
常见的生物法去除氨氮的方法包括生物滤池法、生物接触氧化法和植物净化法等。
其中,生物滤池法是通过将含氨氮的水体通过填充了生物膜的滤材进行过滤,利用滤材上的微生物将氨氮转化为硝态氮和氮气,从而达到去除氨氮的目的。
生物接触氧化法则是将水体与生物膜接触,利用生物膜上的微生物将氨氮氧化为硝态氮。
植物净化法则是利用水生植物吸收水中的氨氮,通过植物的生长代谢将氨氮转化为植物组织中的蛋白质,从而去除水中的氨氮。
二、化学法去除氨氮。
化学法去除氨氮是利用化学药剂将水中的氨氮转化为无害的物质。
常见的化学法去除氨氮的方法包括氧化法和还原法。
氧化法是利用氧化剂将水中的氨氮氧化为硝态氮,常用的氧化剂包括高锰酸钾、臭氧等。
还原法则是利用还原剂将水中的氨氮还原为氮气,常用的还原剂包括亚硫酸氢钠、亚硝酸盐等。
这些化学法可以在一定程度上去除水中的氨氮,但在实际应用中需要考虑到化学药剂的成本和对环境的影响。
三、物理法去除氨氮。
物理法去除氨氮是利用物理手段将水中的氨氮去除。
常见的物理法去除氨氮的方法包括气体吹送法和膜分离法。
气体吹送法是通过向水体中通入气体,利用气体与水中的氨氮发生气-液相传质作用,将氨氮从水中去除。
膜分离法则是利用特定的膜将水中的氨氮分离出来,从而达到去除氨氮的目的。
这些物理法虽然可以去除水中的氨氮,但需要消耗一定的能源和设备投入。
综上所述,生物法、化学法和物理法是目前常见的氨氮去除方法。
在实际应用中,可以根据水体的特性和氨氮浓度选择合适的去除方法,以达到经济、高效、环保的目的。
同时,氨氮去除过程中需要注意对水体生态系统的影响,避免对环境造成二次污染。
氨氮超标最简单的处理方法氨氮超标是指水体中氨氮含量超过了环境保护标准规定的限值,这种情况在我们日常生活和工作中时常会遇到。
氨氮超标会对水质造成严重污染,危害水生生物和人类健康。
因此,我们需要采取有效的措施来处理氨氮超标问题。
下面将介绍一些最简单的处理方法,希望对大家有所帮助。
首先,要做的是找出氨氮超标的原因。
氨氮超标的原因有很多,可能是由于工业废水排放、农业化肥过量使用、生活污水排放等造成的。
只有找出了超标的原因,才能有针对性地采取措施来解决问题。
其次,可以采用生物法处理氨氮超标。
生物法是利用微生物降解水中的氨氮,是一种环保、经济、高效的处理方法。
通过在水体中添加一定量的微生物,可以促进微生物对氨氮的降解,从而降低水体中的氨氮含量。
另外,也可以利用植物吸收的方法来处理氨氮超标。
一些水生植物如莲藕、菖蒲等对氨氮具有很强的吸收能力,可以将水中的氨氮吸收到植物体内,从而净化水质。
这种方法不仅可以处理氨氮超标,还可以美化水域环境。
除此之外,化学法也是处理氨氮超标的一种常用方法。
通过在水体中添加一定量的化学药剂,如氯化铁、高锰酸钾等,可以将水中的氨氮与药剂发生化学反应,从而将其转化为无害的物质,达到处理氨氮超标的目的。
最后,要做好氨氮超标的预防工作。
加强对工业废水、农业化肥、生活污水等的管理,减少氨氮的排放,是预防氨氮超标的关键。
只有从源头上控制氨氮的排放,才能有效地防止水体氨氮超标的发生。
综上所述,处理氨氮超标并不是一件复杂的事情,只要我们找准原因,采取合适的处理方法,做好预防工作,就能有效地解决氨氮超标问题,保护水质,保障人类健康。
希望以上介绍的方法能够对大家有所启发,也希望大家能够积极参与到环境保护工作中,共同守护我们的美丽家园。
氨氮的处理物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
氨氮过高处理方法氨氮是水体中的一种常见污染物,主要来源于农业、工业和城市生活污水等。
当水体中氨氮浓度过高时,会对水生生物产生毒害作用,破坏水生态平衡,甚至威胁人类健康。
因此,寻求有效的氨氮过高处理方法至关重要。
一、物理处理方法1. 吹脱法:利用氨氮在水中的溶解度随pH值升高而降低的特性,通过向废水中通入空气或蒸汽,使废水中氨氮由液相转移至气相,从而达到去除氨氮的目的。
吹脱法适用于处理高浓度氨氮废水,但能耗较高,且易产生二次污染。
2. 膜分离技术:包括反渗透、纳滤、超滤等,通过膜的选择性透过性,将氨氮与水分子分离。
膜分离技术具有高效、节能、无二次污染等优点,但膜材料成本较高,且易受污染和堵塞。
二、化学处理方法1. 折点氯化法:将氯气或次氯酸钠通入废水中,使氨氮氧化为氮气逸出。
折点氯化法处理效果稳定,适用于处理低浓度氨氮废水,但药剂费用较高,且可能产生有毒副产物。
2. 离子交换法:利用离子交换树脂上的可交换离子与废水中的氨氮进行交换,从而达到去除氨氮的目的。
离子交换法具有处理效果好、可回收氨氮等优点,但树脂再生费用较高,且易受其他离子干扰。
三、生物处理方法1. 传统生物硝化反硝化技术:通过硝化细菌将氨氮氧化为硝酸盐,再通过反硝化细菌将硝酸盐还原为氮气逸出。
传统生物硝化反硝化技术具有成本低、无二次污染等优点,但处理周期较长,且易受温度、pH值等环境因素影响。
2. 新型生物脱氮技术:包括短程硝化反硝化、厌氧氨氧化等,通过优化微生物种群结构和反应条件,提高氨氮去除效率。
新型生物脱氮技术具有处理效果好、节能等优点,但对操作和管理要求较高。
四、复合处理方法为了克服单一处理方法的局限性,实际工程中常采用多种方法组合使用,形成复合处理方法。
例如,可以先采用物理或化学方法预处理废水,降低氨氮浓度和毒性,再采用生物方法进行深度处理。
复合处理方法可以充分发挥各种方法的优势,提高氨氮去除效率和处理效果稳定性。
五、实际应用案例1. 某化工厂废水处理:该化工厂废水氨氮浓度高达500mg/L以上,采用吹脱法预处理后,氨氮浓度降至200mg/L以下;再采用A/O(厌氧/好氧)生物处理工艺进行深度处理,最终出水氨氮浓度稳定在10mg/L以下,达到国家排放标准。
1.气提法:这是大多数化肥厂采用的方法,实用。
一次性投资费用中等,处理费用合理。
2.吹脱法:将PH值调整到10.5-11左右,将氨从液相转移到气相,必须进行吸收,否则污染空气且污染物转移是不行的。
一次性投资高,操作工艺流程复杂,处理成本较高,能耗高。
3.蒸氨塔蒸发法;原理同气提法,投资费用较高,但处理效率更高,用于焦化废水处理较好。
4.MAP法:即是用磷酸根、镁盐与氨反应生成鸟粪石沉淀的化学反应,生成的鸟粪石可作为肥料,尤其用作花肥较好。
处理效果好,一次投资低,但处理成本较高。
5.折点加氯法:即氧化法,一次性投资费用较高,处理效果好,但处理成本高。
0氨氮(NH3-N)是水环境中氮的主要形态,可使水体富营养化,生成的亚硝胺则直接威胁着人类的健康,而且随着经济的发展和生活水平的提高,氨氮现己成为环境的主要污染指标之一。
因此,有效地控制氨氮己成为治理废水污染所而临的重大课题。
物理化学方法是废水中氨氮去除的主要方法之一。
它主要包括折点氯化法、化学沉淀法、离子交换法、空气吹脱与水蒸气气提法、液膜法、电化学法以及湿式催化氧化法等。
(1)折点氯化法。
折点氯化法是将氯气通人废水中,到达一定状态时水中游离氯含量最低,而氨的浓度降为零,该状态下的氯化称为折点氯化。
处理后的出水须除去水中残氯。
氧化1mg 氨氮约需要9~10mg氯气,影响因素是温度、pH 值及氨氮浓度。
折点氯化法适于处理低浓度氨氮废水,液氯的使用和贮存要求高,处理成本高。
(2)化学沉淀法。
化学沉淀法是将氨与化学沉淀剂(H3PO4 + MgO)反应生成沉淀物以去除废水中的氨氮。
向废水中投加MgCI2+6H2O和Na2HPO4+12H2O以去除氨氮。
结果表明,在pH值为 8.91,Mg2+∶NH4+PO43-的物质的量的比为1.25∶1∶1,反应温度为25℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氮浓度由9500mg/L降到460mg/L,去除率达95%以上。
目前工业上常用于处理低浓度氨氮的技术主要有化学药剂法、吸附法、折点氯化法、生物法、吹脱法等。
化学药剂法氨氮去除剂主要是通过氧化分解水中的氨氮来达到去除的效果:☑去除率高达96%以上;☑同时还具有脱色、降低COD的辅助功能,还可回调pH值,节省酸回调成本;☑再则是反应速度快,5-6分钟左右就可反应完全;☑氨氮去除剂可以直接投加在原本工艺中的沉淀池当中,无需另外增加设备和工艺,大大减少了成本。
吸附法吸附法常利用多孔性固体作为吸附剂,根据吸附原理不同可分为物理吸附、化学吸附和交换吸附。
处理低浓度氨氮废水较为理想的是离子交换吸附法。
但由于离子交换剂的交换容量有限,需要频繁再生,且再生后氨氮去除效果逐渐降低,导致多次再生后离子交换剂必须更换;另外对氨氮的交换容量易受到废水中其他阳离子的影响,所以使用这种方法的环保人最好先了解清楚下。
折点氯化法折点氯化法是污水处理工程中的脱氮工艺之一,其原理是将氯气通入氨氮废水中达到某一临界点,使氨氮氧化为氮气的化学过程。
这里需要提醒使用该方法的环保人:1、氯气与水中氨氮作用产生氯胺等会造成二次污染;2、氯气消耗量大,且液氯的安全使用和存储成本较高;3、对水质的pH要求苛刻,产生的酸性废水还需要碱性物质进行中和才能达标排放等,从而增加了处理氨氮废水的运行成本。
生物法生物法是指废水中的氨氮在各种微生物作用下,通过硝化、反硝化等一系列反应最终生成氮气,从而达到去除的目的。
但由于使用生物法会受到温度的影响,低温时处理效率低且耗时长、占地面积大、需氧量大,有些有害物质如重金属离子等对微生物有抑制作用,需在进行生物法之前去除。
所以个人不建议使用。
吹脱法吹脱法是利用氨气( NH3)等挥发性物质的实际浓度与平衡浓度之间存在的差异,将废水pH调节至碱性,以空气或其他气体作为载气,通入汽提塔中,在气液两相中充分接触后,溶解于废水中的气体与NH3由液相穿过气液相界面进入气相,从而达到脱除废水中氨氮的目的。
氨氮超标的处理方法氨氮是指水中以氨氮形式存在的氨和氨盐。
氨氮超标会对水体造成污染,破坏生态平衡,危害水环境和水生生物。
因此需要采取有效的处理方法来降低氨氮的含量。
首先,我们可以通过物理方法来处理氨氮超标的水体。
一种常见的方法是浸泡法,在不开放空气的条件下,将超标水体与一定比例的活性炭接触,使得水中的氨氮被吸附到活性炭上,从而达到降低氨氮含量的目的。
此外,也可以采用逆渗透、超滤等膜分离技术,将水中的氨氮分离出去,使得水体中的氨氮含量得到降低。
其次,化学方法也可以用来处理氨氮超标的水体。
一种常见的方法是利用氧化剂氯或臭氧来将氨氮氧化为亚氨或氮气。
氯氧化法是利用余氯或添加氯化物进行氧化的方法。
臭氧氧化法则是将臭氧气体接触水体,通过氧化反应将氨氮氧化为亚氨或氮气。
此外,还可以利用化学沉淀法,如将钙、铜或铝等金属离子与水中的氨氮反应,形成沉淀物从而降低氨氮含量。
生物处理方法也是处理氨氮超标的有效途径之一。
生物法主要是利用微生物的作用将氨氮转化为无害的物质。
其中最常用的是厌氧-好氧法。
首先,将超标水体进入厌氧池进行降解,通过厌氧菌的作用将氨氮转化为亚硝酸盐;然后,将亚硝酸盐进入好氧池进行氧化反应,通过好氧菌的作用将亚硝酸盐进一步氧化为硝酸盐。
此外,还可以利用植物的吸收作用,通过植物对氨氮的吸收和利用,减少水体中氨氮的含量。
例如,采用浮床法,将具有吸收氨氮能力的植物在水面上生长,通过植物的根系吸收和利用水中的氨氮。
除了上述的处理方法之外,还可以通过改善排放源水体、减少污染物输入来预防和降低氨氮超标。
首先,要加强对农业、养殖业和工业废水等源头的监管和管理,减少氨氮的排放。
其次,加强对城市污水处理厂和农村生活污水处理设施的建设和运行管理,确保处理效果达到标准要求,并加强对排放水体的监测和检测。
此外,还要提高公众对水体保护的意识,加强环境教育,倡导绿色环保生活方式,减少对水环境的污染。
总之,处理氨氮超标的方法多种多样,可以选择物理、化学和生物等方法来降低水体中的氨氮含量。
去除氨氮的最好方法
氨氮是水体中常见的一种污染物,它会对水质造成严重的影响,对水生生物和人类健康都会产生危害。
因此,去除水体中的氨氮成
为了一项重要的环境保护任务。
在实际应用中,有许多去除氨氮的
方法,但是哪一种才是最好的呢?本文将围绕这一问题展开讨论。
首先,一种常见的去除氨氮的方法是生物法。
生物法是通过微
生物的作用将水中的氨氮转化为无害的氮气,从而达到去除氨氮的
目的。
这种方法具有操作简单、成本低廉的特点,而且对水体中的
其他成分几乎没有影响。
但是,生物法需要一定的时间来进行氨氮
的降解,且受到环境条件的限制,因此在一些特定情况下可能并不
是最好的选择。
其次,化学法也是一种常用的去除氨氮的方法。
化学法通过添
加化学药剂来将水中的氨氮转化为无害的物质,从而达到去除氨氮
的目的。
这种方法具有去除效果快、操作简便的特点,适用于一些
需要快速去除氨氮的场合。
然而,化学法可能会产生一些副产品,
对水体中的其他成分造成影响,且需要定期添加化学药剂,成本较高。
除了生物法和化学法,还有物理法可以用来去除氨氮。
物理法是通过物理手段将水中的氨氮分离出去,比如利用吸附剂吸附氨氮等方法。
这种方法具有操作简单、对水体成分影响小的特点,但是需要大量的吸附剂,并且吸附后的处理也是一个问题。
综上所述,每种去除氨氮的方法都有其优缺点,没有一种是完美的。
在实际应用中,需要根据具体情况选择合适的方法,或者结合多种方法进行去除氨氮。
同时,未来还需要不断探索新的去除氨氮的方法,以更好地保护水环境,保障人类健康。
水中氨氮的去除方法化学氧化法是指将氨氮氧化成无毒或低毒氧化物,进而降低水体中的氨氮含量。
常用的氧化剂有氯和高氯酸盐、臭氧和过氧化氢等。
其中,氯和高氯酸盐可以迅速将氨氮氧化成亚氯酸盐和氮气,但会生成氯代有机物和产生刺激性气味;臭氧氧化可以将氨氮氧化成亚氮酸盐和氮气,氧化效果较好且无副产物;过氧化氢可以将氨氮氧化成亚氮酸盐和氮气,但一般需要配合过氧化铁或二氧化锰作为催化剂使用。
化学氧化法适用于对水体中氨氮含量较高的情况,但需要注意副产物的处理和消除。
生物降解法是通过微生物降解氨氮,将其转化为无害物质或使其沉积为固体颗粒物而实现氨氮的去除。
常见的生物降解方法有硝化法和硝化反硝化法。
硝化法是指将氨氮通过氨氧化细菌氧化成亚氮酸盐,然后再通过硝化细菌氧化成硝酸盐。
硝化法适用于对氨氮含量较高、水体中有硝酸盐接受体的情况,但硝化细菌的活性对温度、pH和DO等因素较为敏感。
硝化反硝化法是指在硝化的基础上,将产生的硝酸盐进一步还原为氮气。
硝化反硝化法适用于对氨氮含量较高、水体中有硝酸盐接受体且断氧条件较好的情况,但需注意断氧条件的控制和硝酸盐积累的风险。
物理吸附法是利用一些材料对水中的氨氮进行吸附,将其从水体中去除。
常用的吸附剂有活性炭、陶粒、树脂和纤维材料等。
其中,活性炭具有孔隙结构和较大的比表面积,能够有效吸附水中的氨氮;陶粒具有较好的吸附性能且可反复使用;树脂可以选择具有功能团的树脂对氨氮进行选择性吸附。
物理吸附法适用于对水体中氨氮含量较低的情况,但需注意吸附剂的使用量和再生处理的问题。
除了上述三类方法,还有一些其他的氨氮去除方法,如化学沉淀法、电化学法和超滤法等。
化学沉淀法是指通过加入化学絮凝剂将氨氮和其他悬浮固体物质一起沉淀下来,然后通过沉淀物的分离实现氨氮的去除。
电化学法是利用电化学反应将氨氮进行氧化和还原,从而达到其去除的目的。
超滤法是通过超滤膜对水中的氨氮进行截留和分离,将其与水体分离开来。
这些方法各有优缺点,适用于不同的水质和污染情况。
去除氨氮的最好方法
去除氨氮的方法有很多种,以下是其中一些常用的方法:
1. 曝气法:通过搅拌或喷泡等方式将氨氮暴露在空气中,利用氨气挥发为氮气从水中去除。
2. 生物法:利用硝化作用和硝化细菌将氨氮转化为硝酸盐氮和亚硝酸盐氮,进而通过反硝化细菌将硝酸盐氮还原为氮气从水中去除。
3. 化学法:使用化学试剂如硫酸铵、硫酸钙等与氨氮发生反应,将氨氮转化为不溶于水的铵盐或固体沉淀,然后通过过滤或沉淀去除。
4. 吸附法:利用各种吸附剂如活性炭、交换树脂等将氨氮吸附在表面,然后将吸附剂与氨氮一起从水中分离除去。
5. 电化学法:利用电解池对水体进行电解,通过阳极氧化还原反应将氨氮氧化为氨气,然后从水中升华出去。
不同的方法适用于不同的水体,具体选择哪种方法应根据水体的特点和具体需求来确定。
氨氮去除方法氨氮是指水中存在的游离氨和氨盐,是水体中一种常见的污染物。
氨氮的存在会对水生生物和人类健康造成危害,因此需要采取相应的方法去除水中的氨氮。
下面将介绍几种常见的氨氮去除方法。
第一种方法是生物法去除氨氮。
生物法是指利用微生物对水中的氨氮进行降解和转化的方法。
通常采用生物滤池、活性污泥法、生物接触氧化法等生物处理设备,利用其中的微生物对水中的氨氮进行降解,将其转化为无害的物质。
生物法去除氨氮的优点是操作简单、成本较低,但是需要一定的时间和条件来维持微生物的生长和活性。
第二种方法是化学法去除氨氮。
化学法是指利用化学药剂对水中的氨氮进行氧化或沉淀的方法。
常用的化学药剂包括氯化铁、硫酸亚铁、过氧化氢等。
这些化学药剂可以与水中的氨氮发生化学反应,将其氧化成氮气或氮氧化物,或者将其沉淀成固体颗粒,从而达到去除氨氮的目的。
化学法去除氨氮的优点是去除效果好、速度快,但是需要注意药剂的选择和投加量,避免对水体造成二次污染。
第三种方法是物理法去除氨氮。
物理法是指利用物理手段将水中的氨氮进行分离和去除的方法。
常用的物理方法包括吸附法、膜分离法、电解法等。
这些物理方法可以通过吸附剂或膜分离设备将水中的氨氮分离出来,或者利用电解设备将水中的氨氮转化成氮气。
物理法去除氨氮的优点是操作简便、无化学药剂投加,但是设备成本较高,维护和运行成本也较高。
综上所述,生物法、化学法和物理法是目前常见的氨氮去除方法。
在实际应用中,可以根据水质特点、处理要求和经济条件选择合适的方法进行氨氮去除。
同时,需要注意不同方法的适用范围和操作要点,确保氨氮去除效果达到预期,保护水体环境和人类健康。
希望本文的介绍对大家有所帮助,谢谢阅读。
水中氨氮的去除方法随着人口的增加和工业的发展,水污染成为了一个日益严重的问题。
其中,氨氮是一种常见的水污染物。
氨氮的存在会对水的生态环境和人类生活产生巨大的影响,因此需要采取适当的措施进行去除。
本文将就水中氨氮的去除方法进行介绍。
一、物理法物理法主要是通过物理吸附或膜过滤将水中的氨氮去除。
因为氨氮的分子较小,可以通过孔径较小的膜过滤器过滤。
而吸附法则是利用固体吸附剂对氨氮分子的亲密作用使其停留或嵌入其表面或体内,从而达到去除的目的。
二、化学法化学法主要是通过还原、氧化、沉淀等方法将水中的氨氮去除。
其中,还原法主要是利用还原剂将氨氮还原成氮气的方法。
氧化法主要是利用氧化剂将氨氮氧化成亚硝酸、硝酸等形式。
沉淀法主要是利用盐酸、氢氧化钠等化学试剂将氨氮沉淀下来。
这些方法适用于大规模的水处理厂。
三、生物法生物法主要是通过微生物的作用将氨氮去除。
这种方法是目前应用最广泛的方法。
微生物可以将氨氮转化为亚硝酸盐、硝酸盐,然后通过微生物的同化过程将它们还原为氮气。
常见的生物处理方法包括曝气法、厌氧氧化法、好氧氧化法等。
四、物化联合法物化联合法主要是通过多个物化方法的组合,达到更好的氨氮去除效果。
例如,利用膜过滤器可以将水中的颗粒物和微生物去除;然后再采用生物法将氨氮转化为硝酸盐;最后采用盐酸、氢氧化钠将硝酸盐沉淀下来。
这种方法能够充分发挥各个方法所具有的优点,达到更好的去除效果。
针对不同的水源和污染程度,不同的氨氮去除方法对应不同的适用范围。
需要选取合适的去除方法,以达到高效、经济的去除效果。
总之,氨氮的去除是一个较为复杂的问题。
需要采取多种方法综合抑制和消除污染物。
未来,随着科技的进步和环保意识的增强,氨氮污染治理的技术也将得到不断的完善和创新。
废水中氨氮的去除废水中氨氮的去除废水中氨氮的去除一直是环境保护领域的重要课题之一。
氨氮是指水体中以氨的形式存在的氮,主要来自于工业生产废水、农业养殖废水等。
氨氮的排放对环境造成严重影响,会导致水体富营养化、酸碱平衡破坏、生态系统紊乱等问题。
因此,对废水中的氨氮进行有效去除是非常必要的。
目前,常用的废水中氨氮去除方法主要包括物理法、化学法和生物法。
物理法主要是利用吸附、萃取、蒸发和膜分离等技术手段将氨氮从废水中分离出来。
化学法则是通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
而生物法则是利用微生物的作用将废水中的氨氮转化成无害的氮气,从而达到去除的目的。
物理法中比较常用的方法是吸附。
吸附是指通过固体材料对氨氮的接触和吸附,将其从废水中分离出来。
常用的吸附剂有活性炭、氧化铁等。
活性炭吸附剂有较大的比表面积,能够有效地吸附氨氮。
氧化铁则是一种常见的吸附剂,它能够与氨氮形成络合物,从而实现氨氮的去除。
此外,萃取、蒸发和膜分离等技术也可以用于废水中氨氮的去除,但相比吸附而言,其成本较高。
化学法中,常用的方法是氨氮的沉淀。
氨氮的沉淀是指通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
常用的化学药剂有氢氧化钙、氯化铁等。
氢氧化钙是一种碱性物质,能够与氨氮发生反应,形成氨氮的沉淀物。
氯化铁则是一种常见的混凝剂,能够与氨氮形成沉淀,并与其一同被沉淀下来。
此外,还可以通过氧化、氮化等化学反应将氨氮转化成不可溶于水的化合物,从而实现氨氮的去除。
生物法中,常用的方法是利用微生物将废水中的氨氮转化成无害的氮气。
这类方法主要包括硝化和反硝化。
硝化是指通过一系列的微生物反应,将废水中的氨氮转化成硝态氮。
硝态氮不仅不具有毒性,而且还可以作为植物的肥料,有助于环境的改善。
反硝化是指通过一系列的微生物反应,将硝态氮还原成氮气。
这样即实现了氨氮向氮气的转化,达到了废水中氨氮的去除目的。
去除氨氮的最好方法氨氮是水体中的一种重要污染物,它来自于农业、工业、生活污水等多种渠道。
过高的氨氮含量会对水质造成严重影响,不仅影响水生生物的生存,还会对人类健康和环境造成危害。
因此,去除水体中的氨氮是十分重要的。
那么,如何去除水体中的氨氮呢?下面将介绍一些最好的方法:1. 植物吸收法。
植物吸收法是一种生物修复水体的方法,通过植物的吸收作用,可以有效去除水体中的氨氮。
选择适合吸收氨氮的水生植物,如莲藕、菰、藕等,将其种植在水体中,让植物吸收水中的氨氮,起到净化水体的作用。
这种方法不仅可以去除氨氮,还可以美化水域环境,是一种比较环保的方法。
2. 生物滤池法。
生物滤池是一种利用微生物降解氨氮的方法。
将水体通过生物滤池,滤过滤材和填料层,让其中的微生物降解水中的氨氮,从而达到去除氨氮的目的。
这种方法操作简单,成本较低,可以长期稳定地去除水体中的氨氮。
3. 化学氧化法。
化学氧化法是一种利用化学药剂氧化氨氮的方法。
常用的氧化剂有臭氧、氯气、次氯酸钠等。
将这些氧化剂加入水体中,可以将氨氮氧化成无害的物质,从而去除水体中的氨氮。
这种方法去除效果较好,但需要注意药剂的使用量和排放物的处理。
4. 生物膜法。
生物膜法是一种利用生物膜降解氨氮的方法。
在水体中设置生物膜反应器,通过生物膜上的微生物降解氨氮,达到去除氨氮的目的。
这种方法去除效果稳定,操作简单,适用于不同类型的水体。
5. 聚合物吸附法。
聚合物吸附法是一种利用聚合物吸附氨氮的方法。
将具有亲和力的聚合物加入水体中,可以吸附水中的氨氮,从而去除氨氮。
这种方法操作简单,效果较好,但需要注意聚合物的再生和回收利用。
综上所述,去除水体中的氨氮有多种方法,每种方法都有其适用的场景和特点。
在实际应用中,可以根据水体的特点和氨氮的含量选择合适的方法进行去除,以保障水体的水质和生态环境的健康。
希望以上方法对您有所帮助,谢谢阅读!。
氨氮的去除根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
去除氨氮的主要方法有:物理法、化学法、生物法。
物理法有反渗透、蒸馏、土壤灌溉等处理技术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
高浓度氨氮废水处理办法过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1 物化法1.1 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。
最佳工艺条件为pH =11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。
据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。
1.2 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。
然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。
小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。
Milan等[5]用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。
增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18cm(H/D=4),相对流量小于7.8 BV/h是比较适合的尺寸。
离子交换法受悬浮物浓度的影响较大。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
1.3 膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可取得良好的效果。
电渗析法处理氨氮废水2000~3000mg/L,去除率可在85%以上,同时可获得8.9%的浓氨水。
此法工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。
PP中空纤维膜法脱氨效率>90%,回收的硫酸铵浓度在25%左右。
运行中需加碱,加碱量与废水中氨氮浓度成正比。
乳化液膜是种以乳液形式存在的液膜具有选择透过性,可用于液-液分离。
分离过程通常是以乳化液膜(例如煤油膜)为分离介质,在油膜两侧通过NH3的浓度差和扩散传递为推动力,使NH3进入膜内,从而达到分离的目的。
用液膜法处理某湿法冶金厂总排放口废水(1000~1200mgNH4+-N/L,pH为6~9)[7],当采用烷醇酰胺聚氧乙烯醚为表面活性剂用量为4%~6%,废水pH调至10~11,乳水比在1:8~1:12,油内比在0.8~1.5。
硫酸质量分数为10%,废水中氨氮去除率一次处理可达到97%以上。
1.4 MAP沉淀法主要是利用以下化学反应:Mg2 ++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
穆大纲等[8]采用向氨氮浓度较高的工业废水中投加MgCl2•6H2O和Na2HP04•12H20生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。
结果表明,在pH为8.9l,Mg2+,NH4,P043-的摩尔比为1.25:1:1,反应温度为25℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氨质量浓度可由9500 mg/L降低到460 mg/L,去除率达到95%以上。
由于在多数废水中镁盐的含量相对于磷酸盐和氨氮会较低,尽管生成的磷酸铵镁可以做为农肥而抵消一部分成本,投加镁盐的费用仍成为限制这种方法推行的主要因素。
海水取之不尽,并且其中含有大量的镁盐。
Kumashiro等[9]以海水做为镁离子源试验研究了磷酸铵镁结晶过程。
盐卤是制盐副产品,主要含MgCl2和其他无机化合物。
Mg2+约为32 g/L为海水的27倍。
Lee等[10]用MgCl2、海水、盐卤分别做为Mg2+源以磷酸铵镁结晶法处理养猪场废水,结果表明,pH是最重要的控制参数,当终点pH≈9.6时,反应在10 min内即可结束。
由于废水中的N/P不平衡,与其他两种Mg2+源相比,盐卤的除磷效果相同而脱氮效果略差。
1.5 化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
在溴化物存在的情况下,臭氧与氨氮会发生如下类似折点加氯的反应:Br-+O3+H+→HBrO+O2,NH3+HBrO→NH2Br+H2O,NH2Br+HBrO→NHBr2+H2O,NH2Br+NHBr2→N2+3Br-+3H+。
Yang等[11]用一个有效容积32 L的连续曝气柱对合成废水(氨氮600 mg/L)进行试验研究,探讨Br/N、pH以及初始氨氮浓度对反应的影响,以确定去除最多的氨氮并形成最少的NO3-的最佳反应条件。
发现NFR(出水NO3--N与进水氨氮之比)在对数坐标中与Br-/N成线性相关关系,在Br-/N>0.4,氨氮负荷为3.6~4.0kg/(m3•d)时,氨氮负荷降低则NFR降低。
出水pH=6.0时,NFR和BrO--Br (有毒副产物)最少。
BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP 控制。
泥圪塔at 2008-7-02 11:08:37 2 生化联合法物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100 mg/L以下)。
而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。
实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。
卢平等[12]研究采用吹脱-缺氧-好氧工艺处理含高浓度氨氮垃圾渗滤液。
结果表明,吹脱条件控制在pH=9 5、吹脱时间为12 h时,吹脱预处理可去除废水中60%以上的氨氮,再经缺氧-好氧生物处理后对氨氮(由1400 mg/L降至19.4 mg/L)和COD的去除率>90%。
Horan等[13]用生物活性炭流化床处理垃圾渗滤液(COD为800~2700 mg/L,氨氮为220~800 mg/L)。
研究结果表明,在氨氮负荷0.71 kg/(m3•d)时,硝化去除率可达90%以上,COD去除率达70%,BOD全部去除。
Fikret等[14]以石灰絮凝沉淀+空气吹脱做为预处理手段提高渗滤液的可生化性,在随后的好氧生化处理池中加入吸附剂(粉末状活性炭和沸石),发现吸附剂在0~5/L时COD和氨氮的去除效率均随吸附剂浓度增加而提高。
对于氨氮的去除效果沸石要优于活性炭。
膜-生物反应器技术(MBR)是将膜分离技术与传统的废水生物反应器有机组合形成的一种新型高效的污水处理系统。
MBR处理效率高,出水可直接回用,设备少战地面积小,剩余污泥量少。
其难点在于保持膜有较大的通量和防止膜的渗漏。
李红岩等[15]利用一体化膜生物反应器进行了高浓度氨氮废水硝化特性研究。
研究结果表明,当原水氨氮浓度为2000 mg/L、进水氨氦的容积负荷为2.0 kg/(m3•d)时,氨氮的去除率可达99%以上,系统比较稳定。
反应器内活性污泥的比硝化速率在半年的时间内基本稳定在0.36/d左右。
3 新型生物脱氮法近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。
主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。
3.1 短程硝化反硝化生物硝化反硝化是应用最广泛的脱氮方式。
由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。
短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。
Ruiza等[16]用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。
要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。
当DO=0.7 mg/L时,可以实现65%的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。
DO<0.5 mg/L时发生氨氮积累,DO>1.7 mg/L时全部硝化生成硝酸盐。
刘俊新等[17]对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。
试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。
此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
刘超翔等[18]短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。