2017-2018年人教版初二上册数学第十三章轴对称检测试卷(含答案)
- 格式:doc
- 大小:196.50 KB
- 文档页数:8
第十三章轴对称单元测试卷[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1.下列图形中不是轴对称图形的是()A B C D2.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为() A.40°B.100°C.40°或100° D.70°或50°3.如图1,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于() A.3 cm B.4 cm C.1.5 cm D.2 cm图14.如图2,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处,若∠A=22°,则∠BDC等于()图2A.44° B. 60° C. 67° D. 77°5.如图3,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F 为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正确的有()图3A.1个B.2个C.3个D.4个6.如图4,在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB 的度数是()图4A.15°B.30°C.50°D.65°7.如图5,△ABC与△BDE都是等边三角形,AB<BD,若△ABC不动,将△BDE 绕点B旋转,则在旋转过程中AE与CD的大小关系为()图5A.AE=CD B.AE>CD C.AE<CD D.无法确定8.点M(-2,1)关于x轴对称的点的坐标是() A.(-2,-1) B.(2,1) C.(2,-1) D.(1,-2)9.如图6,C表示灯塔,轮船从A处出发以每时30海里的速度向正北(AN)方向航行,2小时后到达B处,测得C处在A的北偏东30°方向,并在B的北偏东60°方向,那么B处与灯塔C之间的距离为______海里() A.60 B.80 C.100 D.120图610.如图7所示,在△ABC中,AB=AC,D为BC上一点,且AB=BD,AD=DC,则∠BAC为()图7A.108°B.72°C.36°D.144°二、填空题(每小题4分,共24分)11.坐标平面内,点A(-2,3)关于x轴的对称点是B,O为坐标原点,则△AOB 的面积是________.12.如图8,在△ABC中,按以下步骤作图:①分别以点B、C为圆心,以大于12BC的长为半径作弧,两弧相交于M、N两点;②作直线MN交AB于点D,连接C D.若CD=AC,∠B=25°,则∠ACB的度数为________.图813.如图9,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为_________________________.图914.如图10,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.图1015.如图11,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN 交AC于点D,则∠A的度数是________.图1116.如图12,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE =AC,则∠DCE的大小为________.图12三、解答题(共66分)17.(10分)图13所示是一个8×10的正方形格纸,在△ABC中,A点坐标为(-2,1).(1)△ABC和△A′B′C′满足什么几何变换(直接写答案)?(2)作△A′B′C′关于x轴的对称图形△A″B″C″;(3)求A″,B″,C″三点坐标(直接写答案).图1318.(10分)如图14,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,求∠BCA的度数.图1419.(12分)如图15所示,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.图1520.(10分)如图16所示,等边△ABC表示一块地,DE,EF为地块中的两条路,且D为AB的中点,DE⊥AC,EF∥AB,现已知AE=5 m,你能求出地块△EFC 的周长吗?图1621.(12分)如图17,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.图1722.(12分)如图18,∠ABC=90°,D,E分别在BC、AC上,AD⊥DE,且AD =DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.图18参考答案1.A 2.C 3.A 4.C 5.C 6.A7.A8.A9.A10.A11.612.105°13.414.415.50°16.45°17.(1)轴对称变换(2)略(3)A″(2,-1),B″(1,-2),C″(3,-3) 18.60°19.需添加的条件是BD=CD或BE=CF,理由略20.45 m21.略22.(1)略(2)AD⊥MC,理由略。
2017-2018 人教版数学八年级上册第13章轴对称单元练习题1.如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是( )A.AM=BM B.AP=BNC.∠MAP=∠MBP D.∠ANM=∠BNM2.如图,△ABC与△A′B′C′关于直线l对称,则下列判断:①BC⊥l,B′C′⊥l;②∠B=∠B′;③AB=A′B′;④△ABC与△A′B′C′的周长与面积相等.其中正确的是( )A.①②B.②③C.②③④D.①②③④3.如图,四边形ABCF与四边形EDCF关于直线CF对称.若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是( )A.150° B.300°C.210° D.330°4.如图,三角形ABC与三角形DEF关于直线MN对称,则以下结论中错误的是( )A.AB∥DF B.∠B=∠EC.AB=DE D.AD的连线被MN垂直平分5.如图,已知点P关于OA、OB的对称点分别是P1、P2,线段P1P2分别交OA、OB 于点D、C,P1P2=6cm,则三角形PCD的周长为( )A.3cm B.6cmC.12cm D.无法确定6.把图形沿着直线翻折并将图形“复印”下来得到图形,就叫做该图形关于直线作了轴对称变换,也叫.7.如果一个图形关于某一条直线作轴对称变换后,能够与另一个图形重合,那么就说这两个图形关于这条直线,也称这两个图形成轴对称,这条直线叫做对称轴.8.轴对称变换不改变图形的和.成轴对称的两个图形,对应点的连线被对称轴.9.如图,把一张长方形的纸沿OG折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.10.如图,已知三角形ABC,以直线l为对称轴,画出三角形ABC关于直线l对称的图形.11.如图所示的三角形ABC和三角形A′B′C′关于直线l对称,请你画出它的对称轴直线l.13.如图,在正方形网格里有一个△ABC.(1)画出△ABC关于直线MN的对称图形;(2)若网格上的最小正方形的面积是1,求△ABC的面积.13.分别找出具有一条对称轴、两条对称轴、三条对称轴、四条对称轴的几何图形,并画出来(包括对称轴).答案:1---5 BCBAB6. 轴反射7. 对称8. 形状大小垂直平分9. 55°10. 解:如图所示:三角形ACD就是所求作的三角形.11. 解:如图所示:12. 解:(1)略 (2)S △ABC =2×3-12×(1×2+1×2+1×3)=52.13. 解:答案不唯一,如图所示:。
人教版数学八年级上册第13章轴对称第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.(2018·湘西州)下列四个图形中,是轴对称图形的是( )2.如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE3.如图,已知AD所在直线是△ABC的对称轴,点E,F是AD上的两点.若BC=4,AD=3,则图中阴影部分的面积是( )A.3 B.4C.6 D.84.如图,已知点A(2,3)和点B(4,1),在坐标轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为( )A.(1,0)B.(0,-1)C.(1,0)或(0,-1)D.(2,0)或(0,1)5.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( ) A.A点B.B点C.C点D.D点6. 如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是( )A.55°B.45°C.35°D.65°7.等边三角形的三条对称轴中任意两条夹角(锐角)的度数为( )A.30°B.45°C.60°D.75°8.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( )A.70°B.110°C.140°D.150°9.如图,等腰△ABC中,AB=AC,∠A=24°.线段AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE等于( )A.78°B.60°C.54°D.50°10.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:①∠DEF=∠DFE;②AE=AF;③AD平分∠EDF;④AD垂直平分EF.其中正确的有( ) A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.点M关于x轴对称的点的坐标是(-1,3),则点M的坐标是_________.12.如图,A,B,C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为_______.13.在4×4的网格中有五个同样大小的正方形阴影如图所示摆放,移动其中一个阴影正方形到空白方格中,与其余四个阴影正方形组成的新图形是一个轴对称图形,这样的移法共有_____种.14.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为____.15. 如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.16.如图,在△ADC中,B是AC上一点,AD=BD=BC,若∠C=25°,则∠ADB=________.17. 如图所示,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔4海里的A处,该海轮沿南偏东30°方向航行________海里后,到达位于灯塔P的正东方向的B处.18.在平面直角坐标系中,将A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点的坐标是_______________.三.解答题(共7小题,66分)19.(8分) 如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.20.(8分) 如图,某校两个班的学生分别在C,D两处参加植树活动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使点M到两条路的距离相等,且MD=MC,这个茶水供应点应建在何处?21.(8分) 如图,在△ABD中,AB=AD,AC平分∠BAD,交BD于点E.(1)求证:△BCD是等腰三角形;(2)若∠ABD=50°,∠BCD=130°,求∠ABC的度数.22.(10分) 如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.若∠CAB =∠CBA=∠CDE=∠CED=50°.(1)求证:AD=BE;(2)求∠AEB的度数.23.(10分) 如图,已知AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC=AB+CD.24.(10分) 如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P到达点B时,P,Q两点停止运动,设点P 的运动时间为t s,则当t为何值时,△PBQ是直角三角形?25.(12分) 如图所示,点P在∠AOB的内部,点M,N分别是点P关于直线OA,OB的对称点,线段MN交OA,OB于点E,F.(1)若MN=20 cm,求△PEF的周长;(2)若∠AOB=35°,求∠EPF的度数.参考答案:1-5DDACB 6-10ACDCD 11. (-1,-3) 12. 100° 13. 13 14. 6 15. 3 16. 80° 17. 4 18.(2,-2)19. 解:∵AD =BD ,∴设∠BAD =∠DBA =x°,∵AB =AC =CD ,∴∠CAD =∠CDA =∠BAD +∠DBA =2x°,∠DBA =∠C =x°. ∴∠BAC =∠CAD +∠BAD =3x°. ∵∠ABC +∠BAC +∠C =180°, ∴5x =180.∴x =36,∴∠BAC =108°20. 解:作法:①连接CD ,作CD 的垂直平分线EF ;②作∠AOB 的平分线OP ,OP 与EF 相交于点M ,则点M 就是所求作的点21. 解:(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC. 在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC(SAS). ∴BC =DC.∴△BCD 是等腰三角形 (2)∵BC =DC ,∠BCD =130°, ∴∠CBD =∠CDB =12(180°-∠BCD)=12×(180°-130°) =25°.∴∠ABC =∠ABD +∠CBD =50°+25°=75°22. 解:(1)证明:∵△ACB 和△DCE 均为等腰三角形,∠CAB =∠CBA =∠CDE =∠CED , ∴AC =BC ,CD =CE ,∠ACB =∠DCE , ∴∠ACD =∠BCE ,∴△ACD ≌△BCE(SAS), ∴AD =BE(2)由(1)可知∵△ACD ≌△BCE(SAS),∴∠CAD=∠EBC ,∠CAD+∠EAB =∠EBC+∠EAB=50º ∴∠AEB=180º-(∠EAB+∠EBA) = 180º-(∠EAB+∠EBC+∠CBA) = 180º-(∠EAB+∠CAD+∠CBA) =180º-100º=80°23. 解:在线段BC 上截取BE =BA ,连接DE.∵BD 平分∠ABC , ∴∠ABD =∠EBD =12∠ABC.又∵BD =BD ,∴△ABD ≌△EBD(SAS), ∴∠BED =∠A =108°,∠ADB =∠EDB , ∴∠DEC =180°-108°=72°.又∵AB =AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∠CDE =180°-∠DEC -∠ACB =180°-72°-36°=72°, ∴∠CDE =∠DEC ,∴CD =CE , ∴BC =BE +EC =AB +CD24. 解:根据题意:AP =t cm ,BQ =t cm. 在△ABC 中,AB =BC =3 cm ,∠B =60°, ∴BP =(3-t)cm.在△PBQ 中,BP =3-t ,BQ =t ,若△PBQ 是直角三角形,则∠BQP =90°或∠BPQ =90°. 当∠BQP =90°时,BQ =12BP ,即t =12(3-t),解得t =1;当∠BPQ =90°时,BP =12BQ ,即3-t =12t ,解得t =2.答:当t =1 s 或t =2 s 时,△PBQ 是直角三角形25. 解:(1)∵点M 与点P 关于OA 对称,∴OA 垂直平分MP.∴EM =EP.又∵点N与点P关于OB对称,∴OB垂直平分PN.∴FP=FN.∴△PEF的周长为PE+PF+EF=ME+FN+EF=MN=20 cm(2)连接OM,ON,OP.∵OA垂直平分MP,∴OM=OP.又∵OB垂直平分PN,∴ON=OP.又∵ME=PE,OE=OE,PF=NF,OF=OF,∴△MOE≌△POE(SSS),△POF≌△NOF(SSS).∴∠MOE=∠POE,∠OME=∠OPE,∠POF=∠NOF,∠OPF=∠ONF.∴∠MON=2∠AOB=70°.∴∠EPF=∠OPE+∠OPF=∠OME+∠ONF=180°-∠MON=110°。
数学人教版八年级上第十三章轴对称练习令狐采学一、选择题1.下列由数字组成的图形中,是轴对称图形的是( ).2.下列语句中正确的个数是( ).①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.43.已知等腰△ABC的周长为18 cm,BC=8 cm,若△ABC与△A′B′C′全等,则△A′B′C′的腰长等于( ).A.8 cmB.2 cm或8 cmC.5 cmD.8 cm或5 cm4.已知等腰三角形的一个角等于42°,则它的底角为( ).A.42° B.69°C.69°或84° D.42°或69°5.已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论中正确的有 ( ).①A、B关于x轴对称;②A、B关于y轴对称;③A、B不轴对称;④A、B之间的距离为4.A.1个 B.2个C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分.把正确答案填在题中横线上)9.观察规律并填空:10.点E(a,-5)与点F(-2,b)关于y轴对称,则a=__________,b=__________.11.如图,在等边△ABC中,AD⊥BC,AB=5 cm,则DC的长为__________.(第11题图) (第12题图)12.如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,若BD=10,则CD=__________. 13.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是__________.14.如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=__________.(第13题图) (第14题图)15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.16.如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=8 m,∠A=30°,则DE长为__________.三、解答题(本大题共5小题,共52分) 17.(本题满分10分)如图,在△ABC中,AB=AC,△ABC的两条中线BD、CE交于O点,求证:OB=OC. 19.(本题满分10分)如图,已知△ABC中,AH⊥BC 于H,∠C=35°,且AB+BH=HC,求∠B的度数.20.(本题满分10分)如图,E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G).21.(本题满分12分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BC相交于点P,BE与CD相交于点Q,连接PQ.求证:△PCQ为等边三角形.参考答案1.A点拨:数字图案一般是沿中间竖直线或水平线折叠,看是否是轴对称图形,只有A选项是轴对称图形.2.B点拨:①③正确,②④不正确,其中④对应点还可能在对称轴上.3.D点拨:因为BC是腰是底不确定,因而有两种可能,当BC是底时,△ABC的腰长是5 cm,当BC是腰时,腰长就是8 cm,且均能构成三角形,因为△A′B′C′与△ABC全等,所以△A′B′C′的腰长也有两种相同的情况:8cm或5 cm. 4.D点拨:在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角存在两种情况,∴42°或69°.5.B点拨:①③不正确,②④正确.6.D点拨:DE垂直平分AB,∠B=30°,所以AD平分∠CAB,由角平分线性质和线段垂直平分线性质可知A、B、C都正确,且AC≠AD=BD,故D错误.7.C点拨:经过三次轴对称折叠,再剪切,得到的图案是C图(也可将各选项图案按原步骤折叠复原).8.B点拨:本题中的台球经过多次反射,每一次的反射就是一次轴对称变换,直到最后落入球袋,可用轴对称作图(如图),该球最后将落入2号袋.9.点拨:观察可知本题图案是两个数字相同,且轴对称,由排列可知是相同的偶数数字构成的,故此题答案为6组成的轴对称图形.10.2 -5点拨:点E、F关于y轴对称,横坐标互为相反数,纵坐标不变.11.2.5 cm点拨:△ABC为等边三角形,AB=BC=CA,AD⊥BC,所以点D平分BC.2.5 cm.==DC 所以12.5点拨:∠C =90°,∠A =30°, 则∠ABC =60°,BD 是∠ABC 的平分线,5.==CD ,所以30°=D CB 则∠ 13.40°点拨:因为MP 、NQ 分别垂直平分AB 和AC ,所以PA =PB ,QA =QC ,∠PAB =∠B ,∠QAC =∠C ,∠PAB +∠QAC =∠C +∠B =180°-110°=70°,所以∠PAQ 的度数是40°.14.25°点拨:设∠C =x ,那么∠ADB =∠B =2x , 因为∠ADB +∠B +∠BAD =180°,代入解得x =25°.15.60°或120°点拨:有两种可能,如下图(1)和图(2),AB =AC ,CD 为一腰上的高,过A 点作底边BC 的垂线,图(1)中,∠BAC =60°,图(2)中,∠BAC =120°. 16.2 m 点拨:根据30°角所对的直角边是斜边的一2 m.===DE 半,可知 17.证明:∵BD 、CE 分别是AC 、AB 边上的中线,∴.=CD ,=BE又∵AB =AC ,∴BE =CD .中,CBD 和△BCE 在△ ∴△BCE ≌△CBD (SAS).∴∠ECB =∠DBC .∴OB =OC . .1C 1B 1A 如图所示的△(1)解:.18 .2C 2B 2A 如图所示的△(2) 19. 解:如图,在CH 上截取DH=BH ,连接AD ,∵AH ⊥BC ,∴AH 垂直平分BD.∴AB=AD.∴∠B=∠ADB.∵AB+BH=HC,∴AD+DH=HC=DH+CD.∴AD=CD.∴∠C=∠DAC=35°.∴∠B=∠ADB=∠C+∠DAC=70°.20. 证明:如图,过D作DG∥AC交BC于G,则∠GDF=∠E,∠DGB=∠ACB,在△DFG和△EFC中,∴△DFG≌△EFC(ASA).∴CE=GD,∵BD=CE.∴BD=GD.∴∠B=∠DGB.∴∠B=∠ACB.∴△ABC为等腰三角形.21. 证明:如图,∵△ABC和△CDE为等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB+∠3=∠ECD+∠3,即∠ACD=∠BCE.又∵C在线段AE上,∴∠3=60°.在△ACD和△BCE中,∴△ACD≌△BCE.∴∠1=∠2.在△APC和△BQC中,∴△APC≌△BQC.∴CP=CQ.∴△PCQ为等边三角形(有一个角是60°的等腰三角形是等边三角形).。
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、将△ABC的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图的x轴的负方向平移了了1个单位2、若点A(x,3)与点B(2,y)关于x轴对称,则()A.x=﹣2,y=﹣3B.x=2,y=3C.x=﹣2,y=3D.x=2,y=﹣33、下列学习用具中,其形状不是轴对称图形的是()A. B. C. D.4、已知某等腰三角形三边长分别为5,a,11,则a的值为( )A.5B.5.5C.11D.5或115、若点与点关于轴对称,则等于()A.-3B.-5C.1D.36、等腰△ABC的顶角A为120°,过底边上一点D作底边BC的垂线交AC于E,交BA的延长线于F,则△AEF是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰但非等边三角形7、如上图,透明的圆柱形容器(容器厚度忽略不计)的高为12 ,底面周长为10 ,在容器内壁离容器底部3 的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13B.12C.15D.168、如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:;(1)作线段,分别以为圆心,以长为半径作弧,两弧的交点为;(2)以为圆心,仍以长为半径作弧交的延长线于点;(3)连接下列说法不正确的是( )A. B. C.点是的外心 D.9、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.A.1个B.2个C.3个D.4个10、如图,在▱ABCD中,AB=6,BC=4,BE平分∠ABC,交CD于点E,则DE的长度是()A. B.2 C. D.311、下列四个图形中轴对称图形的个数是( )A.1B.2C.3D.412、下列四个标志中,是轴对称图形的是()A. B. C. D.13、如果一个三角形是轴对称图形,且有一个角是,那么这个三角形是()A.等边三角形B.含120°角的等腰三角形C.等腰直角三角形 D.含30°角的直角三角形14、下列命题中:(1)形状相同的两个三角形全等;(2)斜边和一条直角边对应相等的两个直角三角形一定全等;(3)等腰三角形两腰上的高线相等;(4)三角形的三条高线交于三角形内一点.其中真命题的个数有().A.0个B.1个C.2个D.3个15、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠AEC=________17、如图,△ABC中,AB=AC,∠BAC=100°,DE垂直平分AB,则∠CAE=________°.18、下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.已知:线段.求作:等腰,使,边上的高为.作法:如图,(1)作线段;(2)作线段的垂直平分线交于点;(3)在射线上顺次截取线段,连接.所以即为所求作的等腰三角形.请回答:得到是等腰三角形的依据是:①________:②________.19、如图,在正方形ABCD中,AD= ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为________.20、将点A(1,2)向左平移3个单位长度得点A′,则点A′关于y轴对称的点的坐标是________.21、线段AB和线段A′B′关于直线l对称,若AB=16cm,则A′B′=________cm.22、等腰三角形一个顶角和一个底角之和是100°,则顶角等于________.23、如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为________.24、如图,直线y=x+4与双曲线(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为________.25、如图,在▱ABCD中,E是边BC上一点,且AB=BE,AE、DC的延长线相交于点F,∠F=62°,则∠D=________°.三、解答题(共5题,共计25分)26、如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60°.27、如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)28、临海大桥主塔是一个轴对称图形(如图所示),小明测得桥面宽度米,,求点到桥面的距离.(结果精确到0.1米,参考数据:)29、在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .30、铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、C5、B6、A7、A8、D9、C10、B11、C12、B13、A14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、。
第十三章 轴对称 单元测试题一、选择题1.已知点A 与点(-4,5)关于y 轴对称,则A 点坐标是( ) A.(4,-5)B.(-4,-5)C.(-5,-4)D.(4,5)2.如果点P(a,2 015)与点Q(2 016,b)关于x 轴对称,那么a+b 的值等于( ) A.-4 031B.-1C.1D.4 0313.图,在已知的△ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为( )A.90°B.95°C.100°D.105°4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60°FE DCBA5.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A 、PA+PB >QA+QB B 、PA+PB <QA+QB D 、PA+PB =QA+QBD 、不能确定6.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).B MN P 1AP 2OPA 、4B 、5C 、6D 、77.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ).N MDC HE BAA 、AD DH AH ≠=B 、AD DH AH ==C 、DH AD AH ≠= D 、AD DH AH ≠≠8、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对 9.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( ).10.如图所示,Rt △ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E.当∠B =30°时,图中一定不相等的线段有( ).A .AC =AE =BEB .AD =BDC .CD =DE D .AC =BD 二、填空题(每小题4分,共16分)11.如图,在△ABC 中,AB,AC 的垂直平分线交BC 于点E,G,若∠B+∠C=40°,则∠EAG= .12.如图,分别作出点P 关于OA,OB 的对称点P 1,P 2,连接P 1P 2,分别交OA,OB 于点M,N,若P 1P 2=5 cm,则△PMN 的周长为.13. 平面直角坐标系中,点A (2,0)关于y 轴对称的点A ′的坐标为___________.14.如图,现要利用尺规作图作△ABC 关于BC 的轴对称图形△A'BC.若AB=5 cm,AC=6 cm,BC=7 cm,则分别以点B,C 为圆心,依次以 cm, cm 为半径画弧,使得两弧相交于点A',再连接A'C,A'B,即可得△A'BC.15. 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是___________.16. 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.三、解答题:17.(6分)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.18.(7分)如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,•且到∠AOB的两边的距离相等.19.(8分)如图,AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于点E,EF ∥AC 交AB 于点F,求证:AF=FB.20. (7分)已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D. 求证:DCB 2BAC ∠=∠。
第13章检测卷(45分钟100分)一、选择题(本大题共8小题,每小题4分,满分32分)题号12345678答案D B A D A D C B1.下列语言是命题的是A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到点C,使OC=OAD.两直线平行,内错角相等2.在△ABC中,AB=5,AC=8,则BC长可能是A.3B.8C.13D.143.a,b,c为三角形三边的长,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|的结果是A.0B.2a+2b+2cC.4aD.2b-2c4.如图,四个图形中,线段BE是△ABC的高的图是5.如图,铅笔放置在△ABC的边AB上,笔尖方向为点A到点B的方向,把铅笔依次绕点A、点C、点B按逆时针方向旋转∠A,∠C,∠B的度数后,笔尖方向变为点B到点A的方向,这种变化说明A.三角形内角和等于180°B.三角形外角和等于360°C.三角形任意两边之和大于第三边D.三角形任意两边之差小于第三边6.下列命题的逆命题是真命题的是A.同位角相等B.对顶角相等C.钝角三角形有两个锐角D.两直线平行,内错角相等7.如图,已知∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=A.180°B.360°C.240°D.200°8.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2等于A.52°B.61°C.65°D.70°二、填空题(本大题共4小题,每小题4分,满分16分)9.一个三角形的三边分别是3,x,9,则x的取值范围是6<x<12.10.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为25°,那么这个“半角三角形”的最大内角的度数为105°.11.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1-S2的值为1.12.如图,D为AB边上任意一点,则下列结论:①∠A>∠ACF;②∠B+∠ACB<180°;③∠F+∠ACF=∠A+∠ADF;④∠DEC>∠B.其中正确的是②③④.(填写序号)三、解答题(本大题共5小题,满分52分)13.(8分)写出下列命题的逆命题,并指出其真假.(1)如果a,b都是偶数,那么a+b是偶数;(2)两个锐角的和是钝角;(3)直角三角形的两个锐角互余;解:(1)如果a,b都是偶数,那么a+b是偶数.逆命题是:如果a+b是偶数,那么a,b都是偶数,是假命题.(2)两个锐角的和是钝角.逆命题是:如果两个角的和是钝角,那么这两个角是锐角,是假命题.(3)直角三角形的两个锐角互余.逆命题是:如果一个三角形的两个锐角互余,那么这个三角形是直角三角形,是真命题.14.(10分)两只猎豹在如图的A处发现有一只野牛离群独自在O处觅食,猎豹打算用迂回的方式,由一只先从A处前进到C处,然后再折回到B处截住野牛返回牛群的去路,另一只则直接从A处扑向野牛,已知∠BAC=40°,∠ABC=70°,猎豹从C处要转多少度才能直达B处?解:∠BAC=40°,∠ABC=70°,可得∠ACB=180°-40°-70°=70°.答:猎豹从C处要转110度才能直达B处.15.(10分)已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解,求△ABC 的周长,判断△ABC的形状.解:∵(b-2)2≥0,|c-3|≥0,且(b-2)2+|c-3|=0,∴b-2=0,c-3=0.即b=2,c=3.∵a为方程|x-4|=2的解,∴a=2或6.经检验,当a=6时,不满足三角形三边关系定理,故舍去.∴a=2,b=2,c=3.∴△ABC为等腰三角形,周长为7.16.(12分)如图1,在△OBC中,A是BO延长线上的一点.(1)∠B=32°,∠C=46°,则∠AOC=78°,Q是BC边上一点,连接AQ交OC于点P,如图2,若∠A=18°,则∠OPQ=96°,猜测:∠A+∠B+∠C与∠OPQ的大小关系是∠A+∠B+∠C=∠OPQ.(2)将图2中的CO延长到点D,AQ延长到点E,连接DE,得到图3,则∠AQB等于图中哪三个角的和?并说明理由.(3)求图3中∠A+∠D+∠B+∠E+∠C的度数.解:(2)∠AQB=∠C+∠D+∠E.理由:∵∠EPC=∠D+∠E,∠AQB=∠C+∠EPC,∴∠AQB=∠C+∠D+∠E.(3)∵∠AQC=∠A+∠B,∠QPC=∠D+∠E,又∵∠AQC+∠QPC+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,即∠A+∠D+∠B+∠E+∠C=180°.17.(12分)如图,点C 在射线BE 上,∠ABE 与∠ACE 的平分线交于点A 1.(1)若∠A=60°,求∠A 1的度数;(2)若∠A=α,求∠A 1的度数;(3)在(2)的条件下,作∠A 1BE ,∠A 1CE 的平分线交于点A 2;作∠A 2BE ,∠A 2CE 的平分线交于点A 3,…,依此类推,则∠A 2,∠A 3,…,∠A n 分别为多少度?解:(1)∠A 1=30°.∵∠ACE=∠A+∠ABC ,又∠ABE 和∠ACE 的平分线交于点A 1,∴∠A 1BC=1∠ABC ,∠A 1CE=1∠ACE ,∴∠A 1CE=12∠ACE=12(∠A+∠ABC )=12∠ABC+12∠A ,又∠A 1CE=∠A 1+∠A 1BC=∠A 1+12∠ABC ,∴∠A 1=12∠A=30°.(2)∠A 1=12α.(3)∠A 2=14α,∠A 3=18α,∠A n =12n α.。
人教版八年级上册数学第13章轴对称单元测试卷一.选择题1.点A(﹣3,1)关于x轴的对称点为()A.(﹣3,1)B.(﹣3,﹣1)C.(3,1)D.(3,﹣1)2.下列图形中,是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为()A.4 B.6 C.8 D.104.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定5.琪琪从镜中看到电子钟示数,则此时时间是()A.12:01 B.10:51 C.11:59 D.10:216.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋7.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)8.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是() A.13 B.14 C.15 D.169.如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON的对称点是点H,连接GH分别交OM,ON 于点A,B.若GH的长是12cm,则△PAB的周长为()A.12 B.13 C.14 D.1510.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8 B.10 C.14 D.10或14二.填空题11.已知点A(m,3)与点B(2,n)关于x轴对称,则(m+n)2020的值为.12.如图,在△ABC中,AB=AC,BD是∠ABC的平分线,DE∥AB与BC边相交于点E,若BE=3,CE=5,则△CDE的周长是.13.在Rt△ABC中,∠C=90°,∠A=30°,BC=5,斜边AB的长为.14.如图,在△ABC中,D为AB上一点,AD=DC=BC,且∠A=30°,AD=5,则AB=.15.在平面直角坐标系中,O为坐标原点,已知点A(2,﹣1),在x轴上确定一点P,使得△AOP为等腰三角形,则符合条件的点P有个.16.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.17.如图,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是.18.如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,点P2019的坐标是.三.解答题21.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.22.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.23.如图,在△ABC中,AB=AC=10cm,BC=6cm,∠A=50°,DE为AB的垂直平分线,分别交AB、AC于点E、D.(1)求△BCD的周长;(2)求∠CBD的度数.24.如图,在平面直角坐标系中,每个小正方形网格的边长为1个单位,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请写出点A,B,C的坐标;(2)求△ABC的面积;(3)请作出△ABC关于y轴对称的△A1B1C1.25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.26.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.27.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若∠ABE=20°,请求出∠BEC的度数.答案一.选择题1.B.2.C.3.B.4.B.5.D.6.D.7.C.8.C.9.A.10.C.二.填空题11.1.12.11.13.10.14.10.15.4.16.(a,﹣b).17.10.18.等边三角形,319..等边三角形. 20.(8,3).三.解答题21.解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.22.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.23.(1)解:∵DE为AB的垂直平分线,∴DA=DB,∴△BCD的周长=AC+BC=10+6=16(cm);(2)解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DA=DB,∠A=∠ABD=50°,∴∠CBD=65°﹣50°=15°.24.解:(1)由图知,A(﹣4,5)、B(﹣2,1)、C(﹣1,3);(2)△ABC的面积为3×4﹣×2×3﹣×1×2﹣×2×4=4;(3)如图所示,△A1B1C1即为所求.25.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50°;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,∵AB=AC=8cm,△MBC的周长是14cm,∴BC=14﹣8=6(cm);②当P与M重合时,△PBC的周长最小.理由:∵PB+PC=PA+PC,PA+PC≥AC,∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=8+6=14(cm).26.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.27.(1)证明:连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)解:∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE,∵∠ABE=20°,∴∠BEC=60°.。
量得PA=2cm,PB=2cm,则点P—定()B.在边AB的中线上D.在边AB的垂直平分线上)C. 3条D. 4条,D, E 分别是AB, AC 上的点,且BC=CD,AD=DE=CE,C. 40°D. 36°6.若等腰三角形的腰长为8,腰上的高为4,则此三角形的顶角是()A. 30°B. 150°C. 30°或150°D. 30°或120°7.如图,在AABC中,AB=AC, ZBAC=120° ,0是队的中点,DE丄AB于点E,人教版八年级数学单元检测第十三章《轴对称》检测题一、选择题1.在AABC 中,A. 70°(时间:60分钟分值:(每小题4分,共28分)AB=AC, ZB=67°,则ZA=(B. 55°C. 50°100分))D. 40°2.下列图形中,不是轴对称形的是()A. 1条B. 2条5.如图,则ZA=(在AABC 中,AB=AC )A. 50°B. 45°第5题A第7题3.三角形纸片ABC上有一点P,A.是边AB的中点C.在边AB的高上4.等边三角形的对称轴有(若AE=2cm,则AD的长为()A. 4cm B. 6cm C. 8cm D.12cm二、填空题(每小题4分,共20分)8.将一副直角三角板按如图所示摆放,点C 在EF 上,AC 经过点D.已知ZA=Z EDF=90° , AB=AC, ZE=30° , ZBCE=40°,则ZCDF= _______________________ .9. 在AABC 中,AB=AC, ZBAC=36°,作AB 边的垂直平分线DE,交AC 于点D,交AB 于点E,连接BD.给出下列结论:①BD 平分ZABC;②AD=BD=BC;③ABDC 的周长 等于AB+BC;④点D 是AC 的中点.其中正确的是 ___________ (只填序号). 10. ______________________________________________________________ 若(a-1) 2+ | b-2 | =0,则以a, b 为边的等腰三角形的周长为 __________________ . 11. 如图,在AABC 中,AB=AC, D, E 是AABC 内的两点,AD 平分ZBAC, ZEBC= ZE=60° .若BE=6cm, DE=2cm,贝!JBC= ___________ cm. 12. 如图,在AMNP 中,ZP=60° ,MN=NP,MQ 丄PN,垂足为Q,延长MN 至点G,使 NG=NQ.若AMNP 的周长为12,则MG 的长为 ________ . 三、解答题(共52分) 13. (8 分)如图,四边形 ABCD 的顶点坐标为 A (-5, 1), B (-1, 1), C (一1, 6), D (-5, 4), 请作出四边形ABCD 关于x 轴及y 轴的对称图形,并写出对应点的坐标.第8题第11题 第12题14. (10分)如图,AABC 是等边三角形,D 是AC 上一点,BD=CE, ZABD= ZACE,试判断AADE 的形状,并证明你的结论.15.(10分)如图,己知ZA0B 和点C, D,求作一点P ,使点P 到ZAOB 两边的 距离相等,且使点P 到C, D 两点的距离和最小. 16.(12分)如图,某轮船上午11时30分在A 处观测海岛B 在北偏东60°方向,该轮船以10海里/时的速度向正东方向航行,航行到C 处时,再观测海 岛B 在北偏东30°方向,又以同样的速度向正东航行到D 处时,再观测海岛B 在北偏西30°方向,当轮船到达C 处时恰好与海岛B 相距20海里,请你确定轮 船到达C 处和D 处的时间. A EBA17. (12分)如图,己知AC平分ZMAN.(1)在图1 中,若ZMAN=120°,ZABC=ZADC=90°,求证:AB+AD=AC;(2)在图2中,若ZMAN=120° , ZABC+ZADC=180°,则(1)中的结论是否仍成立?若成立,请给出证明;若不成立,请说明理由.参考答案:一、选择题(每小题4分,共28分)1. D2. C3.D4. C5. B6. C7. A二、填空题(每小题4分,共20分)8.25°9•①②③10. 5 11. 8 12. 6三、解答题(共52分)13.(8分)图略Ar(5, D^^l, 1),C1(1,6),D1(5, 4);A2 (-5, -1), B2 (-1, -1), C2 (-1, -6), D2 (-5, -4).14.(10 分)略.15.(10分)图略作法:(1)作ZAOB的平分线0M;(2)作点D(C)关于直线OM的对称点D' (C');(3)连接C D' (DC'),交0M 于点P.则点P即为所求作的点.16.(12分)轮船到达C处的时间是13:30,即下午1时30分;轮船到达D处的时间是15:30,即下午3时30分.17.(12 分)(1)略;(2)成立.提示:过点C作CE丄AN于点E, CF丄AM于点F.证明△BCESADCF(AAS).。
八年级数学上册《第十三章轴对称》单元测试卷及答案(人教版)班级姓名学号一、单选题1.下列图形中是轴对称图形的是()A.B.C.D.2.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( )A.3cm B.5cm C.7cm或3cm D.8cm3.下列命题是假命题的是()A.线段垂直平分线上的点到线段两端的距离相等B.三角形的一个外角等于与它不相邻的两个内角的和C.有一个外角是120°的等腰三角形是等边三角形D.有两边和一角对应相等的两个三角形全等4.在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,∠B的度数为()A.20°或70°B.30°或60°C.25°或65°D.35°或65°5.如图,在△ABC中,∠A=90°,∠C=30°,BC的垂直平分线交AC于点D,交BC于点E,若ED=3,则AC的长为()A.3√3B.9 C.12 D.66.如图,矩形ABCD的对角线交于点O,若∠ACB=30°,AB=2则OC的长为()A.2 B.3 C.2√3D.47.如图,在△ABC中,AB=AC,AD⊥BC 于点D,DE⊥AB于点E,BF⊥AC于点F,若DE=6cm,那么BF等于()A.8cm B.9cm C.12cm D.16cm8.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC;④OE=OD.从上述四个条件中,选取两个条件,不能判定△ABC是等腰三角形的是()A.①②B.①③C.③④D.②③二、填空题9.已知等腰三角形的顶角是底角的4倍,则顶角的度数为°.10.已知点P到x轴,y轴的距离分别是2和3,且点P关于y轴对称的点在第四象限,则点P的坐标是.11.如图,ΔABC中∠C=90∘,∠A=30∘,BD是ΔABC的角平分线,且BD=6,则CD=.12.如图,在△ABC中,∠B=30°,AC= √3,边AB的垂直平分线分别交AB和BC与点E,D,且AD平分∠BAC则DE的长度为.13.如图,Rt△ABC中,∠B=90°,∠A=30°,AB=5,D是AC的中点,P是AB上一动点,则CP+PD的最小值为.三、解答题14.如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线MN的对称图形△A′B′C′;(2)求△ACA′的面积;(3)求△A′B′C′的面积.15.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时小岛P到AB的距离为多少海里.16.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?17.如图,在Rt△ABC中,∠A=90°,DE是BC的垂直平分线,交AC于点E,连接BE,∠CBE=2∠ABE,求∠C的度数.18.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.19.已知:如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:AO=BO.20.如图,△ABC中,∠ABC=∠ACB,点D、E分别是AC、AB上两点,且AD=AE,CE、BD交于点O.(1)求证:OB=OC;(2)连接ED,若ED=EB,试说明BD平分∠ABC.参考答案1.D2.A3.D4.C5.B6.A7.C8.D9.12010.(﹣3,﹣2)11.312.113.514.(1)解:如图所示,△A′B′C′即为所求;(2)解:S△ACA′=12×6×2=6;(3)解:S△A′B′C′=4×3−12×3×2−12×1×2−12×4×2=4.15.解:过点P作PM⊥AB,垂足为M,由已知得∠EAP=75º,∠HBP=60º,∴∠PAB=15°,∠PBM=30°∴∠APB=15°,∴∠PAB=∠APB=15°∵∠PAB=∠APB(已证),∴AB=PB=7海里(等角对等边),在Rt△PBM中∠PBM=30°,∴PM=12BP=12×7=3.5海里,∴ P到AB的距离为3.5海里.16.解:∵∠BAD=20°,AB=AD=DC∴∠ABD=∠ADB=80°由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=100°又∵AD=DC∴∠C=12∠ADB=40°∴∠C=40°.17.解:∵DE是BC的垂直平分线∴EB=EC∴∠CBE=∠C∵∠CBE=2∠ABE∴∠ABE=12∠C∵∠A=90°∴∠ABC+∠C=90°∴12∠C+∠C+∠C=90°∴∠C=36°.18.解:(1)∵AB的垂直平分线DE交AC于D,垂足为E ∴AD=BD∴∠ABD=∠A=30°∴∠BDC=∠ABD+∠A=60°;(2)∵在△ABC中,∠C=90°,∠BDC=60°∴∠CBD=30°∴BD=ACD=2×3=6∴AD=BD=6∴AC=AD+CD=9.19.解:∵∠C=∠D=90°∴△ACB和△ADB为直角三角形在Rt△ACB和Rt△ADB中{AD=BCAB=BA∴Rt△ACB≌Rt△ADB∴∠ABC=∠BAD∴OA=OB20.(1)证明:∵∠ABC=∠ACB ∴AB=AC在△ABD和△ACE中{AB=AC ∠A=∠A AD=AE∴△ABD≌△ACE(SAS)∴∠ABD=∠ACE∴∠ABC-∠ABD=∠ACB-∠ACE 即∠DBC=∠ECB∴ OB=OC(2)解:∵ AD=AE∴∠AED=180∘−∠A2∵ AB=AC∴∠ABC=180∘−∠A2∴∠AED=∠ABC∴ ED∥BC∴∠EDB=∠DBC∵ ED=EB∴∠EDB=∠EBD∴∠EBD=∠DBC即BD平分∠ABC.。
2017年秋八年级上数学第十三章轴对称检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.如图,羊字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2.平面直角坐标系中,点(-2,4)关于x轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.3.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A. AB=AD.B. AC平分∠BCD.C. AB=BD. D. △BEC≌△DEC.4.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里5.如图,在△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB 于E点,则下列结论错误的是()A.DE=DC B.AD=DB C.AD=BC D.BC=AE6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°7.如图,△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,则BE的长为()A.7 B.8 C.9 D.108.如图,∠A=80°,点O是AB,AC垂直平分线的交点,则∠BCO的度数是()A.40°B.30°C.20°D.10°9.已知△ABC 中,AB =6,AC =8,BC =11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A .3条B .5条C .7条D .8条10.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…,若∠A =70°,则∠A n -1A n B n -1的度数为( )A.70°2nB.70°2n +1C.70°2n -1D.70°2n +2二、填空题(每小题3分,共24分)11.一个正五边形的对称轴共有______条.12.如图,等边△ABC 中,AD 为高,若AB =6,则CD 的长度为______.13.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则ab 的值为______. 14.如图,树AB 垂直于地面,为测树高,小明在C 处测得∠ACB =15°,他沿CB 方向走了20米,到达D 处,测得∠ADB =30°,则计算出树的高度是______米.15.如图,△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为______.第15题图 第16题图16.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是______.17.如图,在△ABC 中,AB =AC ,∠A =32°,以点C 为圆心、BC 的长为半径作弧,交AB 于点D ,交AC 于点E ,连接BE ,则∠ABE 的大小为______.18.如图,△ABC 中,BC 的垂直平分线DP 与∠BAC 的平分线相交于点D ,垂足为点P ,若∠BAC =84°,则∠BDC =______.三、解答题(共66分)19.(7分)如图,已知AB =AC ,AE 平分∠DAC ,那么AE ∥BC 吗?为什么?20.(8分)如图,在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.21.(9分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22.(10分)从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).23.(10分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(12分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.B 2.C 3.C 4.D 5.C 6.D 7.C8.D 解析:连接OA ,OB ,∵∠BAC =80°,∴∠ABC +∠ACB =100°.∵O 是AB ,AC 垂直平分线的交点,∴OA =OB ,OA =OC ,∴∠OAB =∠OBA ,∠OCA =∠OAC ,∴∠OBA +∠OCA =80°,∴∠OBC +∠OCB =100°-80°=20°.∵OA =OB ,OA =OC ,∴OB =OC ,∴∠BCO =∠CBO =10°,故选D.9.C 解析:分别以AB ,AC 为腰的等腰三角形有4个,如图①,分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.10.C 解析:在△ABA 1中,∠A =70°,AB =A 1B ,∴∠BA 1A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°.同理可得∠B 2A 3A 2=∠B 1A 2A 12=17.5°=70°22,∠B 3A 4A 3=12×17.5°=70°23,∴∠A n -1A n B n -1=70°2n -1.故选C.11.5 12.3 13.-10 14.10 15.13 16.10:45 17.21° 解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.依题意可知BC =EC ,∴∠BEC =∠EBC =53°,∴∠ABE =∠ABC -∠EBC =74°-53°=21°.18.96° 解析:如图,过点D 作DE ⊥AB ,交AB 延长线于点E ,DF ⊥AC 于点F .∵AD 是∠BAC 的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt △DEB 和Rt △DFC 中,⎩⎪⎨⎪⎧DB =DC ,DE =DF ,∴Rt △DEB ≌Rt △DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DF A =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.19.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .由三角形的外角性质得∠DAC =∠B +∠C =2∠B .(4分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(7分)20.解:∵△BDE 是正三角形,∴∠DBE =60°.(2分)∵BE ⊥AC ,∴∠BEA =90°,∴∠A =90°-60°=30°.(4分)∵∠ABC +∠C +∠A =180°,∠C =∠ABC ,∴∠C =180°-30°2=75°.(8分)21.解:(1)S △ABC =12×5×3=152.(3分)(2)△A 1B 1C 1如图所示.(6分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(9分)22.解:选择的条件是:①∠B =∠C ;②∠BAD =∠CDA (或①③,①④,②③).(2分)证明:在△BAD 和△CDA 中,∵⎩⎪⎨⎪⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(8分)∴AE =DE ,∴△AED 为等腰三角形.(10分)23.解:(1)∵AD 垂直平分BE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =70°,(3分)∴∠C =12∠AED =35°.(5分)(2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分)24.解:(1)∠BAD =∠CAE .(2分) (2)∠DCE =60°,不发生变化.(3分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD =120°,∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .(6分)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°.(10分)25.解:(1)△OBC ≌△ABD .(1分)证明:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD 中,⎩⎪⎨⎪⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分) (2)∵△OBC ≌△ABD ,∴∠BOC =∠BAD =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=60°,∴∠EAC =120°,∠OEA =30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰.(8分)∵在Rt △AOE 中,OA =1,∠OEA =30°,∴AE =2,(9分)∴AC =AE =2,∴OC =1+2=3,∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.(12分)。